. :
Neaw”

Documentation Développeurs Nol. A
Apple Computer France 1987 Foa. 9

Document développeur numéro 47

ey

Sound Manager

type d'upgrade de ce ducument : 5

1 Documentation de premiére catégorie inchangée

2 Documentation de deuxiéme catégorie mise & jour

3 Documentation de deuxiéme catégorie inchangée

4 Mise & jour payante de la documentation de premiére catégorie
5 Mise a jour gratuite de la documentation de premiére catégorie
6 Nouveautés payantes non vitales

7 Nouveautés gratuites et vitales

Taille : 35 page(s) environ

Domaine : Tool 08

VERSION : Rev. 2.0
DATE :24.02.87

v

Page 1

Revision History:

rev.1.0 Initial release

eV,

Iev.

Iev.

Icv.

ey.

Iev.

F{A'A

IeV.

Icv.

Iev.

1.1
1.2

1.3

1.4

L5
1.6

1.7

1.8

1.9
2.0

Start sound call added.

Changed Start sound call.

Added added a description for generators.

Added Sound tools status call for sound tools startup call.

Added individual generator status call.

Updated the Start Sound call to include the new pz;;ameter

block.

Added FFSoundDoneStatus function ($14).

Changed the Frequency formula in the FFStartSound call to use integer values
instead of floating point values for the frequency register calculations.

Changed the descriptions in the low level routines to access the DOC registers or
ram.

Updated the Generator/Mode worci parameter in the FFStartSound call.

Changed the paramerter block format for the FFStartSound call to conform with
the word aligment of parameters passed to functions.

Reserved oscillators thirty and thirty one for use by Apple Computer. These two
oscillators can NOT be used by application programs.

Updated stop sound call to show 1 = stop corresponding generator.

Added examples for each of the Sound Tools funétion calls.

Added a low level routine to disable auto increment mode. This allows faster read
access to the analog to digital converter.

Fixed error code statuses to show the tool number in the upper byte of the code.

Added error report for invalid interrupts from sound.

Added error code summary.

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 2

1.0 Introduction.

The sound tool package gives developers the ability to access the
Sound hardware without having to know specific hardware /O addresses.
The Cortland sound hardware comes in two configurations. The first
configuration is 100% compatible with the Apple //e sound capabilities.
In this mode applications toggle a soft switch, which in turn generates
clicks in a speaker. Also, with Cortland it is possible for an application
to control the volume of the speaker. | * | |
The second cohﬁguration requires the Ensonig (DOC) digital oscillator chip
and two 64K x 4 ram chips. The sound tools will contain all of the
firmware routines required to access the hardware in the Ensoniq
configuration. The following block diagram shows the major functional

blocks of the sound hardware.

Cortland Sound Biock'diagram

- ™
Sound
Cortland VO -—Pi GLU
3 | _—
Ensoni
64K x 8 > 9
ram area| Doc PSound Connector
e S

The éound GLU acts as the interface chip between the Cortland 1/0O
and system volume, ram chips or the DOC. The following diagram shows a

diagram for the register breakdown for the sound glu:

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

v
L %)

Page 3

Sound glu register breakdown

=9und Giy control
{7 jei5 Ja[3f211T0]
| e volume control

R2ro¥8Soiesdisable

OC/Ram select
usy bit status

Data register Address pointer low

Lzl slsfalsl2]l1fJol[7T6[5 T4 3]2]1]0]
Address pointer high

j1sfi4aj13f2pi1[1o] o] 8]

‘The DOC ram is used to store waveforms which will be used by the

DOC for sound generation. The DOC is the work hc;rse of the sound system.

| ‘With this chip we can create sounds of any pitch and duration. A régister
breakdown of the DOC follows:

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Emsonlig Digital Ocillator Chip
Reglster Allocation

Oscillator #XX

| Frequency low |
[Frequency high l
| Volume controt |
[Data Samplingj
I Ram Ptr. pg. no.l

l Control registeT]

LResolution/T able size]

| Oscillator number 0]
I Oscillator numberﬂ
|__Oscillator number 2]

| Oscillator number 1E]
| Oscillator number 1F]

Oscillator Interrupt enable]

L Osciilator enable regxsterj
| Analog to Digital converter|
TR

DOC register table

REG# Function D7 D6 iDS (D4 D3 D2i DI DO
00-1F . |FREQ LOW FL7 | FL6EFL5E FL4i FL3{FL2 i FL1§ FLO
20-3F |FREQ.HI FH7¢ FH6} FH5{ FH4 FH3{FH2 § FH1] FHO
40-5F |VOLUME V7 1 VBE V5] V4 V3iV2 {V1iVo
60-7F]DATA SAMPLE W7E Wi W5 W4} W3IW21 Wil WO
80-9F | WAVEFORM TABLE PTR P7t P6} P§ P4} P3{P2iP1} PO
AOQ-BF CONTROL CA3 {CA2|CA1{CAG 1E M2 [M1 H
CO-DF |BANK SEL/TBL. SIZE/RES. X iBS{T2i{T1 { TO{R2 |R1{ RO
EC OSCILLATOR INTERRUPT RQ§ 1 04: 03 ; 0201 {001} 1
E1 OSCILLATOR ENABLE X X { E4f E3} E21E1 t EO X
E2 A/D CONVERTER S7; S6¢ S5¢ S4¢ 53§52} S1f SO

Page 4

Please refer to the Ensoniq DOC Ers for a detailed description of the part.

