
Chapter 6

AppleTalk

Introduction
AppleTalk: is a stand-alone work-area network that provides communications and resource
sharing with up to 32 computers, disks, printers, modems, and other peripherals.
AppleTalk: consists of communications hardware and a set of communications protocols.
This hardware/software package, together with the computers, cables and connectors,
shared resource managers (servers), and specialized application software function in three
major configurations: as small area interconnect systems, as a tributary to a larger network,
and as a peripheral bus between Apple computers and their dedicated peripheral devices.
This chapter describes AppleTalk to provide the external developer with a coherent picture
of the firmware involved.

Firmware RAM Mem,ory Map
The following depicts the firmware RAM map, used as a receive and write buffer:

$Elxxxx

Receive buffer (605 bytes)

$Elxxxx

Write buffer (603 bytes)

. $Elxxxx

Work buffer (100 bytes)

$Elxxxx

Preliminary Notes 65 1/15/86

Pointers, ID Bytes, and Entry Points
The following flags and pointers are set up in slot 7, in Cortland's ROM starting at location
SC700.

Address

SC705
SC707
SC70B
S70C

SC700
SC70E
$C70F
SC710
SC711
SC712
SC715
$C718-SC7FD
$C7FF

$EOC038
SEOC039
SEOC03A
$EOC03B
$EOCOxx
$EOCOxx
Sbb047F

$bb06FF
$bb077F
$bb07FF

Purpose

S38 Identifier byte #1
S18 Identifier byte #@
SO1 Generic signature byte
S9B' Device signature byte

9 =Network or bus interface cardlfmnware
B =Apple Tech Support ill nibble

Sxx Offset to Pascal error routine
Sxx Offset to Pascal error routine
Sxx Offset to Pascal error routine
Sxx Offset to Pascal error~routine
S88 Non-zero indicates no offsets follow
---- APPLETALK entry point --
--- REBOOTAPTALK entry point ---
Reserved as code area
SOO RELVERNUM release version number

SCCADATA register
SCCAREG register
SCCBDATA register
SCCBREG register .
Enable lI4-second timer interrupt
lI4-second timer status
User sets to SCn (SC7 for Cortland) to indicate a
printer driver is installed.
Printer driver entry point bank address
Printer driver entry point low byte of address-l
Printer driver entry point high byte of address-l

bb = SOO if shadowing is on.
=SEO if shadowing is off.

Note: At Reset time:

1. All SCC registers and functions are reset This also turns off SCC interrupts and the
SCC's ability to interrupt

2. All buffer pointers and variables used by AppleTalk are reset

3. The timer interrupt capability in the Mega II that AppleTalk uses is disabled.

Preliminary Notes

./

66 1/15/86

Booting
This section describes AppleTalk booting, frame defInitions, and the booting sequence.

General Information

Cortland AppleTalk can be booted in three ways:

1. The:MENU program options to start up from internal slot 7 have been chosen.

2. The user types in IN#7 or CALL 50965 from BASIC.

3. The user types in $C715G from the Monitor or.Th1Ps or JSRs to $C715 from a
program.

The following sequence of events occurs during booting:

1. A series of transfers between the AppleTalk fmnware and main system RAM occurs.
The higher-level protocol, necessary to request boot infonnation from the master
station, is being moved from Cortland ROM to system RAM for execution. The
boot code is placed at $200 to $3FO and uses text page 1 ($4oo-$7FF) as a
display/data buffer using $200 as the execution address. This allows all memory
from $800-$BFFF to be used for storing the main boot program loaded from the
master station.

2. When,the transfers are complete, the AppleTalk boot code jumps to $200.

3. The RAM code establishes communications with the master/teacher station and
requests the main boot code. The boot code could be ProDOS or Pascal or
whatever. When the boot code is loaded, the RAM code causes the boot code to
begin execution.

4. The slave station is a fully operational system that accesses flies, at the master
station, and a print station via AppleTalk (assuming FAP and PAP have been loaded
with the operating system). The slaves cannot communicate between themselves.

Preliminary Notes 67 1/15/86

Boot Sequence Frames
The following frames are used for normal boot sequences:

Boot Request Frame

The boot request frame is used by the slave station to request boot information, such as all
boot blocks or specific boot blocks.

