
Cortland Toolbox Reference:
Volume I

Alpha Draft
Pan No. 030-3123-A

June 10, 1986

Writer: William H. Harris
Apple Technical Publications

Manual Title:

Cortland Toolbox Reference: Volume I

Alpha Draft Cortland Toolbox Reference, Volume f

Engineering Part # Marketing Part #

030-3123-A

Project Supervisor: Connie Mantis (aka Kathy Williams)

Production Supervisor: Rani

Editor: C·Compage

Schedule:

document design date
alpha date
beta date

2/28/86
6/10/86
TBD

Manual Length and Format:

400 to 500 pages, Addison-Wesley Format

Changes Since Last Draft
'This is the first draft of this document.

Sources
This document is based on the following ERS's:

Integer Math Tools
Event Manager
Tool Locator
Memory Manager
Menu Manager

Miscellaneous Tools
QuickDraw II
Cortland SANE Tool Set
Sound Tools
Text Tools

YOO:20 May 9,1986
00:40 March 4, 1986

February 19, 1986

Rev 4 March 10. 1986
May 8. 1986

Yer 0.86 May 9, 1986
June 3, 1986

0.02 12 December 1985
Rev. 1.4 June 6. 1986
Yer 0.16 May 27. 1986

Preface

About This Manual

This manual provides the spedfications of to the Cortland Tools for the application
programmer. It defmes the terms used in describing the tools and provides
background information. .

Roadmap to the
Cortland Technicol Manuals
The Cortland has many advanced features, making it more complex than earlier
models of the Apple II. To describe it fully, Apple has produced a whole suite of
techitical manuals. The manuals are listed in Table A-I. Figure A-I is a diagram
showing the relationships among the different manuals. Depending on the way you
intend to use the Cortland, you may rteed to refer to a select few of the manuals, or
you may need to refer to most of them.

Table A-I. The Cortland Technical Manuals

Title

Technical Introduction to the Cortland

Cortland Hardware Reference

Cortland Firmware Reference

Writing Cortland Programs

Cortland Toolbox Reference: Volume I

Cortland Toolbox Reference: Volume II

Cortland Programmers Workshop

Cortland Workshop Assembly Language Reference"

Cortland Workshop C Reference"

Cortland Workshop Pascal Reference"

ProDOS/8 Technical Reference

Cortland Operating System Reference

Human Interface Guidelines

Apple Numerics Manual

""There is a Pocket Reference for each of these.

SubJect

what the Cortland is

machine internals-hardware

machine intemals-fu-mware

sample program using the toolbox

toolbox specifications

more toolbox specifications

the development environment

using assembly language

using C on the Cortland

using Pascal on the Cortland

ProOOS for Apple II programs

ProOOS and loader for Cortland

for all Apple computers

numerics for all Apple computers

Cortland
Tools

Reference:

Part I

Cortland
Workshop
Assembly
Language
Reference

Part II

Pocket
Reference

To use
assembly
language...

Programmer's
Introduction

to the
Cortland

To start learning
to program the
Cortland...

Technical
Introduction

to the
Cortland

Cortland
Workshop

Pascal.
Reference

Cortland
Programmers

Workshop
Reference

Pocket
Reference

To use the
development
environment...

To use
Pascal...

I

Cortland
Hardware
Reference

Cortland
Workshop

C
Reference

Pocket
Reference

To use C...

­...

Cortland
Operating

System
Reference

Cort
Firm
Refer

To learn how
the Cortland
works... _---_

To operate on
files...

Figure A-I. Roadmap to the technical manuals

To start finding t-..."'l----~

out about
the Cortland...

The Teehnicallntroduetion
text

The TechnicaJ InJroduct1on to the Cortland. tells a little about a lot of things, but it
doesn't tell everything about anything. To fmd out all about anyone aspect of the
Cortland, you should read a specific technical manual. To fmd out which one, read
on.