The analog section contains all the circuitry needed to amplify'and

filter the signal coming from the Sound Glu or the DOC, which will be sent.

to the speaker.

Finally, the sound connector gives developers the ability to design

interface cards, which can take the tones generated by the DOC and modify

them further.

Two examples of possible sound cards are, programmable

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 5

filter stereo interface cards, and sound sampling cards. The remainder of

this document will deal with a detailed description of the Sound tool calls

and how they can be used to access the hardware to generate sounds.

) : Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 6

1.1 Sound Tools Definitions.

An oscillator is defined as the basic sound generating unit in the
DOC. The DOC contains thirty two oscillators; each of which can function
independently from all the other oscillators.

One of the modes the DOC can be set to is called swap mode. In this
mode each pair of oscillators is grouped together to form a swap pair of
oscillators. - This is the mode used by the Free Form synthesizer to
generate sounds. Each of these swap pair of oscillators is called a
Generator. An oscillator to generator translation table has been defined
to get the generator number corresponding to a particular oscillator
number. There are fifteen generators defined in the Cortland sound
system. Oscillators thirty and thirty one a reserved for use by Apple
Computer and should not be used by application programs. If an interrupt
is generated by oscillator thirty of thrity 'one. control will be passed to
the system death manager with a .meséage "Unclaimed sound intefrrupt".
Please note, when the SoundBootlnit Call is made, all of the sound
interrupt handler pointers point to the System death manager with the
"Unclaimed sound interrupt message”.

Before a generator can be accessed, a sound tools startup call must
be made. This call assigns a work area for the sound tools. The work area
is broken down into sixteen groups of sixteen bytes each. Each sixteen
byte group is defined to be a generator control block (GCB). The first
byte of each GCB is defined to contain the synthesizer mode being uéed by
that generator. The low nibble of the byte contains the mode. The high
nibble ‘is reserved for use by the system. The remaining fifteen bytes are

user definable.

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 7
The Sound tools set is made up of four main blocks; the Free Form

Synthesizer, the Note Synthesizer, the Note Sequencer and the Instrument
generator.

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 8

1.2 Free form synthesizer tool set definition.

As mentioned before, the tool set gives a developer the ability to
control the sound hardware without having to access. the hardware
registers directly. .The tool set-is defined frorﬁ the point of view of a
complete sound system. The tool set must be able to read and write to
ram, read and write to the DOC registers and raise and lower the volume.

The sound tool package is accessed through the Tool locator. This
tool locator lets an application set up parameter lists on the stack, call
tool functions and return to the caller with return parameters on the
stack. It is the responsibility of the caller to make room on the stack for
values which may be returned to the caller from the tool calls.

The Sound Tool set has a tool number assigned to it. With this tool
number the Tool Locator can access the sound tools. |

The sound tool calls are broken down into two groups. The first
group of calls is made through the Tool Locator. Each of these calls has a
function number assigned to it. With this function number the Tool
locator knows which function to call within the tool set. All parameters
for these calls are passed on the stack. Function results are returned to
the caller in the stack. The number of parameters will vary depending on
the type of call being made. It is the responsibility of the individual tool
functions to do the stack manipulation to keep it aligned. Also the
accumulator and the carry bit will reflect the success or failure of the
function call. Please refer to the "Tool locator" documentation‘ for a |
detailed description of the interface.

The second group is a set of routines which can be accessed through

a jump table located somewhere in ram. Parameters are passed to these

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

routines in the processors registers.

Sound tool function calls:

Group A (Function calls)

SoundBootlnit = $01
SoundStartup = $02
SoundShutdown = $03
SoundVersion = $04
SoundReset = 305
SoundToolStatus = $06
WriteRamBlock = $09
ReadRamBlock = $0A
GetTableAddress = $0B
GetSoundVolume =$0C
SetSoundVolume =$0D
FFStartSound = $0E
FFStopSound = $0F
FFSoundStatus = $10
FFGeneratorStatus = $11
SetSoundMIRQV = $12
SetUserSoundiRQV = $13

Page 9

Results from these calls are passed

back in registers. The following list gives a breakdown of the sound tools.

Group B (Low level routines)**
Read Register

Write register

Read Ram

Write Ram

Read Next

Write Next

Disable Incr.