Destination Address

Source Address

Lap Type

o0 Hop Cntl msb

1sb of Data Length

Boot Type

Block No. Requested

Preliminary Notes 68 1/15/86

Boot Information Response Frame

The boot information frame is sent to the slave station by the master to inform the slave
station of the boot program it is about to receive.

Destination Address

Source Address

Lap Type

00 Hop entl msb

Isb of Data Length

Boot Type

Block No. in bt Prog

Place Data
Address

Execution
Address

Preliminary Notes 69

/'

1/15/86

Boot Response Frame

The boot response frame is used by the master station to reply to the slave station with
specific boot blocks.

Destination Address

Source Address

Lap Type

o 0 Hop Cntl msb

Isb of Data Length

Boot Type

Block No. Sent

Block
I of

I. Program

Bytes Within Frames

The destination address for the Boot Request Frame is $FF. A station coming on-line
doesn't know the master station's number.

The sending station's address number is the source address.

Lap Type is $OB for all boot transaction sequences.

The msb is the most significant two bits of the data length in the packet Packet data length
includes all bytes except the destination address, source address, and lap type.

The lsb Data Length is the least significant eight bits of the data length in the packet Packet
data length includes all bytes except the destination address, source address, and lap type.

The following describes boot types:

o = Request for boot information
1 = Send boot blocks request

Preliminary Notes 70

./

1/15/86

2 = Send specified boot block request
$80 = Boot information frame
$81 = Specific boot block

Block numbers range from 0 to $FF and consist of 512 bytes.

The place-data address is the ·starting address where the slave station places the main boot
program as it receives it from the master station.

The execution address is the address to which the boot program should jump to start the
main boot program.

Boot Routine Memory Map

$OOFFFF

$000800

$000400

$000300

$000200

$000100

$000000

Text Page 1

FOv1
.... Boot Code

Placed here

Stack

Zero Page

Block Byte Map

The ROM boot code is placed at $00200 by the fmnware after the user initiates a boot
sequence.

Text page 1 is the byte map for the boot program as it is being transferred from the master
station to the slave station.

Locations $OO-$IF and $56-$FF. are used by the ROM's boot program as it loads the boot
program from the master station.

Preliminary Notes 71 1/15/86

A '.' will appear on the screen to correspond to a block number which is to be loaded from
the master station.

Slave Boot Screens

Initial Screen

After a station # (node number) is detennined, the following screen appears. The ##, in the
upper-left corner, is the node number in hexadecimal.

. Second Screen

I
##

Preliminary Notes 72 1/15/86

./

After the boot infonnation frame is received., the following frame appears:

Third Screen

I .
##

. .

.

After timeout occurs, or after block 1 (blocks are received in reverse order) is received, the
next screen appears. The dots left on the screen mayor may not appear. They indicate
unreceived. blocks which are to be requested. one at a time after this screen appears.

Fourth Screen

1.
##

Preliminary Notes 73 1/15/86

The fInal screen appears only after all blocks required have been received. Take note that
all the 'grains' of 'sand' are now at the bottom of the hour glass.

Final Screen

I
##

The 'I' appearing in the Program Screen and the Byte Map Screen represents an indicator
that the program is still running. It increments every 1/4 second until the entire user boot
program is received and the fmnware's boot program jumps to the starting address of the
user's boot program.

Boot Sequence

1. Power up master station.

2. Initiate the boot sequence on the slave station.

3. The slave station broadcasts a Boot Request Frame with a boot-type 0 to get the Boot
Information Frame. It broadcasts it every 1/4 second until the master station
responds.

