Date: April 3, 1986
Author: Mike Askins

Subject: Cortland Serial Ports ERS
Document Version Number: 00:40

Revision History
Yer Date

00:00 14-Jun-85 FAB
00:10 05-Nov-85 MSA

00:20 21-Feb-86 MSA

00:30 27-Mar-86 MSA

00:40 03-Apr-86 MSA

Initial Release
Updated command description (deleted delay commands)
Added handshaking and compatibility discussion
Added sections on buffering, background printing, extended interface
Updated command description
Added terminal mode description
Major changes to the extended interface; calls deleted, altered, added
Recharge routine is called with DBR=$00
Added sections Using the Serial Firmware', Error Handling',
and 'Interrupt Notification'
Minor textual changes for clarification purposes
Mode Bits image corrected (btm half of page 14), Pascal Interface
Note added (btm of page 4), 1st paragraph of page 9 changed.

Cortland Serial Ports ERS Rev 00:40 Page 1

Overview

The serial ports in Cortland use a two channel Zilog Serial Communications
Controller chip (SCC 8530) and RS422 drivers. The driver firmware emulates the
functionality of the Super Serial Card, and the Apple //c serial firmware, supports
input/output buffering, as well as background printing. The firmware also
implements a number of calls that the application can make to control the new
features. ‘

Input/output buffering and background printing are done on an interrupt basis and
can use any buffer (size up to 65K, any location) that the application wishes. /O
buffering is transparent for BASIC and PASCAL. Background printing is started
by an application, and the firmware transfers control back to the application when
all the data has been sent to the printer.

Note that AppleTalk when active requires the use of one of the serial channels.
Therefore only two of the three (AppleTalk, serial port 1, and serial port 2) are
allowed to be active at any one time. (The Control Panel program ensures that at
least one serial port is made inactive when AppleTalk has been selected). An
attempt to initialize the serial firmware when the channel is being used by
AppleTalk will fail. Both port 1 and 2 can be configured as either a printer.or a
communication (modem) port.

Cortland Serial Ports ERS Rev 00:40 Page 2

Compatibility

Though the commands used to communicate with the serial firmware are the same
as the Super Serial Card and //c ports, we can expect that many existing programs
using these ports will not be compatible with the Cortland serial ports. The reason
is that a lot of programs, particularly communications packages (Access /, flaming
example) go to the hardware directly, and the hardware is no longer a 6551. Print
programs are more likely to work, as well as applications written in BASIC and
PASCAL. Both AppleWorks and MousePaint are examples of programs which use
the firmware and are compatible.

A source of quasi-incompatibility will be experienced by those who communicated
with the firmware by modifying the screenholes. None of these screenhole pokes
are guaranteed to work (although some might), and will almost certainly not work
with any future serial firmware. The situations which caused programmers to have
to resort to altering screenholes have all (hopefully) been eliminated by the
implementation of the extended interface call.

Applications should make correct use of the BASIC interface. $CNOO is the
initialization call (and also happens to output the character in the accumulator),
$CNOS is the call to get a character, and $CNO7 is the call to output a character.
Note that the practice of sending characters to the firmware by calling SCNOO
repeatedly is to be avoided. This will currently work (to a degree), but applications
which do this are living on borrowed time, since it is almost certain that future
firmware will not permit this practice.

One last difference between the Cortland serial firmware and the others is in the
handling of errors. If a character with an error is received by either the SSC or the
//c firmware, it is not deleted from the input stream. The Cortland firmware will
delete the character from the input stream, and set a bit in the mode bytes to record
the fact that an error was encountered. Applications therefore can be aware that
trouble is being experienced on the serial line, but be spared the reception of errant
data.

Cortland Serial Ports ERS Rev 00:40 Page 3

Using the Serial Firmware

The serial firmware interface really consists of two separate interfaces, one for
BASIC, and one that adheres to the Pascal 1.1 firmware protocol.

Please Note: All calls to the serial firmware must have the 65816 Data Bank Register set to $00.
Additionally, the processor must be in 6502 emulation mode at the time of the call (E bit = 1). All
entry points are in the $Cn00 space in bank $00 (This note applies to all calls to port firmware.).

