
The ADB uC Tool Set

Peter Baum

REV 1 .1

May. 15, 1986

The ADB uc tool set ¡s used to send commands and data between the
single-chip Microcontroller (uc) and the system. Typically, the toot set
will be used to control ADB activity, but other commands, which are used
by diagnostic routines and the control panel, are available.

The tool set follows the standard convention of passing data and poínters
in the stack, then calling the tool locator with the tool set and
function number in the X register.

Tool Set Number = 9

Some commands can return an er.ror code indicating busy. This usually
means that part of another command is currently aciive. Rather than qireue
up the command, the tool set is putting the burden on the calling routiåe
to try again. A calling routine can retry the tool set immediate! õr it
can.try later (maybe using the heartbeat chain to remind itselito try
again).

More details of each function can be found in the Single-Chip
Microcontroller (SKl) documentation, the Appte Deskìôp Bud
Microco ntroller docu menatio n, and the AD g'specificatiòn. This docu m e nt
assumes the user has knowledge of how ADB works.

An application which intends on using specific ADB devices other than the

consist of some setup routines and data handling routines. The setup
routines are used to.identity devices on ADB, poésibly changing ADå
addresses and handlers. The data handling routines óonsist-ofä
completion routine, which is called by the system when data ¡s received
from a device, and any other routinei which may be used to operaie oñ tne
tlé,t¿1-

A special tool function can be used to automatically poll ADB for data
from specific devices. lf data is received then that áévices completion
routine is called. This mechanism is called the sRe tist. The sfrtem wiil
automatically start qo_!!g the devices in the l¡st wnènõver any device
on the bus asserts SRe.

The..sRQ function, sRopL is the most etficient way for a single user
applicatíon to gather data from a ADB device. Tnis hecnan¡så aðiùmes tnat
the^user çrely switches between devices. when sRe is deteaed, thà -'

system will always start looking for data by polling the last device
used.

Apple Ðesktop Bus uC Toot Set May. 1S, 19g6 Page #1

ln multi-user applications such as two (or more) player games the SRe
list will not work etficiently, since it always give þhority tó the last
device which returned data. For these applications, eâch device should be
polled seperately using the POLL ADB command. This allows the application
to guarantee that devices can be read in an arbitrary fashion with nó'
device getting priority (unless apprication wants thaf) and also allows
1¡s application to regulate how ofien data is read. The latter feature is
very important s¡nce it allows a game to adjust depending on
the number of players

Tp Roll each device.seperat€ly it must have a unique address. cunently
there is.no suppórt for this. Ttiere are two suggest'ed methodt fóaâñ

-''

application to assign a unigue address to eaðñ device.

A simple method is to request a player to hold down the activator button
(m.o.use button or keyboard open app_l_g key) and then use the ADB Cnange
Address When Activated command..This óómmand changes the adãresjof any
device(s) that is currently actívated. After verifying that a ðevice has
changed addresses then tell the player to releäsãthe button. nepãâ trris
for each player, giving each one a nêw and different address.

Another mechanism for moving each ADB device to a unique address involves
yJilg collision detection. The host requests the lD at a specific addreis
lr4-Ll-REG.3). Tfe change address command is then iisre¿ ,siù rñ;
collision Detect Handter- Ãny device which d¡d N-oi¡etect a coilision
will change its address. Theie is a chance that two (or more) devices may
not detect a collision and both witt move to the new äddress. To
alleviate this probleg, the device(s) at the new addrãss should be movedr?ny times. This raises the chanòés tnat the devicei wilr colliàe ãnã-

-'
only 3 single d.evice will be moved. TheoretièaU, tr,,ro oeu¡ééJ mai -
col.lide 1. out of 16 t¡mes. lf there are more than'two devices on tñé bus
then the chances of a coilision rise quickty. witnlt,iee devices then
there a 1/5 chance that two devices may hot collide. (4 devices = 1/3 & 5devices = 1/2). - --- \

For.example, if an application wanted to distinguish 4 keyboards from
each other then it shourd send the rD commanä qÀLK É.g. ããoäieés zlthen issue the change address command, to address g, wiiñ in. .irlãioi
9^t^T..ll3ldler1=$FE). Any device that didn't detectã òôl¡sioÀ ("t

- - -
lea$ one) will change to the new address. This same scenario ihould berepeated but.instead. changing address 8 to 9. tvtove any oevice wr¡icn ii"ysat address 8 (it lost the coliisiõn) back to address-e.-Cóntinue swaooiiro