4. The master station sends packets (blocks) sequentially one time only.

5. The slave station sends a directed packet to the master station asking for all boot
frames (boot type=1).

6. The master station sends packets (blocks) sequentially one time only.

7. The slave station receives frames and places them in sequential order in memory
according their block numbers.

8. The slave station detennines which blocks it missed.

Preliminary Notes 74 1/15/86

9. The slave station requests block numbers of frames it missed, one at a time, waiting
150 ms between requests.

10. The master station sends requested blocks to the slave station.

11. The slave initializes the AppleTalk fIrmware.

12. The slave station IMPs to the execution address.

13. The program, just loaded, takes control of the slave station.

Cortland User Interface

This interface requires that user RAM is free of the ATLAP code. It is implemented to
ensure an identical interface between the Apple II and Cortland. This interface allows the
user to write different higher-level protocols (such as a new DDP) and still be able to use
our LAP protocol. This generic LAP protocol interface allows us to enhance and improve
the LAP software and hardware without requiring changes to the application-writer
programs. The fIrmware entry points are in a fixed location in the $CnOO ($700 in
Cortland) space that is compatible with Apple II.

User Interface

The DDP accesses the LAP in the following way:

This interface requires only one entry point into the $CnOO space. Future maintainability is
simple because we need only to ensure that the AppleTalk entry point is maintained.

AppleTalk Call

LDY #<PARAMLST
LDX #>PARAMLST
LDA #$Cn

JSR APPLETALK

ENE ERRROUTINE

;Y =hi byte of parameter list address
;X =10 byte of parameter list address
;A =the slot # of the AppleTalk interface+$CO

($C7 in Cortland)
;Call the interface (in Apple II ROMIRAM and in

Cortland)

;<>0 then an error occurred

Note: Decimal mode will always be clear upon exit from the AppleTalk routines.

AppleTalk PARAMLST
DFB #COM:MANDNUM ;Function requested

-- All Command Calls ­
$01 = INIT

Initialize the interface
$02 =READREST

Read rest of buffer
$03 =WRITE

Preliminary Notes 75 1/15/86

DWIDFB

PARAMLSTs for Each Call

INIT Command Number 1

DFB $1
DS 1,0

Write a buffer
$04= STATUS

Check if AppleTalk interrupted SetlReset
interrupt masks

$05 = READPROT
Read protocol from buffer

;Data pointers/actual data to pass to/from AppleTalk
buffer

;Command number for INIT call.
;.Misc infonnation to pass to the AppleTalk fIrmware

1. $00, then normal init.
2. $FF, then fInd new node address using a

random number and do normal init.
3. $xx if 1 to $FE (l to 254), then find new

node address but use $xx as starting
address when determining a new station
address.

Note: $01-$7F (1-127) are valid node ill
addresses. $80-$FE (128-254) are used for
servers only. This $xx option therefore lets
you set up Cortland as either a normal node
or a server node.
4. Returns AppleTalk station address.

READREST Command Number 2

DFB $1
DW BUFFADDR ;

DS 1,0

DS 2,0

;Command number'for READREST call.
;Address in user's program to hold the rest of the
data packet.

1. Address of read buffer (buffer to which
packet is transferred).

;.Misc infonnation to pass to the AppleTalk fmnware
1. =0, then read rest of the data from the

AppleTalk fmnware RAM buffer.
2. <> 0, then purge and don't read current

packet to be transferred.
;Number of bytes read during READREST call.

WRITE Command Number 3

WRITETBL EQU >Ie

DW NUMDATABYTES
DW DATABUFFE.R:
DWNUMDATABYTES2

DFB$3
DWWRITETBL

;Command number for WRITE call.
;Address in 6502 of pointer table containing
data to transmit

1. Address of write buffer pointer.
;Generic form
;Number of bytes to read
;Pointer to data buffer
;Number of bytes to read

Preliminary Notes ·76 1/15/86

DW DATABUFFER2
•
•
•

DW$FF:u

;Pointer to data buffer

;Pointer table terrnin~tor

Sample WRITETBL (DESTADR, SRCADR, LAPTYPE need not
be separated as this example shows)..

WRITETBL EQU *
DW $0001
DWDESTADR
DW $0001
DWSRCADR
DW $0001
DWLAPTYPE
DWDDPLEN
'DWDDPBUF
DWATPLEN
DWATPBUF
DWMISCLEN
DWMISCBUF
DW $FFxx

STATUS Command Number 4

;Number of bytes
;Pointer to destination address
;Number of bytes
;Pointer to source address
;Number of bytes
;Pointer to LAP type
;Number of bytes
;Pointer to DDP data
;Number of bytes
;Pointer to ATP data
;Number of bytes
;Pointer to misc data
;Pointer table tenninator

DFB $4
DS 1,0

;Command number for STATUS call.
;Mise infonnation to/from the AppleTalk fmnware.
This parameter byte is explained below.