The Machine Reference Manuals
The Cortland Hardware Reference and the Cortland Firmware Reference contain
information about the machine itself. You don't need to read these manuals to be
able to develop applications for the Cortland, but they' will give you a better
understanding of the machine's features. They will also provide the reasons why
some of those feat'lJ.reS work the way they do.

The Tooibox Manuals
Like the Macintosh, the Cortland has a built-in toolbox that can be called by
applications. The toolbox serves two purp0se3: it m.akes developing new
applications easier, and it supportS the desktop user interface.

When you fU'St start using the toolbox, Wrlttng Cor1iand Programs provides the
recommendations and guidelines you need. It is not a complete course in
programming for the Cortland; rather, it is a starting point It explains the Cortland
tools and describes an event-d1'iven progr:un. It includes a simple e::wnple of such a
program that uses the Cortland tools, and demonstrates the way you use the Cortland
Programmer's Workshop to develop the program.

For detailed specifications of the tool calls, you'll need both volumes making up the
Cortland TooLBox Reference.

The Cortland Programming languages
The Cortland does not restrict developers to a single programming language. Apple
is currently providing an assembler and compilers for C 'and Pascal. Other
compilers can be used with the workshop, provided that they observe the standards
Apple has set. up.

./

There is a separate reference manual for each programming language on the
Cortland The manuals for the languages Apple prOVides are the Cortland
Assembler Reference, the Cortland C Compiler Reference, and the Cortland Pascal
Compiler Reference.

The Programmer s Workshop Manual
The core of the development environment on the Cortland is the Cortland
Programmer's Workshop, also called CPW. CPW is a set of programs that enable
developers to create and debug application programs on the Cortland The manual
that describes CPW is the Cortland Programmer's Workshop manual. It includes
information about the parts of the workshop that all developers will use, regardless
which programming language they use: the shell, the editor, the linker, the
debugger, and the utilities.

What About ProDOS?
ProOOS on the Cortland comes in two flavors: one for compatibility with the models
of Apple II that use 8-bit CPUs, called ProDOS/8, and one that utilizes the full power
of the Cortl.and, ProOOS/16. Those two versions of ProDOS are described in their
own manuals, ProDOS/8 Technical Reference and ProDOS/16 Technical Reference

AU-Apple Manuals
In addition to the Cortland manuals mentioned above, there are two manuals that
apply to all Apple computers. Those are Human Inlerjace Guidelines and Apple
Numeria Manual.

How to use this book
If you are planning on simply using the Cortland Tools that Apple provides,
Chapters 1 and 2, along with the specifications for the individual tools and routines,
will provide you with enough information. If you are planning on developing your
own tools, you will need to read Appendix A.

What this manual contains
This manual contains the following chapters:

III About this manual tells you about this manual.

11II Chapter 1, Introducing the Tools, dermes the terms used in this manual and
summa.rizes the capabilities of the Tools.

11II Chapter 2, Calling the Apple Tools, describes how to call the tools from
assembly language, C, and P~cal, describes how to pass p~eters, and
indicates how errors are signaled.

III The rest of the chapters describe the individual tools, one to a chapter. All of
the routines ~vailable for the tool are included in its appropriate chapter.

11II Appendix A provides the infonnation needed to write your own tool set, and
Appendix B summarizes all tool error codes for quick reference.

Visucl Cues
(Not yet decided for Grand Design manuals.)

Other Reference Moteriol You'll Need
(TBD)

Longuoge Nototion
(Still being hotly debated)

Tobie of Contents

Chapter 1 Introducing The Tools

What is a Tool?

What an the Tools do for me?

Are there any limitations?

What kinds- of Apple Tools are there?