-

the device another 30 times between addresses gã.d ö: äh""riñäiÀ'g anylosers back to address 2..swapping 32 timelõi";;;ery good statisticat
chance.rhar.onry one device witi rra-ve had its ãooiéss cr,ån-ged tó g-l;ð;
the,original keyboard address. This process shourd be-repeated for eachkevboard, using two open addresseå (such ai g alõltän fit& îì ;t.:ï
Atter,each keyboard has been moved to a new address the application
shoutd ask each userlo press a key. rnaiey pÀ; ¿ã; then be used toidentity the address of eách user.

Apple Desktop Bus uC Toot Set May. 15, 19g6 page #Z

The SRQ list and ABSOLUTE flag do not get cleared on RESET. Apptications
which install devices shoutd use the CLRSRoTBL command durinj hgsgr.

The order that the parameters are listed for each function represent the
grdgr which they should be pushed on the stack. (i.e. Command is usually
the last value pushed on the stack).

The following examples are written in 16-bit mode with the following
equates:

UCTOOL EQU $9 ;qDB TOOL NUMBER
SND EQU $9 ;SEND FUNCT¡ON NUMBER

Here is an example of how to enable sRe on a device at address 7:

ENSRQ EQU'
PEA $0000 ;COUNT OF 0 BYTES (=HOWMANY)
PEA $OOOO .;DUMMY ADDRESS . NOT USED SIÑCE HOWMANY=O
PEA $0000
PEA $0057 ;ENABLE SRQ OF ADDRESS 7
LDX #SND'256+UCTOOL ;SET UP FUNCTTON CALL FOR SEND
JSL =TOOL.LOCATOR
BCS ERROR

Tfe loj!9wíng.example.shows how to make a tool call to change the handter
of a ADB device at address 7. lt uses the uc tool set function Ëdled
SEND to transmit 2 bytes to regíster 3 at address 7:

LDA #$0207 ;CHANGE DEVTCE AT ADDRESS 7 TO HANDLEH 2
STA DATABUF ; INTO DATA BUFFER

PEA ^DATABUF ;Hl WORD (BAN ¡î oF DATA BUFFER AD RESS
PEA DATABUF ;LOW WORD OF ÐATA BUFFER ADDRESS
PEA $OOB7 ;TRANSMIT 2 DATA BYTES TO REG.3 OF ADB ADDRESS 7LDX #SND'256+UCTOO L ;SET UP FUNCTION CALL FOR SEND
JSL =TOOL.LOCATOR
BCS ERROR

Here is an example of sending data to an ADB device:

DATASND EQU '
pEA S0005 ;5 DATA ByrES 14 glata & 1 ADB command)
PEA ^DATA ;ADDRESS OF DATA BUFFER WTAxBy

-,
PEA DATA
PEA $004e-_p|{p_r_o-uC (TRANSMIT 4 DArA BYTES)
LDX #SND'256+UCTOOL
JSL =TOOL.LOCATOR
BCS ERROR

DATA DS $84,1 ,2,3,4 ;1ST BYTE lS COMMAND:. ; DEVICE @ ADDRESS B, L|STEN, REG.0
t

Apple Desktop Bus uC Toot Set May. 1S, 1996 Page #3

;OTHER BYTES ARE DATA

And finally an example that explains how to poll a device at address 7,
register 0 for data:

ADBPOLL EOU $D ;ADB POLL FUNCTTON NUMBER
PEA ^CPLTVC ;Hl WORD (BANK) OF COMPLETTON ROUTTNE
PEA CPLTVC ;LOW WORD OF COMPLETTON ROUTTNE
PEA $00C7 . ;¡EGlSl'Fi o,AD_DRESS 7 (tF REc. 3 THEN $F7)
LDX #ADBPoLL'256+ucrooL ;sETUp FUNOTTON CALL FoR poLL
JSL =TOOL.LOCATOR
BCC OK ;EVERY THING OK
CMP #UCTOOL'256+BUSY ;CHECK tF BUSY ERROR
BEQ ADBPOLL ;POLL AGAIN IF BUSY
BRA ERROR

OK EQU '
END RTS ;END

COMPLETION VECTOR ROUTINE DESCRIPTION:

All completion routines are called in B-bit native mode. There are
g{Lently two types of completion vectors defined, the ADB poil and the
SRQ List.

