Using and Writing
Cortland Tools
Preliminary Notes
Preliminary Note: 1/16/86/

Writer: Willam H. Harris
Apple User Education

Copyright © 1985 Apple Computer, Inc. All rights reserved.

Using and Writing Cortland Tools

Changes Since Last Draft

This is the first draft of this document. The sources used to prepare this document are as
follows:

Tool Locator ERS 12/3/85
QuickDraw I ERS 1/15/86
Memory Manager ERS 11/27/85
Event Manager ERS 11/25/85
Miscellaneous Tools ‘ 1/10/86

Preliminary Notes [1/16/86

Using and Writing Cortland Tools

Preliminary Notes

&y

1/16/186

Using and Writing Cortland Tools

Contents

Preface

Chapter 1. Introducing the Tools
What Is a Tool, Anyway?
What Can the Tools Do For Me?
What Tools Will Apple Provide?

Tool Locator -

QuickDraw II

Memory Manager

Event Manager

Font and Text Calls

SANE

Desk Manager

Sound Manager

Control Manager

Dialog Manager

Menu Manager

Window Manager

File Operations

Text Edit

Chapter 2. Using the Apple Tools
Initializing the Correct Tools When the Application Starts
Calling the Correct Function
Calling a Function From Assembly Language
Calling a Function From Pascal
Calling a Function From
Passing Parameters -
Return From the Function
Return From the Call

Chapter 3. Writing Your Own Tool Sets

Preliminary Notes i

1116186

Using and Writing Cortland Tools

Preliminary Notes v 1116186

Using and Writing Cortland Tools

Préface

This manual is an introduction to the Cortland Tools for the application developer. It
defines the terms used in describing the tools and provides background information. If you
are planning on simply using the Cortland Tools that Apple provides, Chapters 1 and 2 will
provide you with enough information. If you are planning on developing your own tools,
you will need to read Chapter 3.

For a more complete description of some the Apple tools, refer to Description of the
Cortland Tools: Part I Preliminary Notes.

Please note that this manual is only a preliminary document. The information may change

for the final release. The Preliminary Notes give you an idea of the powerful capabilities of
the Cortland Tools so that you can begin planning your application.

Preliminary Notes) 1/16/86

Using and Writing Cortland Tools

Preliminary Notes 2 ‘ 1/116/86

Using and Writing Cortland Tools

Chapter 1

Introducing the Tools

What Is a "Tool", Anyway?

A software "Tool", in the Cortland environment, is a collection of logically related routines
(or functions) comprising one major capability. Each function is an "entry point" of the
tool set that performs a fundamental operation and converts zero or more inputs to zero or
more outputs and side effects. For example, the QuickDraw II Tool provides functions that
handle graphics on the Cortland. Within that tool, PenSize and PenMode are functions
that set the pen size and pen mode.

If you are familiar with Macintosh programming, this concept is similar to the Toolbox.

In the Cortland implementation, the concept is even more important. Many of the -
capabilities of the Cortland (when it runs as a Cortland, and is not emulating an Apple II)
are easily available through the tools. For example, even the Memory and Event Managers
are considered to be tools on the Cortland.

What Can the Tools Do For Me?

The tools are fast and simple to use. They provide powerful capabilities that allow the
application to concentrate on its specific business rather than having to do all of the
background work . To use the tools in the simplest fashion, you don't need to know
anything but the name for the tool and how to call it from the particular language
(assembly, Pascal, or C) that you're using. (Calling information is in Chapter 2.)

A number of the tools are included in ROM. This approach makes the tools available to all
programs without using disk space and without the need to link tool libraries to
applications.

Other tools are available in RAM (at the moment, what the RAM tools will be is still being
decided). However, the structure of the tools is such that you don't need to keep track of
where a particular function is or even if it is in ROM or RAM. This magic is performed by
a tool called the Tool Locator, which allows tools and applications to communicate.
Because the Tool Locator does its work quietly, you won't even see it if you are simply
using the Apple tools in your application.

There is another advantage of the tools and the Tool Locator. In addition to using the
Apple tools, you can add on your own tools if you wish. You don't even need to replace
the Apple tools with your tools; both-can be available at once.

The Cortland tools are independent of the operating system being used. They are thus

available for any Cortland application, whether the application is running under ProDOS,
Pascal, or another operating system.

Preliminary Notes 3 1/16/86

Using and Writing Cortland Tools

What Tools Will Apple Provide?