The BASIC interface has the following entry points (‘n' represents the slot number,
lor2): :

$Cn00 BASIC Initialization (Also outputs character in Acc)
$Cn05 BASIC Read Character. (Character returned in Acc; X,Y preserved)
$Cn07 BASIC Write Character (Character passed in Acc; X,Y preserved)

These entry points are used by BASIC. When the user types 'IN#n', or 'PR#n,
BASIC makes a call to $Cn00 after setting either the KSWL or CSWL hooks to
$Cn00. When the serial firmware gets control it alters the hooks so that they point
to the Read and Write routines.

The Pascal 1.1' interface is a much more flexible interface and it is recommended
that machine language programmers use this interface to communicate with the
serial firmware. The Pascal 1.1 protocol uses a branch table in the $Cn00 page
indicating where each of the service routines begin. This table contains bytes
specifying where in the $Cn00 page each of the service routines begins. The branch
' table locations are:

Address Contains

$Cn0D Initialization routine offset

$Cn0OE Read routine offset

$CnOF Write routine offset

$Cnl10 Status routine offset

$Cn12 Control routine (extended interface) offset

To reach the Read routine for example, an application reads the value found at
$CnOE. For purposes of illustration suppose that this value was found to be $18. To
reach the Read routine in this case, the application would have to do a JSR
instruction to the address $Cn18. Please see the Super Serial Card p.50 for a
specification of the init, read, write and status routines, and the section in this
document for the spec on the control routine.

Note: The system defaults for the Pascal interface assume that the application
supplies a linefeed after carriage return. If the application does not wish to supply
the linefeeds, it should send the 'LE' linefeed generation call described in the next
section.

Cortland Serial Ports ERS Rev 00:40 Page 4

Standard Serial Commands

Cortland, as well as it's predecessors the SSC and //c, supports control commands
embedded in the serial output flow, whether through the BASIC or PASCAL output
routine. These are distinguished from normal output by the detection of the
"command character”. The firmware accepts commands in the following command
sequence:

<CommandChar> <CommandString>

When a port is in printer mode, CommandChar is a control-I, and in
communication (modem) mode it is a control-A. The command character can be
changed at any time by sending the current command character followed by a
control character. The CommandString is a letter command sometimes prefixed by
a number or suffixed with an E or D. Commands can be sent directly from BASIC
by typing the commands from the keyboard after issuing a PR#n. They can also be
sent through the Pascal WriteChar call.

Except where noted, these commands function just as the equivalents in the SSC and
Apple //c serial firmware. For a further description of the commands on the
following page, please refer to the description in the Super Serial Card
documentation.

Cortland Serial Ports ERS Rev 00:40 Page 5

Command Strings:

<as>B

C<ED>

T<E/D>
B<E/D>

X<E/D>

F<E/D>

E<ED>

M<E/D>

L<E/D>

N O -

Set the baud rate to value corresponding to n

0B= (use default) 6B= 300 baud 12B= 4800 baud
1B= 50 baud 7B= 600 baud 13B= 7200 baud
2B= 75 baud 8B= 1200 baud 14B= 9600 baud
3B= 110 baud 9B= 1800 baud 15B= 19200 baud
4B= 1345 baud 10B= 2400 baud

5B= 150 baud 11B= 3600 baud

Set data format to values per n (data bits, stop bits)

OD= 3 data 1 stop 4D= 8data 2stop

1D= 7 data, 1 stop S5D= 7 data, 2 stop

2D= 6data, 1 stop 6D= 6data 2 stop

3D= Sdat, 13top TD= 5data, 2 stop

Set parity ton

OP= aone 2P= gone

1P= odd 3P= even

(Note that MARK and SPACE parity are not supported)

Set Line Length ton

This call does not enable line formatting; use the C command to do this.
Note that formatting is disabled when o = 0.

Enable Line Formatting

The firmware issues a carriage return at the end of a line. The length of the
line is set by the N command

Enable/Disable BASIC tabbing

Enable/Disable I/O buffering

Enable/Disable XON/XOFF handshaking protocol

XE- When an XOFF is detected XOFF, await XON before transmitting
XD= Ignore XOFF

Enable/Disable keyboard input

FE= Insert keystrokes into serial input stream

FD= Disable

Echo input to screen

Enable/Disable flitering of linefeeds after carriage returns

Add linefeed after carriage return

Reset the SCC and input/output hooks

Transmit a 233 millisecond break (all zeros)

Enter terminal mode

Exit terminal mode

Zap control character interpretation

Tell firmware to stop interpreting command sequences. This effects of this command
can only be reversed by an extended call (described below).