ADB Poll & ADB Receive Completion Vector

The ADB Poll completion Vector Routine grabs Data from Butfer
pointed to, by address 9n top of stack. Thdfirst byte in the butfer
contains thé number of data bytes in the butfer. Í¡re I st datJú¡e
received from ADB,is the 19{ byte in the buffer, with subsequéni
9ata.byteg received from ADB siored sequentiaÍg in de butfer. The
last (nth) byte received is the n+1 byte ín the butter.

CPLTVC EQU ' ;COMpLETION VECTOR FOR ADB POLL
tlq ;Move direct page onto stack-1
I99 ;Stack now hàs hTL address (3 bytes)TCD Ob Direct page (2 bytès) '
!q4 t6l ;Get length byte from Ounòr
BEQ ENDPOLL ;Got no data

. _ TAY ;Setjndex to get 1st data byte'LP _!?A_[oIY ;Get data õyte
STA BUF,Y ;Move to aþplication buffer
PFY ;Set index for n'ext data byte
BPL LP

ENDPOLL EQU '
tIP ;Restore Direct pageRTL ;RETURN FROM COvrpçÏON ROUTTNE

SRQ List Comptetion Vector

Apple Desktop Bus uC Toot Set May. 15, 19g6 Page #4

n

o

Tle_S¡g Completion routine is very simitar to the routine used by
ADB Poll. The only major ditference is that an extra return addreés
is on the stack when the routine is called. (These extftt 3 bytes are
left by the sRQ list handler). sRQ completion routines w¡¡liind the
address to the data butfer 3 bytes into ihe stack, instead of on the
top of the stack.

SRQCPLT EQU '
PHD
TSC
TCD
LDA lsl
TAY
LDA [91,Y
DEY¡

ENDABS PLD
RTL

;COMPLETION VECTOR FROM SRQ LIST
;SAVE DIRECT PAGE
;MOVE DIRECT PAGE ONTO STACK
;AND DO INDIRECT INDEXED LONG TO
;GET DATA LENGTH (NOT 0)

;GET LAST DATA BYTE
;MORE DATA, ETC.

;RESTORE STACK AND RETURN

(,

t/
Apple Desktop Bus uC Tool Set May. 15, 19g6 Page #5

This table is used to show the tool set function protocol. The lnput
words/Long are stored on the stack by pushing the first item fróm the top
of the list onto the stack first. (i.e. when the tool locator is called
the Command is typically on the top of stack). The Dataoutptr and
DatainPtr are poínters to a data structure of bytes. These data
structures are shown in more detail in Appendix A.

Command Structure: Error:
(FUNCTTON NUMBER)

SEND: lnput Word: HowMany
(9) lnput Long: DataoutPtr

lnput Word: Command

$10: Command Not Completed

send data to the uc. The command and data to be sent to uc is
documented in Appendix A&8.

19V'. lnput Word: Howmany $10: Command Not Compteted(A) lnput Long: DatainPtr
lnput Word: Command

Receive data from the uc. The command and data to be received
from uC is documented in Appendix A&8.

RDmem: lnput Long: DataoutPtr $10: command Not completed(B) lnput Long: DatainPtr
lnput Word: Command

. Used to read a_qat3. byte from the uC memory ROM ($1400-$l FFF)
or RAM ($0-$5F). The command and data tobe received is
documented in Appendix A&8.

Reserved
(c)

ADBpoll:lnput Long: completion Vector $10: command Not completed(D) lnput word: command $82: Busy (command penoirigi --

Receive data from a ADB device. The ADB command byte sent
assumes that the command type is Talk, which tells the'
addressed device to send daia to the host (i.e. Talk).

ADBrcv: lnput Word: ADB Command Code(E)
.lnpuf .Long:_comptetion Vector $10: command Not completed
lnput Word: Command $g2: Busy (Command pending) -

Receive data from a ADB device..First byte sent is command byte
to be sent on ADB, which should inctude the ADB commano tióe,
address, and register. Normally this would only be used insteáà
of the ADBrcv function (D) if th-e command typ"e was neither a

Apple Desktop Bus uC Toot Set May. t S, 1996 Page #6

ADB Usten or ADB Talk command. The command and data to be
received is documented in Appendix A&8.