Integer Math Tools

Event Manager

Menu Manager

Miscellaneous Tools

QuickDraw II

SANE Tools

Sound Manager

Tool Locator

Wmdow Manager

Chapter 2 Using the Apple Tools

Initializing Tools at application start-up

Calling the correa routine

Calling a routine from assembly language

Calling a routine from Pascal

Calling a routine from C

Passing Parameters

Return from the call

Flags and registers

Error handling

Chopter 3 Event Monoger

Overview

Event Types

Mouse Events

Keyboard Events

Wmdow Events

Other Events

Event Priority

Event Records

Event Code

Event Message

Modifier Flags

Event Masks

Using the Event Manager

Responding to mouse events

Responding to keyboard events

Responding to window events

Responding to other events

Posting and removing events

Other operations

Using alternative pointing devices

Installing device drivers

Removing device drivers

The joumaling mechanism

EMBootInit

EMStartUp

EMShutDown

EMVersion

EMReset

EMActive

DoWindows

GetNextEvent

EventAvaii

GetMouse

Button

StillDown

WaitMouseUp

PostEvent

FlushEvents

GetOSEvent

OSEventAvail

TickCount

GetDBITime

GetCaretTime

SetSwiteh

SetEventMask

FakeMou.se

Event Manager Error Codes

Chapter 4 Integer Math Tools

(The rest of the tool chapters will be carried out to the same level of detail as the
Event Manager)

Chapter 5 Memory Manager

Chapter 6 Menu Manager

Chapter 7 Miscellaneous Tools

Chapter 8 Quic:kDrcw II

Chapter 9 SANE

Chapter 10 Sound Manager

Chapter 11 Text Tools

Chapter 12 Tool Loc:ator

Chapter 12 Window Manager

Appendix A Writing your own tool set

Appendix IS Error Codes

1·2 Alpha Draft 6/1 0/86

Chapter 1

Introducing the Tools

Whet is 0 Tool?
A software "Tool" or "Tool Set", in the Cortland environment, is a collection of
related routines Cor functions) that provides one major capability. Each routine
performs a fundamental operation and converts zero or more inputs to zero or more
outputs and side effects. For example, the QuickDraw II Tool provides routines that
handle graphics on the Cortland Within that tool, PenSize and PenMode are
functions that set the pen size and pen mode.

The tools, then, are routines that are always available to perform many common
tasks. If you are familiar with Macintosh programming, this concept is similar to the
Macintosh Toolbox. In the Cortland implementation, the concept is even more
important Many of the capabilities of the Cortland,are easily accessed through the
tools. For example, even the Memory and Event Managers are considered to be
tools on the Cortland. COManager", by the way, is simply another name for a
collection of routines. Some of the tool sets are called "xxx Tools", others are called
"xyz Manager', with the names assigned merely by convention).

Whet Con the Tools Do For Me?
The tools provide powerful capabilities that allow an application to concentrate on
its specific business rather than on the background work .

A number of the tools are included in ROM. nus approach makes those tools
available to all programs without using disk space. Additional tools are available in
RAM. However, you don't need to keep track of where a particular function is or
even if it is in ROM or RAM. A tool called the Tool Locator, which allows tools and
applications to communicate, takes care of the necessary bookkeeping functions.

The Tool Locator rues up when the Cortland is turned on, and thereafter does its work
behind the scenes. You won't even need to call the Tool Locator if you are simply
using the Apple tools in your application. To use the tools in the simplest fashion,
you don't need to know anything but the name for the tool and how to call it from the
appropriate programming language. CCalling information is in Chapter 2.)

The tools thus provide their capabilities at a minimum cost; their bookkeeping
functions are almost automatic, the interface to them is simple, and the applications
you write will not be rendered obsolete by any future changes to the hardware.

The Tool Locator is also flexible enough to allow you to extend the scope of the tools
by writing your own, and powerful enough to keep track of both the Apple tools and
your tools. You can write and install your own tools if you wish, and still have the
Apple tools available when needed

introducing '!he Toots 1- 3

./

The Cortland tools are independent of the operating system being used. They are
thus available for any Cortland application, whether the application is running under
ProDOS, Pascal, or another operating system.

