

For other program segments, you might only want to temporarily
lock them down, so that they don't move while you're using them,
but then unlock them so that the Memory Manager can make more
efficient use of memory by moving blocks around. Similarly, data
blocks should be locked and unlocked in the same fashion. This
also brings up the concept of purging. When you unlock a block,
and you don't think you'll need it for awhile, you should mark it
purgeable so that the Memory Manager can throw out the contents
of the block and free the space if it has to. If the space is not
needed, the Memory Manager does not throw it out, thus leaving
the original contents available to the application. If the block is
purged, and the segment is requested, the Memory Manager has to
ask the System Loader to reload the block.

The System Loader is the other memory-affecting entity you should
know about. The System Loader has the capability to load segments
while a program is running, which opens up some space- and
efficiency saving options for applications.

The space-saving options are
discussed more fully in Chapter
6 of this book.

Although you usually won't make calls directly to the System Loader,
be aware that it functions most efficiently if you allow it to place
programs wherever the Memory Manager tells it to. The upshot is
that you shouldn't write code that is position-dependent. In
particular, avoid the use of absolute origins and addresses, since
those defeat the purpose of the relocating loader ···anything
else to avoid???·... This doesn't mean that your code has to be is
relocatable once it's been placed, but simply that the code must not
depend upon starting at a particular address.

See the Cortland ProDOS 16
Reference for complete details
on the System Loader.

The screen display
The display modes new to the Cortland, called the Super Hi·Res
graphics modes, are able to produce high-quality, high
resolution color graphics.

20 Chapter 2: Understanding the Desktop Environment

Operating system
Accumulator size
Index register size
Direct page address
Stack address

(

-:. Apple IL As usual, we won't talk about the display modes
available on 8-bit Apple II's. Those are also available on the
Cortland, but are outside the scope of this book.

There are two Super Hi-Res graphics modes on the Cortland. Both
modes display 200 horizontal lines. 640 mode can produce 640
vertical lines, while 320 mode can produce 320 vertical lines.
There are advantages to each mode; 640 mode obviously has higher
resolution, while 320 mode is easier to work with in color.

You have to set the resolution in your program when you start up
QuickDraw IT, one of the Cortland tool sets. We'll discuss the
Cortland tools in a moment For now, you should also know that
QuickDraw IT determines the colors of the display. The default for
text and graphics is black characters and lines on a white
background. For information on changing the defaults, refer to
Chapter 4 'Displaying in Color, H in this book.

Summary: the native mode execution
environment
ProDOS 16 automatically sets up the following environment for
desktop, event-driven programs:

Table x.x The NaHve Mode Execution Environment

ProDOS 16
16 bits
16 bits
any page in bank $00
any page from $0800 to $BFOO
in bank $00

Shadowing of I/O spaces on
SmdowingofText~ges on
Shadowing of Hi-Res graphics pages off
Default display Super Hi-Res
Available RAM banks $00 and $01, expansion
RAM

parts of banks $EO and $El

The Cortland Toolbox 21

The Cortland toolbox
In this section, we introduce the Cortland tools. The Cortland tools
are collections of routines provided by Apple to make desktop
programming easier. The tools support the standard desktop
interface and provide you with building blocks to help you construct
your application.

Calling the tools

How to access the tools depends, of course, upon the programming
language from which you're calling them. However, there is at least
one rule that makes using the tools relatively easy: from any
language that supports the tools, you call an individual routine by
invoking its name and providing the proper input parameters.
Thus, the the tool calls are sort of a macro language in themselves.

See Volume 1 of Cortland
Toolbox Reference for details on
the calling conventions.

The big five

These tools provide the basic the framework upon which the other
tools can build. All of these tools must be used in every event
driven application. The tools in this group are as follows:

Tool Locator Provides the mechanism for dispatching tool
calls. This tool allows you to get away with not
knowing where in memory the tools reside; the
Tool Locator knows and retrieves them when
you make a tool call. Once you start the Tool
Locator, its operation is automatic.

Memory Manager Allocates all memory available to the
application. When your application needs
memory, you'll request it from the Memory
Manager.

Miscellaneous Tool Includse mostly system-level routines that
must be available.

QulckDraw II Controls the graphics environment and draws
simple objects. Other tools call QuickDraw II
to draw such things as windows.

22 Chapter 2: UnderstandIng the Desktop Environment

Event MClnager

Menu Manager(

The list of tools needed tq :
support New Desk Accessories Is
given in Table 7,1 In Chapter 7 of
this book,

Traps events as they happen and passes them
to the application.

Examples of their use are given in the next chapter.

Desktop interface tools
This group of tools controls the desktop interface. The Window and
Menu Managers and Line Edit will almost always be used, in order to
adhere to the Human Interface Guidelines; the other tools should
be used if your application needs its feature (for example, the
Dialog Manager will be needed if your application uses dialog
boxes). Many of these tools are also needed to support New Desk
Accessories.

The tool sets are as follows:

Window Manager Updates windows.

Controls and maintains the pull-down menus
and the items in the menus.

Une Edit Presents text on the screen, and allows that text
to be edited.

Control Manager Presents controls, which are objects on the
screen that the user can manipulate with the
mouse to cause instant action or change
settings.

Dialog Manager Implements dialog boxes, which are to
appear on the screen when an application
needs more information to carry out a
command.