ABSON: NO parameters
(F)
ABSOFF:
(10)

used to disable/enable automatic polling of an absolute devíce.
Default is to automatically gather data from an absolute devíce
and inteçret as absolute mouse positioning.

RDABS: Output Word: OniOtf
(11)

Read flag to determine if automatic polling of absolute device
is on or off.

SCALE: lnput Long: Data¡nPtr
(12)

Se.ts up scaling for absolute devices. By predefining a tool
call, a generic scalíng desk accesory can be writteñto support
almost any size/brand graphics tablet.
Each of these values is stored as a word (16-bits) though the
multíply values will only operate on the low g-bits.

X-Divide
Y-Divide
X-Otfset
Y-Otfset
X-Multiply
Y-Multiply

RDSCALE: lnput Long: Dataoutptr
(13)

Read absolute device scaling values.
Each of these values is storel as a word (16-bits) though the
multiply values will only operate on the toù g-Oits.

X-Divide
Y-Divide
X-Offset
Y.
X.
Y.

Offset
Multiply
Multiply

:191111qy¡ L9n9._C_omptetion vector g10: Command Not Compteted(r4) tnput word: ADB Address $93: Device Not present(@n'ddress)
$84: List Full

Thís routine adds a device to the sRe list (¡f the device
exists) so that an application can be notifieä when this device
has data- whenever an sRe is generated the system will

Apple Desktop Bus uC Tool Set May. 1S, 19g6 Page #7

automatically poll any device in the SRe list to see if it has
data ready. lf data is available then it will vectorto the
completion routine with the data and notity the application.

SRQRMV: lnput Word: ADB address $10: Command Not Compteted
$82: Busy (Poll Active)

Flemoves a devíce from the SRQ list.

CLRSRQTBL: No Parameters

Ctears the SRQ list of all entries.

Some other processes are supported in the ADB uC tool set, since certain
interrupt conditions can originate from the uC.

lnterrupt Handlers:

sRo - Maintains sRQ List & Pointer. lf end of list encountered then
cleans up by disabling SRQ of all devices (except the
keyboard), then enabting the sRe of every deviôe in the sRe
tist.

ABORT -.Attempts SYNCH command: If ignored system death, else RTL and
continues. Itls interrupt will reset mãny of the defaults,
including ADB devices and the control þanel. lf this enor
could be fatalto an application then the ABORT vector should
be patched into so that it can be detected by the applicatíon

-

elq !!l:.n the apptication shoutd jump to wh'erever'ti.re otd
ABORT vestor was pointing).

RESPONSE - Fìeads data then Vectors to Completion Routine. Only a single
completion vector can be active at a time. lf an application

r -

wants to poil many deüices sequentially then it shóub use the
completion vector to initiate a poll of thê next device.

Apple Desktop Bus uC Tool Set May. 1S, 1996 Page #8

Appendix A - Commands:

HOW
Function CMD MANY Single-Chip Microcontroller Command (From system to uC)

SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND

SEND

SEND

SEND

SEND

SEND

01 O ABORT
02 0 RESET KEYBOARD uC
03 O FLUSH KEYBOARD
10 O RESET SYSTEM
40 O RESETADB
5x 0 ENABLE SRQ (x=ADB address in tow nybble)
7x 0 DISABLE SRQ (x=ADB address in tow nyOOte)
6x O FLUSH BUFFER ON ADB DEVICE (x=AÞB address in |ow nybble)
04 1 SET MODES

INPTR <- lnput Byte: Mode
05 1 CLEAR MODES

INPTR <- lnput Byte: Mode
06 3 SET CONFIGURATION

IN|IF <- lnput Byte: ADB adrs. keyboard & mouse
IN|IR <- lnput Byte: LayouULang.

_lNPfR <- lnput Byte: Repeat Detay/Rate
07 4 SYNCH

INPTR <- lnput Byte: Mode

lllilt <- lnput Qyte, ADB adrs. keyboard & mouse
lryryn <- lnput Byte: LayouVLang.