Cortland Serial Ports ERS Rev 00:40 Page

Terminal Mode

The Cortland serial firmware supports a minimum feature terminal emulation
program which behaves just as its counterpart in the //c firmware. Terminal mode
is a "bare bones" terminal routine which can be used when a full feature
communications package is unavailable. While in terminal mode, all of the
characters typed are passed to the serial output (except the command strings), and
all serial input goes directly to the screen.

Terminal mode is entered through the BASIC interface. Initialize the firmware by
typing IN#n. Then type the current command character followed by a 'T'. The
prompt character will change to a flashing '_' indicating that terminal mode is
active. Exit terminal mode by typing the current command character followed by a
'‘Q'. The Apple //c’s 'remote’ mode is also identically supported.

Terminal mode can be used with buffering enabled to minimize character loss at

higher baud rates due to the overhead incurred in screen scrolling. Invoke
buffering with the 'BE' serial command.

Cortland Serial Ports ERS Rev 00:40 Page 7

Handshaking

The history of RS232 handshaking at Apple has been contorted to say the least.
Limitations in the number of connector pins as well as compatibility between
machines are the major reasons for the confusion. ACIA hardware constraints
added to the confusion (for example, the 6551 shuts down the transmitter if the
input handshake line is disasserted).

Due to the variety of ways that data communcations equipment manufacturers have
defined the handshaking lines, the handshaking is designed to be very flexible. You
can select any combination of the following options: |

DTR/DSR Characters will be transmitted only when the input handshake line (DSR) is
asserted (hi), and the output handshake line (DTR) will be used to tell the device
when the host is ready to accept data. If this option is not enabled, the input
handshake line will not be checked on transmit, and the DTR line won't be
toggled. This mode could be referred to as 'hardware' handshake. (The DSR line
is pin 2 of the serial connector, and the DTR line is pin 1.)

DCD Characters will only be transmitted when the DCD line (GPI line, pin 7 on the
serial connector) is asserted. It has no direct effect on receiving characters. This
mode is provided for compatibility with the Super Serial Card which handshakes
this line.

XON/XOFF This mode could be referred to as the 'software’ handshake. If an XOFF
character ($13) is ever received, no characters will be transmitted until an XON
character ($11) is received. It operates independently from the hardware
handshake.

Error Handling

Every time the firmware gets a character from the hardware it checks the error
status register. If this character is found to have a framing or parity error
(assuming that the parity option is not set to ‘none’) it is deleted from the input
stream and the appropriate mode bit is set. An application can make the
GetModeBits call to read these two bits (one for framing errors and one for parity
errors) to determine that at least one receive error has occurred. After the
application has read these bits it should clear them (using SetModeBits) so that
future errors can be detected. It is recommended that error checks be done
periodically and the user notified if the receive data is being corrupted so that he can
do something about it.

Cortland Serial Ports ERS Rev 00:40 Page 8

Buffering

The firmware supports transparent input and output buffering as well as
background printing. Each port has two buffers, one for input and one for output.
The firmware tries to allocate 2048 bytes for these buffers, and if there is not
enough memory to do this, 128 bytes are allocated. If the application wishes to use a
buffer larger than this, it must pass the firmware its address and length via the
SetInBuffer or SetOutBuffer commands in the extended interface.

Buffering can be turned on by the user from the control panel, from the keyboard
after a PR#n command from BASIC, or by the application using the 'BE' command
through the output flow. In this mode, characters sent to the firmware are placed in
a FIFO queue in the output buffer space, and are only sent out on an interrupt basis
whenever the hardware is ready to send another character. The XON and XOFF
characters are pot queued; they are sent immediately through the channel so that the
desired effect of shutting off characters being received is immediate. Characters
received in buffering mode are placed in the input queue and all read calls return
characters from the queue. As with transmit, any XON and XOFF characters
received are not queued; they are absorbed by the firmware and cause the output
flow to be halted or resumed.