Scrap Manager Supports the desk scrap, which allows data to
be copied from one application to another (or
from one spot to another within an
application).

Desk Manager Enables applications to support desk
accessories, which are "mini-applications"
that can be run at the same time as another
application,

Standard File Operations

The Cortland Toolbox 23

Presents the standard user interface when a file
is to be saved or opened.

Examples of Window Manager and Menu Manager calls are given in
the next chapter.

Math tools
Integer Math Tool Set Supports mathematics routine with integers,

long integers, and signed fractional numbers.
Also converts integers, hex, and decimal
numbers from one form to another.

SANE

Printer tools

Supports the Standard Apple Numerics
package, which allows IEEE standard
extended-precision calculations.

High-Level Printer Driver
(···Information not yet available.···

Low-Level Printer Driver
(···Information not yet available.···

Sound tools
Sound Manager Supports the sound tool sets interfaces to the

Cortland toolbox and provides the basic
sound capabilities.

Note Synthesizer (···to be provided···)

(···How many others of these should we IIst17?···)

Specialized tools
Apple Desktop Bus Tool Set

Controls Apple Desktop Bus activity.

Scheduler Prevents a tool call from crashing the system
by asking for a temporarily unavailable system
resource.

24 Chapter 2: Understanding the Desktop Environment

Text Tool Set Provides an interface between Apple IT
character device drivers and applications
running in native mode.

The Cortland Toolbox 25

,.,

Chapter 3

Programming an Event-Driven
Application

The source code is reproduced in
Appendixes A, B, and C if you
wish to refer to it,

About event-driven applications
If you want to program native-mode applications on the Cortland,
you need to understand the concept and practice of event-driven
applications. This type of application essentially waits for the user
to do something (that is, cause an "event"), such as click the mouse
click or press a key on the keyboard, Such an application is
organized around a main event loop that trap the event and report
its type, Conditional statements th~n determine what action to take
based on what type of event hapPened.

This chapter explores a demonstration event-driven application
developed by Apple. Since we can't tell which of the various
languages you're using, we walk through the application without
presenting the actual code,

You also should have received the source code in the language
package you purchased from Apple; feel free to steal the application
and use it as a "skeleton" which you can then flesh out into your full
fledged application.

An outline of an ·event-driven application
This section simply lists the programming steps involved in writing
an event-driven application. The list gives you an overview of the
entire application. Each step is explained in more detail in the next
section.

Note that the steps are introduced chronologically, and not listed in
the order in which they might appear in source code. How modules
are chained together depends upon the language you're using and
your own predilections; we simply indicate the order in which
things must or should happen.

An outline of an event-driven applications 27

('-writer's note: should one more level of abstraction be
provided in the following list; e.g. "Start up the basic tool
sets needed by all applications")

1. Depending upon the language, set up the programming
environment.

2. DefIne the data structures and the data.

3. Start up the Tool Locator.

4. Start the Memory Manager.

5. Start up the Miscellaneous Tools.

6. Load any other desired tools.

7. Request zero page space from the Memory Manager.

8. Start up QuickDraw II.

9. Start up Event Manager.

10. Start up Window Manager.

11. Start up Menu Manager.

12. Start up any other tool sets needed.

13. Set up environment for main event loop.

14. Set up system menu bar.

15. Begin main event loop

16. Handle application-specific events.

17. Shut down application.

Note that, in some instances, the steps do not have to be taken in
exactly the suggested order. We're presenting an order that works in
the example application; this gives you a basis to begin
experimenting with the source code to see what can be changed.

An example event-driven application

Step 1. Setting up the programming environment

If you're programming in assembly language, there's at least one
thing you have to do before you start; you must tum on the 65816
instruction set and indicate under what name the output me will be
stored with a KEEP instruction. There are other various options you
may want, but we leave them up to you.

C""Anythlng likely in this slot for C or Pasca1???''')

28 Chapter 3: Programming an Event-Driven Application

)
,,/

(

Step 2. Defining the data structures and the data

Where and how you defme your data structures and the actual data
depends upon the language you1re using. In any case, the data must
be defined somewhere; we'll leave the housekeeping decisions for
you. Remember, though, to place all text that is to be displayed in a
local data area so that it can easily be changed for international
markets. (···can we make other recommendations across
the-board or specific recommendations for Assembler, C,
and Pascal?···)

The structures you defme will, of course, depend upon your
program. This example program defines the following:

Ii The graphics mode.

Ii The menu colors.

II The basic structure of an event record.

III The basic structure of a rectangle.

IlII The basic structure of a window.

III The coordinates for the windows.

III The event codes returned by the Event Manager.

III Various control structures.

III Zero page data.

Another option is to place the data structures in separate modules,
which can then be retrieved through the appropriate language's
USING or Il':CLUDE facility.

Step 3. Starting up the Tool locator

As the name implies, the Tool Locator is the tool which does the
work of fmding all of the Cortland tools. It figures, then, that the
application must start up the Tool Locator before it makes any other
tool calls. The call is simple; it is simply

TLStartup

without any parameters. Once the Tool Locator is up and running,
you can begin starting up the other tools you need.

An example event-driven applications 29

Step 4. Starting up the Memory Manager

The "Memory Manager", for the Cortland, is the tool set which does
the housekeeping of assigning and cleaning memory. Because all of
the other tools ask the Memory Manager for any space they need,
the Memory Manager must be active before all other tools. The call
to start the Memory Manager is

MMStartup

without any input parameters. The call returns the User ill for this
execution of the application, which other Managers and Tools need
to reference in order to get memory space.