Are There Any Limitetions?
There is at least one important point to consider when you are planning to call a
Cortland tool from your application: the tools are designed to run in "full native"
mode, rather than in Apple II emulation mode. In full native mode, the el, m, and x
bits registers are all set to 0, which provides native mode, a 16·bit accumulator, and
16·bit index registers. Almost all of the tools require this mode, and simply will not
work if the machine is in any other state. The limited exceptions to this rule are
documented under the individual calls desaibed in later chapters in this manual.

C'·· Are there any other factors that should be mentioned? Should I warn them away
from hybrid applications and the tools? ...)

Whet Kinds of Apple Tools Are There?
In this section, we simply Ust the tool sets, the categories within the tool sets, and a
brief summary of some their capabilities. The Usting does not contain defmitions of
the calls; for a summary of the routines available for a given tool, look at the flfSt
page of the chapter describing the tool. For an individual routine, look it up in the
index and under its appropriate tool.

We recognize that a summary such as this can seem like teasing; in fact, that's some of
the point! The Cortland toolbox is so large that we wish to introduce you to their
entire range and encourage you to use as many of them as possible.

Every tool set or manager has a class of routines known as "Standard Housekeeping
Routines". These routines allow the tool set to be dealt with as a Cortland tool set.
Included among the routines are boot initialization and application startup alls. an
application shutdown call,a reset call, and a call which returns the version number of
the particular tool and status. Whether or not a particular type of these standard calls
is used varies from tool set to tool set; however, all of the routines must be present in
each tool set.

1·4 Alpha Draft 611 0/86

Integer Math Tools.

These routines support multiplication and division of several types of numbers, and
:Uso convert numbers from one type to another. The types of numbers dealt with are
as follows:

III Integers, which are single word signed integers

III Long integers, which are two-word signed integers

III Fixed, which are two-word signed values with 16 bits of fraction

11II Frac, which are two-word signed values with 30 bits of fraction

Math Routines

These routines support multiplication and division of integer, long integer, Fixed,
and Frac numbers.

Convers.ion Routines

These routines convert between a binary value and an ASCn ch.a.racter string
representing that value. The binary value can be either a 2·byte integer or a 4-byte
integer. The character string can be in either hexadecimal or dec::ima.l format

The routines allow you to:

11II Convert integers to hex, long, or decimal format ASCII strings.

11II Convert longs to decimal format ASCII strings.

11II Convert hex AScn strings to integer or long.

11II Convert decimal format ASCn strings to integers or longs.

Event Manager

Toolbox Event Manager routines

These routines check events to see if they are of interest to the application. If the
events are of interest, and the Desk Manager doesn't want them, the routines retum
with the event

Infroduclng the Tools 1- 5

./

Mouse reading routines

These routines provide the ability to read the status of the mouse.

Posting and Removing Events

These routines allow you to place or remove events into the event queue.

Accessing Events Routines:

These routines check events to see if they are of interest to the appUcation. If the
events are of interest, the routines return with the event

Miscellaneous Event Manager Routines:

These routines allow you to:

III Check the number of ticks(sixtieths of a second) since the system last started up.

III Return suggested rxwdmwn dlfference of ticks which determines a double
mouse-click..

III Return the number of ticks between blinks of the caret marking the insertion
point.

Menu Manager
(Writer's note: this is a RAM tool and is still changing shape. Summary will be in
next draft.)

Miscellaneous Tools
The miscellaneous tools are a collection of various routines. Their capabilities are
summarized below.

Battery RAM Routines

These routines allow you to:

II Write or read data to or from the Battery RAM.

III Write or read data to or from a specified Battery RAM parameter.

1-6 Alpha Drott 6/10/86

Clock Routines

These routines allow you to set or get the aJrrent time.

Vector Initialization Routines

These routines allow you to set or get the vector address for a spedfled interrupt
manager or handler.

HeartBeat Routines

These routines allow you to:

III Install or delete a specified task into or out of the HeartBeat Interrupt Service
queue.

III Remove all tasks from the Heartbeat Interrupt Service queue.

System De<:rth Manager

This routine allows you to control the System Death Manager.