In order to make input buffering work transparently, the firmware takes control of
the handshake. When the input queue becomes more than 3/4 full the firmware
disasserts the handshake. This may mean sending an XOFF character (if
XON/XOFF handshaking is enabled) or disasserting the DTR line (if DSR/DTR
handshaking is enabled). The application can determine that the handshake has been
disasserted by inspecting the "input flow" mode bit using the GetModeBits call in the
extended interface. The firmware reasserts the handshake as soon as the receive
queue fills less than 1/4 of the input buffer.

It is possible for the application to determine the amount of characters in the input
queue, or the amount of room left in the output queue through the InQStatus and

OutQStatus commands in the extended interface. In addition, the InQStatus call also
returns the amount of time elapsed since the last character was queued. This permits
the application to keep track of the activity level of the input stream even though it is
not involved in the interrupt process.

Note that certain items are not buffered. In general all characters except those
involved in command strings are buffered. If XON/XOFF handshaking is enabled,
XON characters (ASCII $11) and XOFF characters (ASCII $13) are not buffered
and are sent immediately into the output flow. The immediate (non-buffered)
execution of command sequences requires that applications do command sequences
before (and not during) the output of the data, which is the way most applications
want to behave anyway.

Cortland Serial Ports ERS Rev 00:40 Page 9

Interrupt Notification

When a channel has buffering enabled the firmware sevices all interrupts that occur
on that channel. If an application wishes to service interrupts for a given channel
itself, it should disable buffering using the SetModeBits command in the extended
interface. If the buffering mode bit is off, the serial firmware will not process any
interrupts; the system interrupt handler will transfer control to the user's interrupt
vector at $3FE in bank $00 (This is the ProDOS user interrupt vector.). The user's
interrupt handler is then completely responsible for all SCC interrupt service.

If the application does not wish to disable buffering, but does wish to be notified that
a certain type of serial interrupt has occurred, it can instruct the firmware to pass
control to the $3FE vector after it has serviced the interrupt. The application tells
the firmware when it wishes to be notified by using the SetIntInfo call. This call
guarantees that the user interrupt handler will get control when a specific type of
interrupt occurs, but only after the serial firmware has processed and cleared the
interrupt. The application then uses the GetIntInfo call to determine which
interrupt condition occurred.

As an example of when interrupt notification would be desirable, imagine a typical
terminal emulator program. It probably wishes to do input and output character
buffering, handshaking and the like. It would like the firmware to handle all of
these details, but might also need to get interrupted when a break character is
received. The application sets the break interrupt enable through the SetIntInfo
Call, and whenever a break character is received the firmware SCC interrupt
handler records and clears the interrupt, finally passing control to the user interrupt
handler. The user's interrupt handler then calls Getlntinfo, and if the 'break’ bit is
set the interrupt handler knows that a break interrupt was serviced.

It is important to realize that all of the interrupt sources (except receive and
transmit) cause an interrupt on the transition of a given signal; any user's interrupt
handler will get control passed on both positive and negative transitions of the
signals of interest. For example, a break character sequence will cause two
interrupts, one at the beginning of the sequence and one at the end. The user's
interrupt handling routine should take this into account. A routine can always
determine the current state of the bits of interest using the the GetPortStat
command.

Cortland Serial Ports ERS Rev 00:40 | Page 10

Background Printing

The firmware has the capability of sending a block of characters out a serial channel
on an interrupt basis in a manner essentially transparent to a running application.
Background printing is really just output buffering as described in the section on
buffering, the major difference being that the firmware is handed a large number of
characters to transmit at one time rather than getting them one at a time.

To launch a background printing process, an application needs to perform the
following steps:

1) Make sure the firmware/hardware is active by doing an Init call through
the Pascal interface. The hardware characteristics (baud ratc data
format, etc.) will be as specified in the Control Panel.

2 Use GetModeBits and SetModeBits to disable buffering in case the user
has set the control panel to enable it.

3) If it is desired to change the port characteristics, do so at this point; use
either the SetModeBits call or send commands through the output flow.

4) Set the output buffer using SetOutBuffer. If the default buffer is the
one to be used, make a call to GetOutBuffer to ascertain its location.

5) Load the data into the buffer.

6) Launch the process with SendQueue, passing the length of the data in
the buffer and the address of the Recharge’ routine.