In this section, we simply list and define all of the tools that are currently planned. The
listing does not contain extensive description, syntax, or any examples; for an in-depth

look at an individual tool, refer to Description of the Cortland Tools: Part [Preliminary
Notes.)

Please remember that this list is still preliminary. Other functions or entire tools may be
added as space permits, some functions may be removed, and the parameters for others
may change. We can generally assure you that the Tools listed here will be available, and
we are trying to provide enough information in these Preliminary Notes to give you a head
start on developing your application.

Tool Locator

BootInit Initializes the Tool Locator and all other ROM-based tool sets.

AppInit Does nothing.

AppEnd Does nothing.

Version Returns the version of the Tool Locator. _

GetTsPtr Rc:turns pointer to the Function Pointer Table of the specified tool
set.

SetTSPtr Installs the pointer to a Function Pointer Table in the appropriate

Tool Pointer Table.

QuickDraw II

Housekeeping Functions

QDBootInit Initializes QuickDraw II at boot time.

QDAplInit Initializes QuickDraw II, sets the current port to the standard port,
and clears the screen.

QDQuit Frees up any buffers that were allocated.

QDVersion Returns the version of QuickDraw II.

Global Environment Calls
GetStandardSCB Returns a copy of the standard SCB in the low byte of the word.

SetMasterSCB Sets the master SCB to the specified value (only the low byte is
used).

Preliminary Notes 4 1116/86

GetMasterSCB
InitColorTable
SetColorTable
GetColorTable
SetColorEntry
GetColorEntry
SetSCB
GetSCB
SetAlISCBs

Using and Writing Cortland Tools

Returns a copy of the master SCB (only the low byte is valid).
Returns a copy of the standard color table for the current mode.
Sets the color table to specified values.

Fills a color table with the contents of another color table.

Sets the value of a color in a specified color table.

Returns the value of a color in a spécified color table .

Sets the scan line control byte (SCB) to a specified value.
Returns the value of a specified scan line control byte (SCB).

Sets all scan line control bytes (SCBs) to a specified value.

GrafPort Functions

OpenPort

InitPort
ClosePort
SetPort
GetPort

SetPortInfo

SetPortSize
MovePortTo

SetOrigin

SetClip
GetClip
ClipRect

Preliminary Notes

Initializes specified memory locations as a standard port and
allocates new VisiRgn and ClipRgn.

Initializes specified memory locations as a standard port.
Deallocates the memory associated with a port.

Makes the specified port the current port.

Returns the handle to the current port.

Sets the current port's map information structure to the specified
location information.

Changes the size of the current GrafPort's PortRect.
Changes the location of the current GrafPort's PortRect.

Adjusts the contents of PortRect and BoundsRect so that the upper
left corner of PortRect is set to the specified point.

Sets the clip region to the region passed.
Returns a handle to the current clip region.

Changes the clip region of the current GrafPort to a rectangle
equivalent to a given rectangle.

5 1/16/86

Using and Writing Cortland Tools

Cursor-Handling Routines

SetCursor

GetCursorAdr

HideCursor

ShowCursor

ObscureCursor

Sets the cursor to the image passed in the cursor record.
Returns a pointer to the current cursor record.

Decrements the cursor level. A cursor level of zero indicates the
cursor 1§ visible; a cursor level less than zero indicates the cursor is
not visible.

Increments the cursor level unless it is already zero. A cursor level
of zero indicates the cursor is visible; a cursor level less than zero
indicates the cursor is not visible.

Hides the cursor until the mouse moves. This tool is used to get the
cursor out of the way of typing.

Pen, Pattern, and Drawing Mode Functions

HidePen

ShowPen

GetPen
SetPenState
GetPenState
PenSize
PenMode
PenPat
BackPat

PenNormal

MoveTo

Move

LineTo

Line

Preliminary Notes

Decrements the pen level. A pen level of zero indicates drawing will
occur; a pen level less than zero indicates drawing will not occur.

Increments the pen level unless it is already zero. A pen level of
zero indicates that drawing will occur; a pen level less than zero
indicates drawing will not occur.

Returns the pen location.

Sets the pen state in the GrafPort to the values passed.

Returns the pen state from the GrafPort.

Sets the current pen size to the specified pen size.

Sets the current pen mode to the specified pen mode.

Sets the current pen hMe to the specified pen mode.

Sets the background pattern to the specified pattern.