Step 5. Starting up the Miscellaneous Tools

The next tool you need to start is the collection of tool sets and
managers known as the Miscellaneous Tools. Don't be misled by
the name; this set of routines is crucial to the success of the event
driven application. Once again, the call to start up the tool is
simply

MTStartup

Step 6. Loading other tools

Now that the Tool Locator, Memory Manager, and Miscellaneous
Tools are in place, it's time to load all other tool sets your
application will use. To simplify things, and to ensure that all RAJ\I
based tools are loaded from disk, it is best to load all tools at this
time. The reloading of the Tool Locator, Memory Manager, and
Miscellaneous Tools doesn't hurt anything, and also gives you the
opportunity to ensure that the correct minimum version of all of
those tools is present. Loading all tool sets also saves you the
trouble of determining which tool sets are in ROM and which in
RAM.

The loading is accomplished by the LoadTools call, which needs as
input a pointer to a tool table listing the total number of tool sets
and the number of each tool set needed. The numbers of the tool
sets are given in table 3-1:

30 Chapter 3: Programming an Event-Driven Application

/'

Table 3-1
Tool set Numbers

Tool Mt number Tool Mt name

(

1 Tool Locator

2 Memory Manager

3 Miscellaneous Tools

4 QuickDraw II
5 Desk Manager

6 Event Manager
7 Scheduler
8 Sound Manager

9 Apple DeskTop Bus Tool Set
10 SANE
11 Integer Math Tool Set

12 Text Tool Set

13 Reserved for Apple Use
14 Window Manager

15 Menu Manager
16 Control Manager

17 Loader

18 High-Level Printer Driver

19 Low-Level Printer Driver
20 Line Edit

21 Dialog Manager
22 Scrap Manager

Important Any RAM-based tools must be located In the TOOLS
sUbdirectory of the SYSTEM directory (for a complete list of the
flies necessary on an application disk, refer to Appendix D),

Step 7. Requesting direct page space for the tools

Some of the tools, particularly QuickDraw II and the Event
Manager, require some direct page space. Your application has to
reserve that space before it starts up any tools which use it.

An example event-driven applications 31

Direct page IS t~e Cort'ar"'d's
r"D'over::ert on the 8-bt ADDie
I! s 'zero Doge', wnere :he ~rst

Doge (256 bytes) of memory
(starting at 10cationSOOOO in
bank SaO) was used extensively
to save time and space. On tihe
Cortland, tihe direct page can
actually start at any locanon In
bank SOO, and can be
theoretically any size up to 64K
bytes. However, the direct page
still provides the same
advantage of increasing
performance, essentially by
providing each manager with its
own 'zero page' See the
disc~ssion of direct page in
Chapter 2,

To reserve the space, you call the ~lemory Manager routine
~ewHandle, NewHandle needs as inputs the following information:

III the size of the memory block to reserve

III the User ID of the program requesting the space (the Cser ID was
prOVided by the Memory Manager in Step 4)

III the attributes of the block; that is, whether it is ftxed, page
aligned, ftxed bank, etc.- for direct page, the block must be
fIXed, ftxed bank, and locked

III the location where the block will begin

The call returns the handle of the direct page. ,>\5 discussed in the
Memory Manager section in Chapter 2 (and more fully discussed in
the Cortland Toolbox Reference description of the Memory
Manager), a handle is a pointer to a pointer.

That handle is used in the next steps to assign the zero page space
for QuickDraw II and the Event Manager.

Step 8. Starting up Quic:kDraw II

QuickDraw II is the tool set responsible for manipulating graphics
on the Cortland. Many of the other tool sets use QuickDraw calls to
draw their graphics, particularly those controlling the desktop
interface, such as the Menu and Window Managers. Therefore,
QuickDraw II must be started up before those other tools.

First, dereference the handle and store the associated pointer (the
block is locked, so the pointer is better). To start QuickDrawII, you
call the QDStartup routine and provide the following inputs:

32 Chapter 3: Programming an Event-Driven Application

(
,

II the starting location for QuickDraw II's zero page (it needs two
consecutive pages of direct page space)

II the Master Scan Line Byte, which controls the basic properties of
the lines that will appear on the screen, such as the resolution
and the color table for the scan line

III the maximum width in bytes of the largest pixel map that will be
drawn (a zero equals the entire screen)

III the User ID of the program requesting the space (the User ID was
provided by the Memory Manager in Step 4)

The basic structure of the tools in now in place; in fact, the
information up to this point is so generic you may wish to place it in
a single module. You could then either access that module from all
of your applications or copy and modify it slightly when necessary.
However, the next step takes you directly into the event-driven,
desktop-interface world,where there is still more generic
information that you might include into such a common module.

Step 9. Starting up the Event Manager

The Event Manager provides the basic support for event-driven
applications by monitoring:

III the user's actions, such as those involving the mouse and
keyboard

III the actions taken by other Managers, such as the Window and
Control Managers

As discussed in the "Philosophy of event-driven applications" in
this chapter, a typical event-driven application decides what to do
next by asking the Event Manager for the next event and then
responding appropriately to that event.