The STATUS call sets interrupt masks and returns interrupt
status to the user. If STATUS is called with a parameter byte
of -, then the call sets the interrupt masks only. If the
parameter byte is +, then the call is requesting interrupt
infonnation.

B7 B6 B5 B4 B3 B2 .B1 BO

A '-' parameter byte is defined as follows:

B7 =0
B7 = 1
B6 =0/1
B5 =0/1
B4-BO

Return interrupt status request.
Set interrupt mask request.
Enable/disable lI4-sec timer interrupt.
Enable/disable packet ready interrupt.
Reserved

A'+' parameter byte is defmed as follows:

Preliminary Notes

B7=0
B6-BO

77

Return interrupt status request.
Reserved

1/15/86

Above call returns with parameter byte defmed as
follows:

B7 =011

B6 = 011
B5-B4
B3-BO

READPROT Command Number 5

AppleTalk packet orland timer event
occurred.
lI4-sec. timer went off.
Reserved
1 bit set for each packet in buffer
(1 packet maximum in Cortland).

DS 2,0

DFB $5

DWBUFFADDR

;Command number for READPROT call.

;Address in user's program in which part of data
packet is stored.

Address of read buffer (buffer to which
. packet is transferred).

;Number of bytes
Number of bytes to read.

Notes:

1. READPROT can read from last position+1 accessed. It cannot read data prior to the
last read data postition in the current packet

2. For all calls, carry will return SET if an error occurred; the accumulator will contain
the error code.

3. For a STATUS call, carry will return SET (indicating the user was wrong in
assuming that AppleTalkwas the interrupting device). If AppleTalk was the
interrupting device, carry will return CLEAR (indicating AppleTalk was the
interrupting device).

Error Codes

Command error =$FF for any call where the command # does not equal 1,2,3,4,
or 5.

mIT call errors:
4 =Could not get unique AppleTalk address for station or in the Apple II

version. Could not talk to the Apple IT AppleTalk protocol converter
box. .

READPROTcall errors:
1 =No packets in buffer to read.
2 =Multipurpose buffer overflowed (not possible in Cortland).
3 =Tried to read past end of current data packet

Preliminary Notes 78 1115/86

READREST call errors:
1 =No packets in buffer to read.
2 =Multipurpose buffer overflowed (not possible in Cortland).

WRITE call errors:
5 =Number of bytes to send >603.
6 =Number of bytes <3.
7 = Excessive deferrals.
8 =Too many collisions.
9 =Illegal lap type <> 127 ($7F not allowed).

STATUS request call errors:
$A =AppleTalk was not the interrupting device.

STATUS set interrutp mask call errors:
None possible.

Description of Calls

!NIT: Start timer. Inhibits all AppleTalk interrupts and resets AppleTalk
IRQ sources.

Note: STATUS must be called with an interrupt mask to enable
AppleTalk interrupts to be returned.

!NIT call returns: C =aif no error occurred.
C = 1 if an error occurred.
A =Error code.
XJYN =Scrambled.

READPROT: Called to read xx number of bytes from the buffer beginning with
the last read byte+1 in the buffer. This call is used by the different
protocol layers to read their headers from the multi-purpose buffer
into their buffer.

The READPROT call returns: C =aif no errors occured.
C = 1 if an error occurred.
A =Error code.
XJYN =Scrambled.

Preliminary Notes

Note: READPROT can read from last ·)ition+l accessed. It
cannot read data prior to the last read-data position in the current
packet

79 1115/86

READREST: Reads from last position+l accessed (via READPROT), or from the
start of packet if no previous READPROT was called, and places
data in user-specified buffer. Allows user to purge the current
packet without reading it if desired.

The READREST call returns: C = 0 if no errors occured.
C = 1 if an error occurred.
A = Error code.
XIYN = Scrambled.