Sets the pen state to the standard state (PnSize = 1,1; PnMode =
copy; PnPat = Black). The pen location is not changed.

Moves the current pen location to the specified point.

Moves the current pen location by the specified horizontal and
vertical displacements.

Draws a line from the current pen location to the specified point.

Draws a line from the current pen location to a new point specified
by the horizontal and vertical displacements.

6 1/16/86

Using and Writing Cortland Tools

Calculations With Rectangles

SetRect Sets the rectangle pointed to by RectPtr to the specified values.

OffsetRect Offsets the rectangle pointed to by RectPtr by the specified
displacements.

InsetRect Insets the rectangle pointed to by RectPtr by the specified
displacements.

SectRect Calculates the intersection of two rectangles and places the
intersection in a third rectangle.

UnionRect Calculates the union of two rectangles and places the union in a third
rectangle.

PtInRect Detects whether a specified point is in a specified rectangle.

Pt2Rect Copies one point to the upper left of a specified rectangle and
another point to the lower right of the rectan gle.

EqualRect Compares two rectangles and returns TRUE or FALSE.

EmptyRect Returns whether or not a specified rectangle is empty.

Rectangle Functions

FrameRect Draws the boundary of the specified rectangle with the current
‘ pattern and pen size.

PaintRect Paints (fills) the interior of the specified rectangle with the current
pen pattern.

EraseRect Paints (fills) the interior of the specified rectangle with the
background pattern.

InvertRect Inverts the pixels in the interior of the specified rectangle.

FillRect Paints (fills) the interior of the specified rectangle with the specified
pattern.

Pixel Transfer Calls

ScrollRect Shifts the pixels inside the intersection of a specifed rectangle,
VisRgn, ClipRgn, PortRect, and BoundsRect.

PaintPixels Transfers a region of pixels.

Preliminary Notes 7 1/16/86

Using and Writing Cortland Tools

Calculations With
AddPt

SubPt

SetPt

EqualPt
LocalToGlobal
GlobalToLocal

Points

Adds two specified points together and leaves the result in the
destination point.

Subtracts the source point from the destination point and leaves the
result in the destination point.

Sets a point to specified horizontal and vertical values.
Returns a boolean result indicating whether two points are equal.
Converts a point from local coordinates to global coordinates.

Converts a point from global coordinates to local coordinates.

Miscellaneous Utilities

Random
SetRandSeed
GetPixel

Calculations With

NewRgn

DisposeRgn
CopyRgn
SetEmptyRgn

SetRectRgn

RectRgn

OpenRgn

Preliminary Notes

Returns a pseudo-random number in the range -32768 to 32767.
Sets the seed value for the Random function.

Returns the pixel below and to the right of the specifed point.

Regions

Allocates space for a new region and initializes it to the empty
region. This is the only way to create a new region.

Deallocates space for the specified region.
Copies the contents of a region from one region to another.

Destroys the previous region information by setting it to the empty
region.

Destroys the previous region information by setting it to a rectangle
described by the inputs.

Destroys the previous region information by setting it to a rectangle
described by the input.

Tells QuickDraw II to allocate temporary space and start saving lines
and framed shapes for later processing as a region definition.

8 1/16/86

CloseRgn
OffsetRgn

InsetRgn
SectRgn

UnionRgn
DiffRgn
XorRgn
PtInRgn

RectInRgn
EquaiRgn

EmptyRgn

Using and Writing Cortland Tools

Tells QuickDraw II to stop processing information and to return the
region that has been created.

“Moves the region on the coordinate plane a distance of dh

horizontally and dv vertically.
Shrinks or expands a region.

Calculates the intersection of two regions and places the intersection
in the third region.

Calculates the union of two regions and places the union in the third
region.

Calculates the difference of two regions and places the difference in
the third region.

Calculates the difference between the union and the intersection of
two regions and places the result in the third region. '

Checks to see whether the pixel below and to the right of the point is
within the specified region.

Checks whether a given rectangle intersects a specified region.

Compares the two regions and returns TRUE if they are equal or
FALSE if not.

Checks to see if a region is empty.

Graphic Operations on Region Calls

FrameRgn

PaintRgn

EraseRgn
InvertRgn
FillRgn

Preliminary Notes

Draws the boundary of the specified region with the current pattern
and current pen size.

Paints (fills) the interior of the specified region with the current pen
pattern.

Fills the interior of the specified region with the backgound pattern.
Inverts the pixels in the interior of the specified region.