The 'Recharge' Routine

After the SendQueue call characters will be sent periodically in the background
until the buffer is exhausted. As the last character is removed from the buffer, a
JSL is made to the Recharge' address passed when the SendQueue call was made.
This application supplied Recharge' routine should do whatever is necessary to
reload the buffer with the next set of data to be output. This might involve some
disk activity if the application is background printing from disk. Finally the routine
loads the number of bytes in the new block of data to be sent into the X and Y
registers (these will both be zero in the case that background printing is completed),
and does an RTL. The complete requirements for the Recharge routine are as
follows:

On Entry: System Speed = Fast
DBR = $00
Native mode, 8 bit M, X (E=0)

On Exit: System Speed = Fast
DBR = $00
Native mode, 8 bit M, X (E=0)
X reg = data size (10)
Y reg = data size (hi)

Cortland Serial Ports ERS Rev 00:40 Page 11

Note that the Recharge routine is called at interrupt time; it should be regarded as an
interrupt handler in the sense that anything it changes it must restore. Also realize
that since interrupts are disabled during the time that the Recharge routine executes,
spending a lot of time in this routine will cause performance degradation of
'interrupt critical' processes (those that have stringent interrupt response
requirements, like AppleTalk). ‘

Cortland Serial Ports ERS Rev 00:40 Page 12

Extended Interface

To support the various firmware capabilities that are not present in either the SSC
or the //c, the Cortland has a call made through the $CNOO space called the extended
interface call. ,

To make a call through the extended interface, first ascertain the dispatch address by
taking the value at $CN12 and adding it to SCNOO. This byte is the 'optional control
routine offset’ of the Pascal 1.1 protocol (discussed in the Super Serial Card
manual). Do an emulation mode JSR to this dispatch address with the registers
loaded with the address of the command list:

%:aimcamm

Address of cmdlist (lo)
X Address of cmdlist (med)
Y Address of cmdlist (hi)

The format of the command list is fairly regular. Every command list starts with a
one byte parameter count (0ot a byte count), a command code, and space for a result
code. The possible result codes returned are specified in the Errors' section. The
calls fall into three main groups, calls associated with the hardware, mode control
and buffering.

In the description of the calls, a DFB is an assembler directive producing a single
byte, a DW produces a double byte (16 bits- low byte, high byte), and a DL
produces a double word (32 bits- low, med low, med high, and high).

\ Compatibility note: An application writer affords him/herself a higher level of
confidence that their application will work on future systems by limiting the use of
the hardware control calls. If future systems use hardware other than the current
serial chip (SCC 8530), the hardware control calls are the ones most likely to have
to be changed, and applications using these calls could be rendered incompatible.

Cortland Serial Ports ERS Rev 00:40 Page 13

Mode Control Calls)

GetModeBits Returns the current mode bit settings

CmdList DFB $03 ;Parameter Count
DFB $00 ;Command Code
DwW $00 ;Result Code (output)
DL $00 ;Mode Bit Image (output)

This call allows the application to determine the status of various operating modes of the firmware. Four bytes (32
bits) of mode information are returned. To change any of these bits, use this call to get the current settings, alter the
bits of interest, and then use the SetModeBits call to do the actual modification. (To avoid race conditions in this
process, be sure to disable interrupts [SEI] before the GetModebits call, and reenable [CLI] them after the
SetModeBits call.). The meaning of each bit is described below.

SetModeBits Sets the mode bits

CmdList DFB $03 ;Parameter Count
DFB $01 ;Command Code
DW $00 ;Result Code (output)

DL ModeBitlmage ;(input)

Use this call to alter any of the mode bits whose function is described above. First read in the bits using
GetModeBits, alter the bits of interest, and then write the bits by using this call, noting the note about interrupts in

the GetModeBits description. The bits marked 'preserve’ should not be changed.: they are informational onlv.
Altering these bits will confuse the firmware.
ModeBitlmage: (4 bytes, bit 0 is the Isb of the lowest addressed byte, bit 31 is the msb of the highest)

[31] 1 = Ignore commands in the output flow

[30] 1 = Framing error has occurred

[29] (preserve)

[28] : 1 = Parity error has occurred

[27..24) (preserve)

[23..16] (preserve)

[15] (preserve]