The Event Manager has to be started up before the rest of the
desktop tools can be used. To start the manager, call the EMStartup
routine and provide the following inputs:

II the starting location for the Event Manager' zero page '(it needs
one page of direct page space)

II the maximum number of events that the Event Queue can hold
(zero uses default of 20; maximum is 3639)

III the borders for the mouse or cursor , called the clamp values

&I the User ID of the application (the User ID was provided by the
Memory Manager in Step 4)

An example event-driven applications 33

Now that the Event Manager has been started, the rest of the desktop
interface tools can be started, beginning with the Window Manager.

Step 10. Starting up the Window Manager

The Window Manager keeps track of the application's windows, and
needs to be started for all event-driven applications which use the
desktop interface. To start the Window Manager, caIl the
WindStartup routine and provide the User ID of the application as
input.

Step 11. Starting up the Menu Manager

The Menu Manager supports the menu bar at the top of the screen,
an integral part of the desktop interface. To start the Menu
Manager, call the MenuStartup routine and provide the following
inputs:

III the User ID of the application (the User ID was provided by the
Memory Manager in Step 4)

III the starting location for the Menu Manager's zero page (it needs
one page of direct page space)

Up to this point, the information is almost entirely standard for all
event-driven applications. Thus, the code could be kept in a
common file and reused for any application.

Step 12. Starting up other tool sets

At this point, you now start tlp any other tool sets your application
will need. There is no prescribed order, although it's nice
conceptually to start with the tools your applications will use most
often.Note that the remaining tool sets require different inputs when
an application starts them up:

III a few, such as the Control Manager, require some direct page
space and the User ID (as provided by the memory manager)

III others, like the Sound Manager, require only some direct page
space

III still others, like the Integer Math Tool Set, do not require any
inputs

34 Chapter 3: Programming an Event-Driven Application

(

The list of minimum tool sets
needed for desk accessories Is
given In Table 7-1 In Chapter 7.

What each tool set requires as input to the startup call is
documented in the Cortland Toolbox Reference: Volume 1 and
Volume 2. There is also a minimum number of tool sets required to
support desk accessories.

The example application starts up the Control Manager and the
Integer Math Tools.

Step 13. Setting up environment for main event loop

The application is now almost ready to start its own work. If there
are any other flags or pointers that need to be cleared, they should
be done now (-"'Jim's application clears the zero page.
Anything else?--)

Step 14. Setting up the system menu bar

First, it's a good idea to set up the system menu bar. Now is when the
tool calls start to be really convenient, as they chain together to do
many of the background tasks required for an event-driven
application.

To set up the menu bar, start with the tool call NewMenu, providing
the following input:

II the "normal" menu colors; that is, the colors of the menu bar
and text when it is not being selected

III the "selected" menu colors; that is, the colors of the menu bar
and text when it is being selected

II a pointer to the data for the menu

The data for the menu should contain the title for each menu and
the items listed under each menu. For more information about
menu strings, see to the Menu Manager chapter in Volume 1 of the
Cortland Toolbox Reference.

The call returns a handle to the data for the menu, which can then
be used by the tool call InsertMenu to place the data in the list of
menus. InsertMenu needs the following input:

III the pointer to the menu string

III the place in the list of menus to insert the menu (zero to insert the
string at the front of the list)

An example event-driven applications 35

Your application can then calculate the appropriate height of the
menu bar with a FixMenuBar call, which returns a height based on
the tallest font being used. The menu bar can then actually be
drawn with a DrawMenuBar call.

The example application then allocates windows and storage space
for each window C·"what can we say about this?"·).

Step 15. Beginning the main event loop

You're now ready to have the application start its main work doing
nothing-or rather, sitting around in the event loop waiting for an
event to happen so that it can be handled. Most of the spedal
personality of your application will be built in this module, so we're
more limited in what we can prescribe for the module. We'll give
you some general guidelines, though, and indicate some of the
capabilities of the event loop by exploring the example
application.

The first thing the application should check for is whether its time to
quit. If it isn't, the application checks for the next event.

When an event does happen, the application gets the event and
passes it to the Window Manager routine called Task..Master.
TaskMaster essentially filters out the events which affect the structure
of windows, such as a click in the Zoom, Go Away, and Grow boxes.
TaskMaster can automatically handle those events, so your
application doesn't need to deal with them. To use TaskMaster, you
provide the following inputs:

III the event mask, used to call the Event Manager routine
GetNextEvent

III a pointer to the extended task event recoid that TaskMaster uses

If TaskMaster can't handle the event, it passes the event code back to
the application, where the application must deal with it. For
example, if the user selects a menu item, the application must find
out which item was selected and take action based on the item.
When the action is finished, the application returns to the main
loop to wait for some other event to happen.

36 Chapter 3: Programming an Event-Driven Application

/

Step 16. Handling application-specific events

We've now reached the point where your application does its work.
As an introduction to what kind of work an event-driven application
can do, we present two of the choices from the menu of the example
application.

The ftrst example is the opening of the ftrst QuickDraw window. To
reach this window, the user has made a selection on the
menu...C"'''W what level of detail should we go in this
section???···)

The second example is (...·hopefully, there will be time to
include in the example program a module that changes the
information in the content of the window?·")

Step 17. Shutting down the application

When it's time to quit the application, there is a series of steps which
ensure a graceful exit They are as follows:

1. Turn off all tool sets (except the three listed below) by using the
ShutDown call from each tool set This is another good place for
a common subroutine.