WRITE: Called by the appropriate protocol level to move data from the
protOCol buffer and .send a datagram on AppleTalk. WRITE passes
a pointer to a ~ble of pointers and byte counts that include
sequentially, a correct data packet with all protocols intact and data
present. This table is built by each protocol above the LAP
including its protocol data in the correct sequence in a common table
found in the DDP.

Note: The source node number is placed over the second byte in the
packet to be written by the AppleTalk fIrmware. Therefore, you
don't need to know your station (node) number to transmit a packet
You must, however, provide space for the source address to go
when defining a packet

The WRITE call returns: C = 0 if no errors occured.
C = 1 if an error occurred.
A = Error code.
XIYN = Scrambled.

STATUS: Called when an interrupt occurs to determine if AppleTalk was the
interrupting source. If C=O, it was; if C=l, it was not. If
AppleTalk was the interrupting device, STATUS returns whether it
was a lI4-second timer interrupt, or a packet-ready interrupt. If an
AppleTalk source was not the interrupting device, the accumulator
register returns $A as the error code. STATUS is also called to set
the interrupt masks. In every case, whether the interrupt mask
allows interrupts or not, the STATUS call parameter byte will return
the current status of the events which have taken place relating to
AppleTalk. This allows Cortland's AppleTalk ability to be used in
a polling mode if for some reason the user decided not to use our
higher-level protocols (our higher-level protocols require the use of
interrupts) and wrote ones not requiring interrupts.

Preliminary Notes

The STATUS call returns:

80

C = 0 if AppleTalk was the inter­
rupting device (clears interrupt).
C = 1 if AppleTalk was not the
interrupting device.
A = Error code.
XIYN = Scrambled.

1/15/86

Apple II AppleTalk Interface General Diagram

!.....---.Apple II----......,~. Peripheral Card~

ATLAP
SCCAppleTalk 65C02O. S. Protocol Peripheral 2KRAM I1F

Card Bus 4K (8K) ROM

ATLK

ATLAP layer as . I
seen by DDP layer ~

I......--Apple II .,. Protocol Conv Box --1
ROM lApple II r-- ~ ATLAP

ApTalk PRE- Prot I I 6502 see
O. S. LAP Conv W - W 2KRAM IIFProto M M 4K (8K) ROM

I.~-·----,.------- Cortland--------1.,

, IAppleTalk ROMATLAP SCC
O. S. Protocol I/FWith RAM Buffers

ATLAP layer as seen ~
by DDP layer

Receive Buffer

ATLK

ATLK

During an interrupt to the 65816, the fIrmware interrupt handler will detei"mine if it is an
AppleTalk-related interrupt If it is, it calls AppleTalk fIrmware to handle the interrupt,
read data into the receive buffer, and call the user if required. When the user is interrupted,
he will call theSTATUS routine todetermine the type of AppleTalk interrupt that occurred
(a packet ready to read or a lI4-second timer interrupt). If a read is required, the user fIrst
calls READPROT, which enables the DDP to detennine which node the message is for.
That particular node will call READREST, which will read the rest of the data packet. If no
packet is in the buffer when READPROT or READREST is called, the user will receive a
no-packets-available error.

Preliminary Notes 81 1/15/86

Receive Buffer Packet Data Structure

LAP Header

DDPHeader

DDPQata

Destination Address

Source Address

LAP Type Field
1=Short Header
2=Long Header

Hop Cnt (4 bits)
msb

00
(2 bits)

3 to 11 bytes long

Diagram Data

ato 586 Bytes Maximum

Packet Rejection Error Conditions
The flI1l1ware automatically rejects an incoming packet under the following conditions:

• Any SCC error.

• More than 603 bytes are in the incoming packet

• The number of bytes-3 received do not equal the length byte.

• No characters received within 1 character time (approximately 34.722 microseconds.)

• A WRlTE operation is in progress.

In every case, the operation is not interrupted if any of the above conditions occur. The
fIrmware will reset its pointers and wait for more packets to be sent

Preliminary Notes 82 1/15/86

Interrupting The User
The AppleTalk fmnware interrupts the user when it has received a datagram the user should
know about or when 1I4-second has elapsed. The timing interrupt, like the SCC, cannot
directly interrupt the user for any reason (It interrupts the 65816, but it is not passed to the
user unless requested). The AppleTalk fmnware controls the user interrupt. During the
interrupt routine, a call toSTATUS will inform the user what type of interrupt occurred.
If the interrup~ was from AppleTalk, carry =0; if not, carry =1.