[14] (preserve) 1 = /O buffering enabled
[13) 1 = DCD handshaking enabled

[12] (preserve)

[11}] 1 = Generate CR at end of line

[10] (preserve) 1 = Input flow halted

9] (preserve) 1 = Output flow halted

(8] (preserve) 1 = Background Printing in progress
7N 1 = Echo input to the video screen

[6] 1 = Generate LF after CR

5] 1 = XON/XOFF handshaking enabled
(4] 1 = Accept keyboard input

(3] ’ 0 = Delete LF after CR

(2] 1 = DTR/DSR handshaking enabled
[1] (preserve) 1 = awaiting XON character
[0] (preserve) 1 = communication mode, 0 = printer mode

Cortland Serial Ports ERS Rev 00:40 Page 14

Buffer Management Calls

GetlnBuffer Return the address and length of the input buffer

CmdList DFB $04 ;Parameter Count
DFB $10 ;Command Code
DW $00 ;Result Code (output)
DL $00 ;BufferAddress (output)
DW $00 ;Bufferl ength (output)

This call and the one which follows are used to determine the addresses and lengths of the current input and output
buffers. If background printing is to be invoked and the application wants to use the default buffer, its address can be
retrieved by these calls.

GetOutBuffer Return the address and length of the output buffer

CmdList DFB $04 ;Parameter Count
DFB $11 ;Command Code
DW $00 ;Result Code (output)
DL $00 ;BufferAddress (output)
DW $00 ;BufferLength (output)
SetinBuffer Specify the buffer to contain the input queue
CmdList DFB $04 ;Parameter Count
DFB $12 ;Command Code
DW $00 ;Result Code (output)

DL BufferAddress ;(input)
DW BufferLength ;(input)

This call and the one following allow the application to change the location and/or length of the input or output
buffers. A queue buffer can cross bank boundaries but must be fixed in memory while buffering is active.

SetOutBuffer Specify the buffer to contain the output queue

CmdList DFB $04 ;Parameter Count
DFB $13 ;Command Code
DwW $00 ;Result Code (output)

DL BufferAddress ;(input)
DW BufferLength ;(input)

Cortland Serial Ports ERS Rev 00:40 Page 15

FlushInQueue Discard all the characters in the input queue

CmdList DFB $02 ;Parameter Count
DFB $14 ;Command Code
DW $00 ;Result Code (output)

These two calls allow the application to flush unwanted data from either queue.

FlushOutQueue Discard all the characters in the output queue

CmdList DFB $02 ;Parameter Count
: DFB $15 ;Command Code
DW $00 ;Result Code (output)
InQStatus Returns info about the input queue

CmdList DFB $04 ;Parameter Count
DFB $16 ;Command Code
Dw $00 ;Result Code (output)
DW $00 - ;# chars in receive queue (output)
DW $00 ;Time since last receive char queued (output)

These calls return information about the input or output queues. The InQStatus call additionally returns the number
of heartbeat ticks (1 tick = 1/30 second) between the time of the queueing of the last character and the time of the
call. Note that for this number to be valid the application must have turned on the heartbeat system by making a
tool call. See the miscellaneous tool manager ERS for information about how to do this.

OutQStatus Returns info about the output queue
CmdList DFB $04 ;Para.mctcf Count
- DFB $17 ;Command Code
DW $00 ;Result Code (output)
DW $00 ;# chars 'til transmit queue overflow (output)
DW $00 ;Reserved (output)
SendQueue Launch background printing
CmdList DFB $04 ;Parameter Count
DFB $18 ;Command Code
DW $00 ;Result Code (output)
DW Datalength

DL RechargeAddress

This call begins the background printing process. The application must first set the output buffer address (or use the
default buffer) load the data that it wishes to be output into the buffer starting at the buffer base address. Then the
data is placed into the buffer, and the call to SendQueue is made specifying the length of the data in the buffer and the
four byte address of a subroutine (the 'recharge’ routine) which will be called by the interrupt firmware when the all
the characters have been sent. (See the description of background printing elsewhere in this document for a
description of the Recharge routine.)

Cortland Serial Ports ERS Rev 00:40 Page 16

Hardware Control Calls

(Please read the compatibility note at the beginning of this section.)