- -t¡lpIlflnpgt Byte: Repeat DeËy/Rate
08 2 WRITE uC MEMORy

lllfin <- lnput Þyte: Zero page Memory Address
INPTR <- lnput Byte: Data

11 1 SEND ADB KEYCODE
INPTR <- lnout Bvte: Kevnnrlo

SEND

SEND

RDmem

RCV

RCV

RCV

RCV

av 1+_t_!ReruS¡¡r ÁoB Bfr_Èijy=7*n & n1# or bytes to transmit {n+0})ITI <- lnput QVte: {DB Command (ADB typ'e,adrs.,reg.l
- I

- lfTI ::]npqt Bytes: 2-8 data bytes
8r 2 TRANSMTT 2 ADB BYTES 1r=ÁDB address)

lNryn <- tnput Byre: r st Datà Byte

-[{Pþ:-_tnp_ut Byre: 2nd Data ii¡e09 READ uC MEMORy
lNTn <- lnput gyte: Low Memory Address
\PJAf lnp^ut Byte: High Memory Address
OUTPTR <- Output Byte:

-
Data

OA 1 READ MODES
OUTPTR <- Output Byte: Mode

OB 3 READ CONFIGUT¡NT¡Oru
OUTPTR <- Output gyte, Repeat Detay/Rate
OUTPTR <- Output B¡e: LayouVLang.
OUTPTR <- OutÈlt Qlrte' REÍB adrs. tieyboard & mouse

OC 1 READ ADB ERRON ArrC
OUTPTR <- Output Byte: Error Code

OO 1 READ VERSION ÑUI¡ACN
OUTPTR <- Output Byte: Version Number

Apple Desktop Bus uC Tool Set May. 15, 1996 Page #9

APPENDIX B - Single-Chip Microcontroiler (SKt) Commands

COMMANDS TO uC:

BIT 76543210

00000000
OOOOOOOI ABORT COMMAND
0000001 0 RESET KEYBOARD uC
OOOOOOIl FLUSH KEYBOARD

00000100 SET MODES using nexf byte as fottows:
00000101 CLR MODES using next bhe as follows:

B¡t Function

7 Rese.tj¡ .n!!!r_rel gnty (CONTROL not needed)6 SEt XOR LOCK.SHIFT MbdE5 Change ADB Keyboard layoutto lle layout4 Buffer keyboard mode
3 4X repeat enabled, instead of Dual (2X) repeat2 lnclude Spacebar, Delete key on Drjat ieoeat1 Disable Auto-poll of ADB mouse0 Disabte Auto-poil of ADB keyboard

00000110 sET coNFtGuRATtoN ByrES using next 3 bytes as foilows
Byte 1:

Hl Nybble - ADB mouse address
LO Nybbte - ADB keyboard address

2:
Nibble.- Char.set (needed for certain langs.)

MSB set if keypad '.'swapped withÌ,' '
Nybble.-. Set Keyboard Layoui Language

LAYOUT/LANG. = CODE:

us (us) = 0uK (uK) = 1

FRENCH (FR) = 2
DANTSH (DN) = 3
SPAN|SH (SP) = 4
ITAL|AN (tT) = 5
GERMAN (GR) = .e

swEDtsH (sw) = 7
DVORAK (DV) = I
CANADIAN (CN) = I

Byte
HI

LO

Apple Desktop Bus uC Tool Set May. 1S, 19g6 Page lC

Byte 3:
Hl Nybble - Set Detay to repeat rate (3 bits)

0: 1/4 sèc.
1: 1/2 sec.

3; 'í'i"i
4: NO REPEAT

LO Nybble - set Auto-repeat rate (3 bíts)
0:40 keys/sec
1: 30 keys/sec
2:24 keys/sec
3:20 keys/sec
4: 15 keys/sec
5:11 keys/sec
6:08 keys/sec
7:04 keys/sec

OOOOO111 SYNCH COMMAND

sets MODES byte (see command 4 or 5 above) foilowed by
configuration bytes (command 6). This commaád is issued'
by the. system atter reset to reset the keyboard. After
receiving the command the uc wíll resef itself back to
its internal power up state and then reset ADB devices.

00001000 WRITE uC MEMORy
send 1 byte address (for RAM) foilowed by 1 byte of data

00001001 READ uC MEMORy
.Send 2 bytes address of uC location (ROM or RAM).'tst byte=tow adrs byte & 2nd byte=hi'adrs byte(=Q ú nnVf¡

READ MODES BYTE (See command 4 or 5 above)

READ CONFIGURAT¡ON BYTES. Returned in Data latch:
See Set Configuration for values

Byte 1:
Hl Nybbte - ADB mouse address
LO Nybbte - ADB keyboard address

Byte 2:

!-tl\yOOt9 - Ctar.set (needed for certain tangs.)
LO Nybble - Set Keyboard Layout Language-

Byte 3:
Ht nibble - .let Detay to repeat rate (3 b¡ts)
LO nibbte - Set Autõ-repeàt rate (S òits)

OOOOI 1OO READ THEN CLEAR FBD ERROR BYTE . Returned in Data |atch

00001 01 0

00001 01 1

Apple Desktop Bus uC Tool Set May. 1S, 19g6 Page I i

00001 101 GET VERSTON NUMBER - Retumed in Dara tatch
(Also returns PORT R, which is undefined input port on
uC, in Hl nybble.)