2. Call the Miscellaneous Tool Set ShutDown routine (with no
parameters).

3. Provide the User ill to the Memory Manager ShutDown callA.
Call the Tool Locator ShutDown routine (with no parameters).

5. Use the ProDOS QUIT caU to leave the application. The most
common situation will be to give the QUIT call without any
parameters, which will shut the application down and return to
the program in control "above" it (typically a finder or launcher
of some sort). Other possibilities are available; refer to the
ProDOS 16 manual for more information.

Preparing an event-driven algorithm
Now that you've seen an example event-driven application, it
should be clear that the creative part of your programming task will
be handling the various kinds of events you defme in your
application. In this section, we provide some background
information and some practical hints to laying out this kind of
application.

An example event-driven applications 37

An event-driven application is...
When the Macintosh introduced event-driven programming, Mac
programmers may have completed this section heading with the
words "trouble", "impossible", or perhaps something unprintable.
The programmers were not used to the chaotic world of reality
where users actually interrupt one action to perform another. To
ease you over that hurdle, we present in this section several
alternative concepts that might help you learn to write event-driven
applications.

None of the following concepts is the "correct" way to think about
event-driven applications. All of them are merely attempts to get
you to grasp the essence of this type of programming.

You might think of an event-driven application as:

III An endless loop waiting for an event to happen so that the loop
can dispose of the event and go back to waiting.

III Interrupted by user action, so that every event is sort of a mini
interrupt.

III Causing a series of event ftlters until the end of the chain is found,
at which point the kind of event remaining is precisely known.

III Anarchy, not hierarchy.

("·Any other ideas???·")

Some practical hints
(-Tips and tricks on how to analyze a budding application
for its event-driven possibilities? Sort of a practical
application of the philosophy stated at the beginning of the
chapter? I would need a brainstorming session with
experienced application programmers for this sort of
thing"·)

38 Chapter 3: Programming an Event-Driven Application

(

Chapter 4

Displaying in Color

(

40 Displaying in Color

The color possibilities
The Cortland was designed to be a colorful character. The video
display hardware has many color capabilities; as usual, though, we
insulate you from the hardware by providing tool calls to
manipulate the color. To understand the way QuickDraw
manipulates it, you need to understand some background concepts.

Each physical horizontal line on the Cortland screen is called a
scan line, and each scan line is controlled independently by a scan
line control byte (an SeB). The SCB controls, among other things,
the resolution and the color table for the line.

Each color table has a palette of sixteen colors associated with it
The colors in the palette are associated with a color number, which
assigns the color's order in the table. The standard palette for the
default color table (table zero) for 320 mode is illustrated in Table 4
1:

\

Table 4·1
Standard palette, table zero - 320 mode

Color number Default color Master color value

0 Black 000 Opposite of White
1 Dark Gray 777
2 Brown 841

3 Purple 72C
4 Blue OOF

5 Dark Green 080
6 Orange F70
7 Red DOO
8 Flesh FA9
9 Yellow FFO
10 Green OEO
11 Light Blue 4DF
12 Lilac DAF

13 Periwinkle Blue 78F
14 Light Gray CCC
15 White FFF Opposite of Black

The "master color value" specifies the red-green-blue values that
blend to make up the color. More information is given in the
"Changing a Color in a Color Table" section below.

The standard palette was selected because of its flexibility and
appearance; we recommend that you use it at fIrst until you are used
to the concept. You can then begin experimenting by resetting
individual colors in the palette, or even replacing the color table
with an entirely new one.

There is a total of 16 palettes available at anyone time. Since the
color table is controlled independently for each scan line, it seems
that the table could be changed for each line, which could result in
256 colors on the screen at once (16 colors in a palette times 16
palettes). In theory, that's true, but in practice we recommend that
you use only one color table for applications that use windows.
Remember, the scan line controls a physical line on the screen, not
the "relative" line in a window. If a window gets moved to another
part of the screen, the effects on the color would be at worst
unpredictable and at best difncult to control.

The color possibilities 41

/

42 Displaying in Color

If the entire screen is under control C....*presumably such an
application should not allow partial windows???*"), then
more complicated things can be done with the SCB's and the color
tables. You'll have to study the QuickDraw II chapter in Volume 2 of
the Cortland Too/box Reference for that information.

The color for 640 mode is more difficult to handle; in order to take
advantage of 640 mode's special capabilities, you'll have to
understand more about the video display then we wish to discuss in
this book. We recommend that, you experiment with color in 320
mode until you understand the principles. In this chapter, we deal
only with 320 mode. For further information refer to the Cortland
Hardware Reference and the QuickDraw II chapter in Volume 2 of
the Cortland Too/box Reference. (*"should we say more in
this forum???? I realize it will have to be added to the
QukkDraw discussion**·)

.:- Note: The Cortland colors default to black and white. Thus,
you can easily use 640 mode for high-resolution drawing without
even worrying about the color.

Drawing in color
If you specify the default color table when you fire up QuickDraw II
and then simply use a QuickDraw n call to draw on the screen, it will
draw black lines Cor whatever) on a white background. To change
the color of the line that is being drawn, or the screen background,
you use the QuickDraw tool calls dealing with pen patterns.

For example, using the default color table, you could make the pen
draw in the color red by calling the QuickDraw n routine
SetSolidPenPat and specifying color number 7. Similarly, other
QuickDraw calls can set the color of the background or C-any
other things worth mentioning????)