GetPortStat Returns the port hardware status
CmdList DFB $03 ;Parameter Count
DFB $06 ;Command Code
DW $00 ;Result Code (output)
DW $00 ;Port Status Info (output)

'Ihiscallisusedtogettheaxmtstamsofd:eurialdmmeladxehndwmlevel. There are 16 bits of result, and
the meaning of these bits is outlined below.

[15..8] (reserved)
7 Break/Abort Set t0 1 when a break sequence is detected
[6] Tx Underrun Set to 1 when a transmit underrun occurs
[5] DSR State of the input handshake line
(4] (reserved)
3] DCD State of the General Purpose Input line
2] Tx Buff Empty Set to 1 when ready to transmit next character
m - (reserved)
[0 Rx Char Avail Set to 1 when a character is available to be read
GetSCC Return the value of the specified SCC register
CmdList DFB $03 ;Parameter Count
DFB $08 ;Command Code
DW $00 - ;Result Code (output)
DFB Register ;SCC register number (input)
DFB $00 ;Value of SCC register (output)

The GetSCC returns the value in a specified SCC register. The Get/SetSCC calls are provided to allow direct access
to the serial hardware, when this is deemed necessary. See the SCC 8530 technical manual for a description of the
registers in the serial controller chip. The serial firmware does not need to be initialized for these calls to work; in
fact it is suggested that these calls only be used if the application is handling a!l serial tasks itself, and not using the
firmware at all.

SetSCC Write a value into the SCC
CmdList DFB $03 ;Parameter Count
DFB $09 ;Command Code
DW $00 ;Result Code (output)
DFB Register ;SCC register to write (input)

DFB Value ;Value to write to Register (in_put)

This call allows the writing of a register in the SCC.

Cortland Serial Ports ERS Rev 00:40 Page 17

GetDTR Return the value of the output handshake line

CmdList DFB $03 ;Parameter Count
4 DFB S$0A ;Command Code
DW $00 ;Result Code (output)
DwW $00 ;Bit 7 is the state of DTR (output)

Use this call to find out the current setting of the output handshake line. The state of this line is returned in the msb
of the returned byte. The line may be set by the following call.

SetDTR Set the value of the output handshake line
CmdList DFB $03 ;Parameter Count
DFB $0B ;Command Code

DW $00 ;Result Code (output)

DW DTRState ;Bit 7 is the state of DTR (input)

GetlntInfo Return the informational interrupt setting
CmdList DFB $03 ;Parameter Count
DFB $0C ;Command Code
DW $00 ;Result Code (output)
DW $OOk ;(output)

This call allows the application to read the byte written by the SetIntInfo call.

SetIntInfo Set up informational interrupt handling
CmdList DFB $03 ;Parameter Count
DFB $0D ;Command Code
DW $00 ;Result Code (output)

DW InterruptSetting ;(input)

This call allows the application to specify the types of interrupts, which when they occur will be passed to the
application’s interrupt routine. The firmware should have been enabled and buffering turned on by the time this call
is made. The types of interrupts and the bits used to enabie them are:

Bit Condit Descrio
[15..8] (reserved) Set these to zero

7 Break/Abort Break sequence detect

[6] Tx Underrun Transmit underrun detect

(5] CTS Transition on input handshake line
[4] 0 (reserved)

(3] DCD Transition on General Purpose line
2] Tx Transmit register empty

1] 0 (reserved)

[0] Rx Character available

Cortland Serial Ports ERS Rev 00:40 Page 18

Extended Serial Port Commands

&

SerOutBuffer i

[FlushizOueic &

¥ SctinBuffer

Thwow ewwy all cheracean
12 @ recaive quene

OutQStatus SeadQueue
Pavesmtee Couss304 1 a—-a—-m 1
Commmand ColnadY? 1 Commend Cutnnf18 1
Resuit Code 2 Rasuit Code 2
Tiwow eway all charscars # Chars in Rocatve Quene # Qaar 3psces lett 2 DemLagh: 2
12 G Tmemt quese
s (reserved) 2 " Completon Mares - | 4
Retamn recetve quene Info Remm o qusne knfo BDegin background angpat

Buffer Commands

B SetModeBits

Retamn Informationsl kamerapt dywe

Set Informational loseregt dyte

Mode and Hardware Control Commands