00001110 READ CHARACTER SETS AVAILABLE - Returns # of bytes, then data
This command is used by control panel to determine which'
character sets are available in the system. This assumes
that each uC is paired with a specifiô mega chip. (Though
mega chips may be paired w/ more than ône uC). The õrder
that the character sets are returned is important.'The
first number retumed corresponds to the character set 0
in the mega, while the next number ¡s character set 1,
etc.

00001111 READ LAYourS AVA¡LABLE - Returns # of bytes, then the data
This command is used by control panelto determine which
keyboard layouts are available in the system. Again, like
the character sets available command ir¡e orceithat the
number are returned is important. The first number
retumed represents layout 0 in the uC. A predefined
table def¡nes which number corresponds to which layout
language.

00010000 RESET THE sysrEM - puils the reset line low for 4 ms.

00010001 SEND ADB KEycoDE - pretend that 2nd byte ís ADB keycode
This command can be used to emurate a ADBîeyboard, bi'--
acce¡ing.keycodes from a device and then sendíng tnem ío
the uc to be processed as keystrokes. This commalnd will
not process either RESET up gr RESET down codes, so they
must be trapped out before using this command. Thié - ¿

command can be used to watch for key up sequences.

0001---1

001-----

01000000 RESET ADB - puils ADB tow for 4 ms.
care must be taken with this command because resetting a
ADB keyboard wiil crear any pe.nding commanos inctuðin!-
all.key up events. This meánä that if-a keystroke is used
to launch this command whire the key is iereased, then
the.key up code wiil be rost and the Éey wiil auto-repeat
until another key is pressed. All keys s-hould be up
before this command is executed.

ol ool ooo REcElvE ByrES - command, w address, is in 2nd byte
The system starts by sending a command byte on ADB and
then waíts_for the uC to pass back any data i.hat ¡t
receives. Returns bytes in opposite oider (n_>1).

Apple Desktop Bus uC Tool Set May. 1S, 19g6 Page ¡ 1

01001num TRANSMIT num BYTES - command, M address, is in 2nd byte
Note: lf num=o then command is REcElvE BYTES described above

Else num = # of data bytes-1
The system starts by sending a command followed by
between 2 to 8 data bytes (num+1) to the uC, whích are to
be transmitted over ADB. The command sent will be
transmitted directly as the ADB command byte, which is
the f¡rst byte received after the TRANSMIT num.ByTES
command.

01O1abcd ENABLE SRQ ON ADB DEVTCE AT ADDRESS abcd

011Oabcd FLUSH BUFFER ON ADB DEVTCE AT ADDRESS abcd
This command is dangerous - see RESET ADB description

0111abcd DISABLE SRQ ON ADB DEVTCE AT ADDRESS abcd
This command may be dangerous. lf data is pendíng when
this command is executed then the pendíng data mãy be
lost. For example if SRe is disabled on the ADB keyóoard
then all key up codes may be lost. Also see RESETADB
description

l0xyabcd TRANSM¡T 2 BYTES:
Address - abcd
Register- ry

Assumes.a two byte transfer of data using the ADB usten
command.

11ryabcd Poll ADB device
Address - abcd
Register- ry

This command is used to get data from a specific device.
It uses the ADB Talk command then waits ior the device to
either send back data or timeout. The uc waits until all
data has been received then responds back to the system
with a sralu: byte which indicateð the number of bytés
received foilowed by the data. lt returns the bytes ín
opposite order than received on ADB (n->1). '

' Allcommands *tt19! require more than a 1 byte transfer, will automatically
timeout in 10 ms. if there is no response, excäpt for the syNcH cmo ù¡ricn
may require 20 ms. to process the ADB address b¡e.

Apple Desktop Bus uC Tool Set May. 15, 19g6 Page I 3