Get Address Tool

This routine allows you to determine the address of a parameter referenced by the
fltmware.

Mouse Routines

These routines allow you to:

III Initialize, set, position, home, and read the values for the mouse.

III Set and get the clamp values for the mouse.

III Return the interrupt status for the mouse.

10 Tag Manager Routines

These routines allow you to:

III Create and delete II). tags used for memory management

III Return the status of a given II) tag.

introducing 1tle Tools ,. 7

Interrupt Controf

TIlis routine allows you to enable or disable certain interrupt sources.

Firmware Entry

TIlis routine allows you to use some Applel[emulation mode entry points.

Tick Counter

TIlis routine returns with the current value of the tick counter.

Packing and Munglng Tools

These routines allow you to:

II Pack bytes into, and unpack bytes from, a special format which uses less storage
space.

II Manipulate bytes in a string of byres.

Interrupt Enable state

TIlis routine returns with ceruin hardware interrupt enable states.

Absolute Clamp Iloutines

These routines set and get the current values of the absolute device clamps.

QulckDrcw II
QuickDraw II is the graphics handler for the Cortland. Since many of the oilier
Cortland Tools depend on QuickDraw II (the Window Manager, for example), the
QuickDraw calls will be used by virtually every application.

There are several categories of QuickDraw II calls, as discussed in the following
sections.

1-8 AJp/iCl Draft 6/10/86

Global environment routines

These routines set up the graphics environment for QuickDraw II and the other tools.
Included are calls which:

III Specify ("Set") or retum ("Get") the settings for the scan line bytes, the color
tables, and the entries in the color tables.

III Set or get the setting for the system font.

III Set or get the setting for the maximum width or size of buffers dealing with text

III Clear the screen.

III Tum Super Hi-Res Graphics mode on or off.

GratPort routines

These routines set up the GrafPort for QuickDraw II and the other tools. Included are
calls which: .

II Open, initialize, and close a GrafPorc.

III Set or get the current Grafport or the GrafPort's location.

III Set, get, change the size, adjust the .origin, or move the GrafPort's PortRee:t.

III Set, get, or change the current clip regions.

III Hide or show the pen, and set or get the current values for the state, size,mode,
pattemjand mask for the pen.

III Set or get the background pattern.

11II Move the current pen location to a point or a relative distance.

11II Set or get the current font, the font flags, the font globals, and other font
information.

11II Set or get the text face and mode.

III Set or get the space and char extra fields.

III Set or get the foreground and background colors.

\I Set or get the ClipRgn, VisRgn, and VisHandle.

III Set or get the GraiProcs record.

Drawing routines

These calls allow you to:

11II Draw a line from the current pen position to either a spedfied point or a
relative distance.

Introducing 1tle Tools 1·9

III Frame, paint, erase, invert, or fill rectangles, regions, polygons, ovals, round
rectangles, and arcs. .

Pixel transfer routines

These routines allow you to saoll or shift a region of pixels.

Text drawing and measuring rouflnes

These routines allow you to:

11II Draw a character, text, string, or c·string.

11II Get the width of a charncter, text, string, or c·string.

III Fill a rectangle with a character, text, string, or c-string.

Cafculatfons with rectangles

These routines allow you to:

11II Set the dimensions of a reeungle.

III Offset or inset a rectangle.

11II Calculate the intersection of two rectangles and place the intersection in a third
reCtangle.

11II Calculate the union of two rectangles and place the union in a third reeungle.

III Determine whether a point is in a particular rectangle, or copy points to the
upper left and lower cignt of a rectangle.

III Determine whether two rectangles are equal.

III Determine whether a reeungle is empey.

Cafculations with points

These routines allow you to:

III Add two points together, or subtract a point from another point

III Set a point to specified values.

11II Determine whether two points are equal.

III Convert a point from local to global coordinates, and visa versa.

'-'0 Alpha Draft 6/10/86

Calculctions with regions

These routines allow you to:

II Create a new region, or dispose of a region.