Fills the interior of the specified region with the specfied pattern.

9 1/16/86

Using and Writing Cortland Tools

Memory Manager

Housekeeping Functions

MMInit Called at boot time; Does nothing.
MMStartUp Initializes the Memory Manager.
MMShutDown Turns off the Memory Manager.

MMVersion Returns the version of the Memory Manager.

Memory Allocating Functions
NewHandle Creates a new block.

ReAllocHandle Reallocates a block that was purged.

Memory Freeing Functions

DisposHandle Purges a specified unlocked block and deallocates the handle.

DisposAll Discards all of the handles for a specific owner.

PurgeHandle Purges a specified unlocked block, but does not deallocate the
handle.

PurgeAll Purges all of the purgeable blocks for a specific owner.

Block Information Functions
GetHandleSize Returns the size of a block.
SetHandleSize Changes the size of a block.

FindHandle Returns the handle of the block containing a specified address.

Locking and Unlocking Functions

HLock Locks a block specified by a handle.
HLockAll Locks all of the blocks owned by an owner.

| HUnLock Unlocks a block specified by a handle.
HUnLockAll Unlocks all of the blocks owned by an owner.

Preliminary Notes 10 1116186

Using and Writing Cortland Tools

Purge Level Functions
SetPurge Sets the purge level of a block specified by a handle.
SetPurgeAll Sets the purge level of all blocks owned by a-specified owner.

Free Space Functions
FreeMem Returns the total number of free bytes in memory.

MaxBlock Returns the size of the largest free block in memory.

Event Manager

Housekeeping Functions

EMBootInit Called at boot time. Does nothing.

EMStartUp Initializes the ToolBox and Operating System Event Managers.
EMShutDown Turns off the ToolBox and Operating System Event Managers.

EMVersion Returns the version of the ToolBox and Operating System Event
Managers.
DoWindows Returns the address of the zero-page work area used by the ToolBox

and Operating System Event Managers.

Accessing Events Through the ToolBox Event Manager

GetNextEvent Returns the next available event of a specified type or types and, if
the event is in the event queue, removes it from the queue.

Reading the Mouse

GetMouse Returns the current mouse location.

Button Returns the current state of the mouse button.

StillDown Tests whether the mouse button is still down.

WaitMouseUp Tests whether the mouse button is still down, and, if the button is

not still down from the original press, removes the preceding
mouse-up event before returning FALSE.

Preliminary Notes 11 1/16/86

Using and Writing Cortland Tools

Miscellaneous ToolBox Event Manager Routines

GetDblTime Returns the suggested maximum difference (in ticks) between
mouse-up and mouse-down events in order for the mouse clicks to
be considered a double click.

GetCaretTime Returns the time (in ticks) between blinks of the "caret” (usually a
vertical bar) marking the insertion point in text.

SetSwitch Informs the ToolBox Event Manager of a pending switch event.
SetSwitch is called by the Control Manager and should not be
called by an application.

Posting and Removing Events
PostEvent Places an event in the event queue.

FlushEvents Removes events in the event queue.

Accessing Events Through the OS Event Manager

GetOSEvent Returns the next available event of a specified type or types and, if
the event is in the event queue, removes it from the queue.

OSEventAvail This tool works the same as GetOSEvent, except that
OSEventAvail leaves the event in the event queue (if the event
was there in the first place).

Miscellaneous OS Event Manager Routines

SetEventMask Sets the system event mask to the specified event mask.

GetEvQHdr Returns a pointer to the header of the event queue.

Font and Text Calls

SetFont Sets the current font to the specified font.

TextMode Sets the text mode.

SpaceExtra Sets the space extra field in the GrafPort to the value specified.
DrawChar Draws the character at the current point.

DrawString Draws the string at the current point.

DrawText Draws the specified text at the current pén location.
CharWidth Returns the size of a specified character.

Preliminary Notes 2 1/16/86

StringWidth
TextWidth
GetFontInfo
SetForeColor
SetBackColor
GetForeColor

GetBackColor

SANE

Using and Writing Cortland Tools

Returns the size of the string.

Returns the width in pixels of the specified text.

Sets the foreground color to the value specified.
Sets the background color to the value specified.
Returns the foreground color.

Returns the background color.

The ROM Tools for the Cortland will provide all of the functions found in the Standard
Apple Numeric Environment (SANE). The SANE Tools can be called by using the normal
call mechanism. For more information regarding the capabilities of SANE, refer to the

Apple Numerics Manual and the SANE Tool Set Preliminary Notes.