The ability to interrupt the user is detennined by the interrupt mask sent to AppleTalk
fmnware during the last STATUS call. The mask can be set to allow timer interrupts
and/or packet-ready interrupts in any combination.

It is possible (although not with our higher-level drivers) to use AppleTalk in a non-user
interrrupt mode by polling the AppleTalk fmnware. This is accomplished by periodically
performing a STATUS call, ignoring the carry bit, and decoding the status byte.

• Bit 7 is set when an AppleTalk event occurred.

• Bit 6 is set if the lI4-second timer lapsed.

• Bit 0 sets to indicate a packet was received since the last READREST call.

Using the above data, the user can call READPROT and READREST to extract the packet
data from AppleTalk's fmnware RAM buffer.

Note: For Cortland's AppleTalk to work, interrupts must be enabled whether the user
wants to be interrupted or not If the user doesn't want to be interrupted, the firmware
will trap, decode, and act on all AppleTalk interrupt sources transparent to the user.

Resetting Firmware and Hardware

AppleTalk fmnware and hardware can be reset in three ways:

1. Press CONTROL-RESET.

2. Press OPEN-APPLE-CONTROL-RESET.

3. Power up the system.

lapENQ, lapACK, lapRTS, lapCTS

LAP enquiry, acknowledge, request to send, and clear to send will be handled
transparently to the user. The AppleTalk fmnware will process and respond when these
frames occur or should occur.

AppleTalk fmnware has recognizable rD. bytes for ProDOS and Pascal. Apple IT
AppleTalk uses the generic Pascal 1.1 fmnware entry points, however, AppleTalk does not
support any Pascal generic fmnware calls directly, nor does it support any Pasca11.0
fmnware entry points. A machine-language driver must be written for Pascal and ProDOS
for these operating systems to access AppleTalk.

Preliminary Notes 83 1115/86

AppleTalk ProDOS drivers reside in the main language card, ·bank 2, at locations $D400­
$DFFF. The AppleTalk driver for Pascal resides on the heap.

Printer H,ooks Via AppleTalk Firmware
AppleTalk fmnware does not provide all the protocol and routines necessary to output to a
print server. However, by providing proper hooks in the AppleTalk interface fIrmware,
you can output to a printer driver located in Apple II's main memory. This allows BASIC
and ProDOS application programs to access the AppleTalk interface fmnware as if it were a
normal printer card. Entry at $CnOO is for an initialization call for the printer driver, entry
at $CnOS is for inputting a character, and entry at $Cn07 is for outputting a character to the
printer.

Entry at $CnOO is to initialize the printer driver interface, if one is loaded into main
memory. To determine if a driver is available, perform the following step:

Test the fIrst screen hole, $47F, to verify that it is $C7 ($C7 is the flag which indicates
that a driver has been installed).

If a driver is not available, the Monitor ROM is mapped in and a Th1P to the Monitor
RESET routine is executed.

.
If a driver is available,the AppleTalk interface fIrmware performs the following:

1. Loads the printer driver address-1 low byte from screen hole location $77F and
pushes it on the stack.

2. Loads the printer-driver address-1 high byte from screen hole $7FF and pushes it on
the stack.

3. Loads the printer driver bank address from screen hole $6FF and pushes it on the
stack.

4. Performs an RTS which goes to the driver if shadowing is on; performs an R1L
which goes to the driver if shadowing is off.

The following depicts the information AppleTalk interface firmware passes to the printer
driver:

Y = userY
X = user X
A = user A
P = Print character status:

V=1 if init printer driver requested
C=1 if input to printer
C=O if output to printer

It is assumed that part of the printer-driver initialization code will be to place $Cn at screen
hole location $47F and its execution address-l into screen holes $77F (low byte), $77F
(high byte), and $6FF (bank byte).

Preliminary Notes 84 1/15/86