III Copy contents from one region to another.

11II Empty or overwrite a region.

III Open or close a temporary region.

11II Offset or inset a region.

III Calculate the union of two regions and place the union in a third region.

11II Calculate the intersection of two regions and place the intersection in a third
region.

11II Calculate the difference between two regions and place the difference in a third
region.

11II Calculate the difference between the union and the intersection of two regions
and place the result in a third region.

11II Determine whether a point is in a particular region.

11II Determine whether a rectangle intersects a particular region.

11II Determine whether two regions are equal.

II Determine whether a region is empty.

Calculations with polygons

These routines allow you to opent close, dispose of, or offset a polygon.

Mapping and scaling utilities

These routines allow you to:

III Map points, rectangles, and regions from a source to a destination.

III Scale points from a source to a destination.

MiscellaneOus utilities

These routines allow you:

11II Return a pseudorandom number.

III Set a seed value for a random number generator.

11II Get the values for a specified pixel.

Introducing the Tools 1- 11

Customizing QulekOraw operations

These routines are similar to their Macintosh counterparts. They allow you to:

Set up a standard Proc record

Draw standard text, lines, reeungles, round reeungles, ovals, arcs, polygons,
regions, and pixels.

Make standard comments for pictures.

Do standard text measuring.

Do standard storage and retrieval from the text record

Tell QuickDraw not to use scan line interrupts.

Get the address of a screen table and two conversion tables.

Cursor-handling routines

These routines allow you:

III Initialize the cursor.

III Set or get the current settings for the cursor.

III Show or hide the cursor.

III Obscure the cursor.

1·12 Ajpha Drott 6/10/86

Sane Tools
The ROM Tools for the Cortland will provide all of the functions found in the
Standard Apple Numeric Environment (SANE). The SANE Tools can be called by
using the normal call mechanism. For more Wormation regarding the capabilities
of SANE, refer to the Apple Numerics Manuai .

Sound Manager
The Sound Manager controls sound generation for the Cortland, particularly for the
Digital Oscillator Chip (DOC). There are two groups of calls in the manager; the
tool calls and some low-level routines designed for fast access.

Sound Tool Cofls

These routines allow you to:

II Write and read a specified number of bytes from and to DOC RAM.

II Set and get the volume for a sound generator, or change the system volume.

II Start or stop the sound for a particular generator.

II Return the status of a specifed generator, or the status of all generators.

II Set up the entry points for the system and user sound interrupt handler.

II Return the current Free Form synthesizer sound-playing status.

II Return the jump table address for the low-level routines

Low-Level Sound Routines

These routines, designed for quick access, allow you to:

II Write and read any register within the DOC.

11II Write and read a specified Ensoniq RAM location.

II Write and read the next DOC or RAM location.

Tool Locator
The Tool Leator provides the magic that allows the Cortland Tools to function.
You'll only need to use it if you are writing your own Tool Set to supplement the Apple
Cortland Tools.

Introducing the Tools 1- 1J

The functions provided by this tool set get and set the Tool Set Pointers, Function
Pointers, and Work Area Pointers all of the Tools need. For the other tools, the Tool
Locator provides these functions automatically.

Window Manager
(Writers note: this is a RAM tool and is still changing shape. Summary and details
will be in next draft.)

1·14 Alpha Drott 6/10/86

2-2 Alpha Draft 6/10/86

Chapter 2

Using the Apple Tools

Initializing Tools At Application Stort-Up
There will be a simple mechanism for asking for the correct tools when the
application stans. However, design of the mechanism is not yet complete.

Colling the Correct Routine
The Apple Tools are available from 65816 assembly language, ???? Pascal, and
Cortland Workshop C. The general rules for accessing the Tools are outlined in the
following sections.

Calling a Routine From Assembly Language
We have provided macros in order to make calling a routine as simple as possible.
You make an assembly-language call as follows: .