Any of the colors in the current color table can be selected as the
color to draw with or as the background

Refer to QuickDraw II In Volume
2 of the Cort1and Toolbox
Reference for details.

Modifying the colors

Changing a color in a color table
Probably the first thing you'n want to change about a color table is
the substitution of one color for another. You might, for example,
want to have four shades of green on the palette in order to paint a
subtle natural landscape.

To change a color, you use the QuickDraw II call SetColorEntry,
which sets the value of a specified color number in a specified color
table. For example, assume that you want to change the color
orange in the default table to a light green. You would specify to a
SetColorEntry can that you wanted to change table zero (the
number of the default table), color number 6 (the number of the
color orange) to the new color value. Of course, you also have to
specify the new color value, which is taken from a two-byte value as
follows:

(picture from hardware reference)

Since higher hexadecimal numbers mean darker colors, and we
wanted a light green, you would set the color value to "OCO", which
changes color 6 in table zero to that color.

While we have modified table zero to contain a different color (and
could continue to do so until table zero was completely changed),
you can also use this method to create an entirely new color
table-table 1 for instance.Of course, to do so would take sixteen
SetColorEntry cans. There is a more efficient way, at least in terms
of calls. You can also use the QuickDraw II call SetColorTable to set
a whole table at once to the values stored at a certain range of bytes
in the video buffer. However, that's a bit hardware-oriented for the
purposes of our discussion, so we'n let you explore that technique
on your own.C-is this an appropriate place to end the
discussion???··)

Modifying the colors 43

44 Displaying in Color

Swapping whole color tables
After you get used to setting individual colors in the default color
table, you may want to create your own customized palette.in an
entirely new color table. Using the SetColorEntry or SetColorTable
techniques described above, you can set the colors in the table to
any of the 4096 possible colors. You then teU the Cortland to use
the new table with the GetColorTable call, which retrieves the values
from the color table; for example, you could swap out table zero
with the values from table 1, etc.

You should also be aware that you could change the colors on the
screen by building the new table and then using the Scan Line
Control byte (SCB) to teU the line to use the new color table.

Text colors
You determine the color of text displaying on the screen by using
the QuickDraw II calls SetForeColor and SetBackColor. Once
again, you specify the color number to the call, which sets the
foreground (the "characters") and the background colors according
to the corresponding color in the current color
table.C···Anything else to mention??·")

Chapter 5

Dealing With Files

About file handling - ProDOS 16
When your application needs to store or retrieve information from
a disk or hard disk, you will need to deal with disk meso These are in
the province of ProOOS 16, which, among other duties, is in
control of all disk files. In this chapter, we discuss the basic
processes your source code must go through in order to access disk
meso We don't give you the details of how to make the ProDOS
calls; instead, we introduce you to them and indicate what they do.

For complete information on the
ProDOS 16 calls which affect
flies. refer to the Cortland
ProDOS 16 Reference.

Creating Files
Your application places a me on a disk by using the ProOOS 16
CREATE call. When you create a me, you assign to it the following
properties:

III A pathname. A ProDOS 16 pathname is a series of filenames,
each preceded by a slash (j). This pathname is a unique path by
which the file can be identified and accessed. The first filename
in a pathname is the name of a volume directory. Successive
filenames indicate the path, from the volume directory to the
file, that ProOOS 16 must follow to find a particular file. The
maximum length for a pathname is 64 characters, including
slashes.

This pathname must place the file within an existing directory.

III An access byte. The value of this byte determines whether or
not the file can be written to, read from, destroyed, or renamed.

III A file type. This byte indicates to other programs the type of
information to be stored in the file. It does not affect, in any
way, the contents of the file.

III A storage type. This byte determines the physical format of the
me on the disk..

46 Chapter 5: Dealing With Files

Opening Files
Before you can read information from or write information to a file,
you must use the OPEN call to open the file for access. When you
open a me you specify it by pathname. The pathname you give
must indicate a previously created file; the file must be on a disk
mounted in a disk drive.

The OPEN call returns a reference number and a buffer location to
be used for transferring data to and from the file. All subsequent
references to the open file must use its reference number. The me
remains open until you use the CLOSE call.

When you open a file, some of the file's characteristics are placed
into a region of memory called a file control block. Several of
these characteristi~e location in memory of the file's buffer, a
pointer to the end of the file (the EOF), and a pointer to the current
position in the me (the file's MAR.K)-are accessible to system
programs via ProOOS 16 calls, and may be changed while the file is
open.

Be aware of the differences between a me on the disk and an open
file in memory. Although some of the file's characteristics and
some of its data may be in memory at any given time, the file itself
still resides on the disk. This allows ProDOS 16 to manipulate mes
that are much larger than the computer's memory capacity. As a
program writes to the file and changes its characteristics, new data
and characteristics are written to the disk.

Reeding and Writing Files
READ and WRITE calls to ProDOS 16 transfer data between memory
and a file. For both calls, the system program must specify three
things:

III The reference number of the me (assigned when the me was
opened).

III The location in memory of a buffer that contains, or is to
contain, the transferred data. Note that this cannot be the same
buffer whose location was returned when the me was opened

III The number of bytes to be transferred.

When the request has been carried out, ProDOS 16 passes back to
the program the number of bytes that it actually transferred.