Desk Manager

No information available at this time.

Sound Manager

No information available at this time.

Control Manager

No information available at this time.

Dialog Manager

No information available at this time.

Menu Manager

No information available at this time.

Window Manager

No information available at this time.

Preliminary Notes

13

1116186

Using and Writing Cortland Tools

File Operations

No information available at this time.

Text Edit

No information available at this time.

Preliminary Notes

4

1/16/86

Using and Writing Cortland Tools

Chapter 2

Using the Apple Tools

Initializing Tools At Application Start-Up

There will be a simple mechanism for asking for the correct tools when the application
starts. However, design of the mechanism is not yet complete.

Calling the Correct Function

Calling a Function From Assembly Language
We have provided macros in order to make calling a function as simple as possible. You
make an assembly-language call as follows:

1. If the function has any output, push room for it on the stack.

2. Push the inputs in the specified order listed.

3. Invoke the appropriate macro.

4. Pull the output, if any, from the top of the stack.

Calling a Function From Pascal

The exact mechanism for this call is not yet known. Appropriate coding conventions will
be established so that the tools will be available.

Calling a Function From C

The exact mechanism for this call is not yet known. Appropriate coding conventions will
be established so that the tools will be available.

Passing Parameters

Generally, there are several ways to pass parameters:
* in the stack
* in a parameter block
+ inthe A, X, and Y registers
Method 1 is the most common method used by high-level languages. Method 2 is also

very flexible, because the parameter block may be anywhere in memory and may contain
additional pointers to anywhere in memory. Method 3 is also useful for small or few

Preliminary Notes 5 1/16/86

Using and Writing Cortland Tools
parameters but, because the tool dispatcher does not preserve the registers going into a
function, it can only be used for one-way communication.

The parameters and parameter-passing method are defined by each function, and listed in
their individual descriptions in Description of the Cortland Tools, Parts I and I1.

Return From the Function

The function itself defines its handling of all parameters. In the most common case, stack
parameters are handled by pulling off any input parameters and leaving any results returned
by the function on the stack for the calling program to handle.

Return From the Call

Upon completion of the call, the function call returns control directly back to the calling
routine. Some tools support returning errors on some functions. If they do, the
convention is as follows:

C Flag indicates error
A-register contains error code

The state of all flags and registers is summarized as follows:

N flag As set by function

\% As set by function

m Unchanged (must be 0)

X Unchanged (must be 0)

D Setto 0

I Unchanged .
Z As set by function

C As set by function or error flag

E Unchanged (must be 0)

A register As set by function or A=0 successful call, A#0 error code
X As set by function

Y As set by function

S Parameters have been removed from stack

D Unchanged

P See list of flags above

DB Unchanged

PB Unchanged

PC Address following call

Note that "unchanged" means that the value is the same as it was just before the function call.
Error codes $XX01-$XXOF are reserved for use by the function dispatcher. (XX indicates

that the upper byte of the 16-bit A register is undefined.) Remaining error codes are defined
by the tool itself. .

Preliminary Notes 16 1/16/86

Using and Writing Cortland Tools

Chapter 3

Writing Your Own Tool Sets

The Tool Locator System is so flexible that individual application writers can write their own
tool sets to use in their applications. The Tool Locator System supports both System Tools
and User Tools. This chapter will eventually provide the background information necessary
to write your own Tool Sets. For the moment, here are some guidelines:

* Tool sets must use Full Native mode.

* Work space must be dynamically assigned. New tool sets should not use any fixed
RAM locations for work space, but must obtain work space from the Memory
Manager. This avoids memory conflicts such as those caused by fixed usage of
"screen holes.” A limited set of exceptions to this rule will be published in the final
release of this manual.

* A simple interrupt environment must be provided. All new functions must either be
reentrant or must disable interrupts during execution. Because each approach has
significant costs, the designer must consider this decision very carefully. Most
functions, especially those that execute in less than 500us, will probably choose to
disable interrupts. More time-consuming functions should probably also choose to
disable interrupts, especially if they are executed rarely.

* Functions must restore the caller's execution environment before returning control to
the caller.

* Functions may not assume the presence of any operating system unless the operating
system is directly relevant; for example, a Pascal function that can only be used in a
Pascal environment.

Preliminary Notes 17 1/16/86