1. If the function has any output, push room for it on the stack.

2. Push the inpurs in the specified order listed...

3. Invoke the appropriate macro by entering the name of the routine.

". Pull the output, if any, from the top of the stack.

The input and output parameters for each call are provided in the descriptions of
each individual call in this manual and in the Cortland Toolbox Reference: Volume
n (not yet available).

Calling a Routine From Pascal
(e"Writer's note: the information in this section is pure conjectUre, based on the
information available for C, since Pascal remains in limbo...e)

The interface libraries which allow the Cortland tools to be accessed from the Pascal
programming language are included in Cortland Workshop.Pascal. Those libraries
contain the function and procedure defmitions for the tools. The steps to use a
partiOJlar routine are as follows:

1. Make the routine accessible by providing a USES statement which includes the
appropriate me (for example, !!??? for a Quickdraw II calO. The file will provide
the function and procedure declarations.

2. Invoke the call by entering irs name and supplying the correct parameters.

Using '!he Apple ToolS 2·3

The names of the USES files and the parameters for each routine are described in the
individual routine descriptions in this manual and in the Cortland Toolbox
Reference: Volume n (not yet available).

Calling a Routine From C
The interface libraries which allow the Cortland tools to be accessed from the C
progr:unming language are included in Cortland Workshop C Those libraries
contain the function defwtions for the tools. The steps to use a particular routine are
as follows:

1. Make the routine accessible by using an tinclude statement which includes the
appropriate me (for example, quickdraw.h for a Quickdraw U aU). The included
me will provide the function declarations.

2. Invoke the call by entering its name and supplying the correct parameters.

The names of the #include rUes and the parameters for each routine are described
in the individual routine descriptions in this manual and in the Cortland Toolbox
Reference: Volume a (not yet available). ("·Writer's note: the libraries and
function calls were not available soon enough to include in this draft·")

Passing Parameters .
Most input and output parameters to the tpol calls are pused on the stack, with some
occasional exceptions. The parameters and parameter-passing method are defIned
by each routine. Usually, the parameters are passed on the stack, with the routine
pulling input parameters off and leaVing any output parameters on the scack for the
calling program to handle. The method and parameters for each routine is
described under the routine in the chapters which describe spec:i1ic Tool Sets.

Return From the Cell
Upon completion of the caU, the routine returns concrol directly back to the
application. The following sections describe the state of the flags and registers upon
return from a tool call and the way that errors are returned from the call.

Flags and Registers
The scate of all flags and registers upon return from a tool caU is su.mmari:led in the
following cable:

2·4 Alpha Drati' 6/10/86

Table X-X: Flags and Reglstors on R.tum From a call

N flag
V
m
x
D
I
Z
C
E

A register
X
y
S
D
P
DB
PB
PC

As set by routine
As set by routine
Unchanged (must be 0)
Unchanged (must be 0)
Set to 0
Unchanged
As set by routine
As set by routine, or error flag (see next section)
Unchanged (must be 0)

As set by routine or A-O successful call, A#J error code (see next section)
As set by routine
As set by routine
Parameters have been removed from suck
Unchanged .
See list of flags above
Unchanged
Unchanged
Address following call

Note that ·unchanged" means that the value is the same as it was just before the function call.

Error Handling
Some tools can return errors on some routines. If they do, the convention is that the
carry flag (C flag) is set to 1 if an error occured, and the A register contains the error
code. The error code has the following format:

High Byte Low Byte

Tool Set Number Message Number

With this method, an error can be properly identified even if it occurs during one
tool set's call, but doesn't ae;tually show up until a call from another tool set For
example, using this method, a QuickDraw II call can pass on an error message from
the Memory Manager.

The error codes for an individual Tool Set are listed at the back of its chapter,. and all
error codes are summarized in Appendix B.

Error codesSOOOl-SOOOF are reserved for use by the function dispatcher. Remaining
. error codes are defmed by each tool set.

Using the Apple Tools 2·5

	v4_02_01
	v4_02_02