Reading and Wrlttng Flies 47

Closing and Flushing Files
When you fInish reading from or writing to a me, you must use the
CLOSE call to close the me. CLOSE writes any unwritten data from
the file's I/O buffer to the me, and it updates the me's size in the
directory, if necessary. Then it frees the buffer space for other uses
and releases the file's reference number. To access the file again,
you have to reopen it.

Information in the file's directory, such as the file's size, is normally
updated only when the me is closed. If the user presses Control
Reset (typically halting the current program) while a file is open,
data written to the file since it was opened could be lost, and the
integrity of the disk could be damaged. This can be prevented by
using the FLUSH call.

FLUSH, like CLOSE, writes any unwritten data from the file's I/O
buffer to the file, and updates the me's size in the directory.
However, it keeps the file's buffer space and reference number
active, and allows continued access to the file. In other words, the
file stays open. If the user presses Control-Reset while an open but
flushed me is in memory, there is no loss of data and no damage to
the disk.

Both the CLOSE and FLUSH calls can close or flush all files or
specific groups of files.

Presenting the standard file interface
The Standard File Operations tool set allows you to present the user
with a standard way of dealing with files. The tool calls present a
standard dialog box whenever a me is to be opened or saved. Your
application needs to make only those tool calls to ensure the
consistent user interface ("·details to be added later, when the
File Operations tools settle down·")

~8 Chapter 5: Dealing With Flies

Appendix D

Application Disk Files

Table D-l lists the application disk files and structure necessary to
support a desktop, event-driven application.

Tobie 0·1
Desktop Application Disk Flies

I)lrec tory/File

PRODOS
SYSTEM

P16
LOADER
START
LIBS?
TooLS/

(and all the RAM-based tool sets needed to support
the application)

FOr-.7S/
DESK.ACCS/
SYSTEM. SETUP/

TooL.SETUP

RectoFooter

ApPE~ndix E

Pointers to Other Cortland
Books

In this appendix, we supply some references by specific topic to
chapters in the other Cortland books. We hope this list will help
you find specific topics quickly. (---Writer's note: this section
L'l intended as a catch-all for any topics that are too large or
too complicated for the scope of this book. Please
<:ontributel-")

Managing devices: How to manage block devices can be found in
the ProDOS 16 Reference in the chapter "Adding Routines to
ProDOS 16". You can read and write blocks and name devices, but
the information is normally only useful if you are writing such things
as disk ftxers. The file calls normally control input and output from
and to the disk.

Character devices are not really relevant to the desktop
environment, since that kind of input/output is normally handled
by tool calls such as Line Edit, QuickDraw II, and the Event
Manager.

Handling f1nnware IntetTupts: These can be found in the Cortland
Finnwa1'e Reference in the chapter "System Interrupts".

Installing Interrupt handlers: Look under the vector initialization
calls in the "Miscellaneous Tools" chapter in Volume 1 of the
Cortland Toolbox Reference.

Accessing tho sound capabilities of the Cortland: Look under
the "Sound Manager" chapter in Volume 2 of the Cortland Toolbox
Reference. Some of the RAM-based sound tools are sold as a
separate package and have their own book.

RectoFooter

2 Appendix E: Pointers to Other Cor11and Books

Chapter 6

Codingl Stcltic and Dynamic
SeglTlents

/

Introducing static and dynamic segments
A segment is simply a module of an application. Static segments
are loaded at program execution time, and are not unloaded during
execution; dynamic segments are loaded and unloaded during
program execution as needed. The loading and unloading is
transparent to the application.

This dynamic or static quality of a segment is assigned at link time.
We're not going to tell you how to assign those qualities in this book;
instead, we're going to give you the picture of how you'll have to
write your code in order for it to execute properly as static or
dynamic.

For complete information on
link!ng segments, see the
Cortland Programmer's
Workshop Reference.

Coding static segn1el"lts
Actually, the title of this section is slightly misleading; there's
nothing extra to do to code a static segment, save the general
requirement of not starting the segment at a particular address.

If a program is one static segment, the static segment will be loaded
where the Memory Manager wants it (as long as you don't specify an
origin at linking time). The program will simply remain there until
it terminates. For small applications and desk accessories, one
static segment is often all that's necessary. However, if your
program is beginning to strain the limits of memory, or you wish to
decrease the time it takes to load and nln, you might want to use the
Cortland's capability to load dynamic segments.

50 Chapter 6: Coding Static and Dynamic Segments

Coding dynamic segments
The System Loader for the Cortland has the capability to load
segments of an applietion while the application is running. This
allows you to decrease the initial load time of your application by
loading only the "permanent" part of the application as static
segments. Less-used code or data can be kept in dynamic segments
which will be loaded when the program requests them.

Such dynamic segments must as usual not contain absolute
addresses, so that the segment is relocatable. Most importantly,
dynamic segments must be subroutines which are jumped to with a
;SL or equivalent C·*"what is the C and pascal equivalent of a
JSL???).

Once a dynamic segment has been automatically loaded, it will stay
in memory until your application unloads it At that point, the
segment is marked as purgeable. If the Memory Manager desesn't
need more space before the next request for the segment, the
segment won't need to be reloaded and can be accessed quickly.

If the Memory Manager does need more memory than it can obtain
by compaction, it will purge the segment. The next time the
segment is asked for, the System Loader will have to load it again.

Automatically-loaded dynamic segments.are usually used for data
segments or for code segments that are accessed infrequently.
C···any more tips???···)

If your program wants to do a little more work and load dynamic
segments manually, it can make direct calls to the System Loader.
That process is out of the scope of this book, but is detailed in the
System Loader chapters of the ProDOS 16 Reference. (*··or
should we discuss it briefly here???···)

-> For Macintosh programmers: The capability to manually load
dynamic data segments canbe extended to load Mac-like
"resources" if desired.

Coding dynamic segments 51

Chapter j'

Writing a Cortlclnd Desk
Accessory

The different styles of desk c3ccessoriE~s

A desk accessory is a "mini-application" than can run at the same
time as another Cortland application. The Cortland supports two
different kinds of desk accessories; Classic Desk Accessories
CCDA's) and New Desk Accessories (NDA's).

Classic Desk Accessories are designed to execute in a non··desktop
environment. In essence, the CDA interrupts the application and
gets full control of the Cortland,

New Desk Accessories, on the other hand, are designed to execute
in a desktop environment. As such, they operate in a window and
are subject to the same rules as an event-driven application. They
are not stand-alone applications, however, since they rely upon
applications already having started up the Cortland tools.

~either type of desk accessory has a lot of extra programming
overhead apart from the actual task the accessory performs, Both
types depend heavily for support upon the Cortland tool called the
Desk Manager. In this chapter, we don't discuss the support the
Desk Manager gives, but rather we concentrate on what form the
Desk Accessory has to take.

For full details on the Desk
Manager and its desk accessory
suppport, see Volume 1 of the
Cortland Toolbox Reference,

Writing Classic Desk Accessories
When a Classic Desk Accessory gets control from the Desk
Manager, tile processor is in full native mode. Since the Desk
Manager has already saved the necessalY parts of the old state, the
CDA can concern itself solely with its own work.

TIle basic procedure of a CDA is to:

1. Initialize for new state, Remember, the Desk Manager has
already saved the old state when the CDA gets control.

2 Chapter 7: Writing a Cortland Desk Accessory

2. Do the actual work of the CDA Like all Cortland applications, a
CDA should ask the Memory Manager for any space that it needs.
In addition, the CDA must not cut the stack back further back than
it is when it gets control.

3. After the work of the accessory is finished, it must return to the
Desk Manager with an RTI or its equivalent. The Desk Manager
then automatically restores the old state and returns to the desk
accessory menu.

In order for a CDA to be found by the Cortland, it must have a me
type of $B9 (assigned when linking) and be placed in the
DESK.ACCS subdirectory of the SYSTEM directory.The accessory
must start an identification section which specifies the name of the
CDA and a pointer to the start of the code. The exact specifications
for the identification section are listed under the Desk Manager
chapter in the first volume of the Cortland Toolbox Reference.
C-"Or does anyone think we should llst that structure
here??....)

Writing New Desk Accessories
AlI New Desk Accessories are loaded from the disk at boot time.
When a NDA gets control from the Desk Manager, the processor is
in full native mode. The NDA can assume that the following tools
shown in Table X.x. have already been loaded and initialized.

Table X-X
Tools available to New Desk Accessories

Tool name

Tool Locator
Memory Manager
Miscellaneous Tools
QuickDraw
Event Manager
Window Manager C---List not yet settled-·-)
Menu Manager
Line Edit
Control Manager
Dialog Manager
Scrap Manager
High- and Low-Level Printer Drivers

Wrltlng New Desk Accessories }')""'I

.I

The basic task of an NDA is to:

1. Save important global values like the GrafPort ('·....finallist
needed when available....·)

2. Monitor the events ftltered through to it by TaskMaster, the Event
Manager, and some other system events. Based upon the event
it receives, the desk accessory must take action.

Note that a desk accessory cannot obtain any direct page space,
but must use the stack. (-Otherwise, does it ask the
Memory Manager for other space···??? Steve Glass is
thinking about this one···)

3. When the accessory is closed, it must restore the global
values.and return to the Desk Manager with an RTI. or its
equivalent.

In order for an NDA to be found by the Cortland, it must have a me
type of $B8 (assigned when linking) and be placed in the
DESK.ACCS subdirectory of the SYSTEM directory.

An NDA must start an identification section which specifies the
pointers to the four routines, how often it gets run codes, what
events it wants, and what the text is that appears as the menu item.
The exact specifications for the identification section are listed
under the Desk Manager chapter in Volume 1 of the Cortland
Too/box Reference. (···Or does anyone think we should list
that structure here??····)

"\ 5.5 Chapter 7: Writing a Cortland Desk Accessory

/
!

Chapter 8

Writing Shell Applications

(

Shell environments
(....*1 have put this chapter here as a conversation piece. Do
we want such a chapter, or should it be folded in with the
other issues in Appendix E??? Is there enough material to
warrant its inclusion, or is it too complex or too uncommon
for this book's level????)-

Writing top-level shells
(basic approach - if designed to run under a shell, the application
can count on the resources of the shell being there. CPW example
of such a shell.)

Writing programs to run under shells
(as above, count on resources being there)

Writing programs to run under shells 57

Appendixes

Appendix A

Assembly Language Source
Code ... Event-Driven Example

("·to be supplied"·)

Appendix B

Pascal Language Source
Code - Event-Driven Example

("·to be supplied"·)

RectoFooter

Appendix C

C Language Source Code
Event-Driven Example

(··*1:0 be supplied···)

RectoFooter