FFSoundDoneStatus = $14

** The low level routines are entered through a jump table. The table address can be obtained
through a call to "Get Address” function. The format of the jump table is as follows:

Ofiset
Read Register $00 Addr low Addr high Bank $00
Write Register $04 Addr_low Addr high Bank $00
Read Ram $08 Addr low Addr high Bank $00
Write Ram $0C Addr_low Addr_high Bank 300
Read Next $10 | Addr low Addr_high Bank $00
Write Next $14 Addr low Addr high Bank 300
Osctable $18 Addr low Addr high Bank $00
Generator table $1C Addr low Addr high Bank $00
Gcb.addr. table g20 Addr Tow Addr high Bank $00
Disable incr. $24 Aadr jow Adgar nigh Bank $00

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

N

Page 10

SoundBootinit function #01

This call is made on system powerup or system reset to bring the
sound hardware to powerup state. The call is made by the firmware and
can NOT be made by an application program! This call will reset all of the

DOC sound memory to $80, zero out the sound tools work areas, halt all
the oscillators and turn the volumes down to zero.

Error Codes: None

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 11

SoundStartup function #02

The Sound tools startup call is made by an application to set up a
sound tools work area. This call must be the first call made by the
application program. The call initializes a work area to be used by the
sound tools. The pointer to the work area must be passed as a parameter
to the call. This work area will be used as a zero page. This page will be
allocated by calling the memory manager.™ It must be page aligned and
locked until a shutdown call is made. The stack configuration for the call

-is as follows:

Stack configuration for SApplnit <
Wap:word ; Work area pointer in Bank $00
Error Codes:

$0810 = No DOC chip or ram found.
$0818 = Sound tools already started

Example:
PEA Label ; One page work area in bank $00
_SoundStartup ; Sound Tools startup macro call
C9 Ao QAAAMI E’\j
\gwdbuﬁt 3

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 12

- SoundShutdown function #03

This call will shut down the sound tools. It shuts off all of the
oscillators resets the WAP back to\$0000 and zeros out the sound tools
work memory to zero. There are no parameters passed to the call on the
stack and no values returned It is the responsibility of the application to
release the memory allocated to the work area back to the memory
manager.

Error Codes: None
Example: -
_SoundShutDown , shutdown the free-form sound tools

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 13

SoundVersion function #04
This call returns the Sound tools version number. The format of the

. version number is as specified in the Tool Locator documentation. There

are no parameters passed to the call but room must be made on the stack
for one word of version information returned to the caller.

Error Codes: None
Example:
PEA $0000 , make room for version

_SoundVersion ; Sound Tools version call

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 14

SoundReset function #05

This call stops all of the generators which may be generating sound.
This call can not be used by an application to stop sound generation. It is
intended for use by the firmware to control the shutdown of generators.
An application program should use the stop sound call to shut down a
generator. This call does not require any parameters on the stack or
returns any values back to an application. This call does not update the
active generators flag.

Error Codes: None

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 15

SoundToolStatus function #06
This call will return the status of the sound tools. It returns a
$FFFF if a SApplnit (302) call has been made:; otherwise it returns $0000.

Room must be made on the stack for a one word value which will be
returned to the caller.

Error Codes: None
Example:
PEA $0000 ; make room For sound tools status

_SoundToolStatus ; Sound Tools Started status

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 16

WriteRamBlock function #09
The Write Ram Block call will write a specified number of bytes

from system ram into DOC ram. The parameter list is made up of the
starting address, and a byte count to move. If the sum of the starting

address and the byte count are greater than 64K, an error status will be
returned.

Stack configuration for write ram block:

Source_ptr:Long word , data source start address
DOC.start:word ; DOC buffer start address

Byte_count:word , number of bytes to move

Error Codes:
$0810 = No DOC chip or ram found.
$0811 = DOC address range error.

Example:
Pushlong Label ; Source buffer address
PEA DOC.buff ; DOC ram buffer start address
PEA byte.count ; number of bytes to move
_WriteRamBlock ; Write ram block macro call

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 17

ReadRamBlock function #0A
This call reads any number of locations from the 64K DOC ram area

into a user specified buffer. The number of bytes and the starting location
must not add up to a value greater than 64K, otherwise a range error will
be generated. The format of the parameter list is as follows:

Stack configuration for Read Ram block

Dest_ptr:Long word ; Destination system buffer address
DOC.start:word ; Source start address in DOC ram.
Byte_count:word ; number of bytes to move

Error Codes:
$0810 = No DOC chip or ram found.

) | $0811 = DOC address range error.
Example:
Pushlong Label ; System ram buffer start address
PEA DOC.buff ; DOC ram buffer start address
PEA byte.count. ; number of bytes to move

_ReadRamBlock ; Read ram block macro call

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 18

GetTableAddress function #0B

This call returns the jump table address for the fast access
routines. The table of low level routines is defined as follows:

Offset
Read Register $00 Addr iow Addr high Bank $00
Write Register $04 Addr low Addr high Bank $00
Read Ram $08 Addr low Addr_high Bank $00
Write Ram $0C Addr_low Addr _high Bank $00
Read Next $10 Addr_low Addr high Bank $00
Write Next $14 Addr low Addr high Bank $00
Osctable $18 Addr low Addr high Bank $00
Generator table $1C Addr low Addr high Bank 300
Ggb.addr. table g20 AdAr Tow Addr high Bank $00
Disable incr. $24 Addr iow Adar high Bank $00

With the exception of the Osctable, Generator table and GCB addr.
table each of these routines are defined later in this document.

The Osctable translates from generator number to oscnlator
number, . The oscillator number returned through this table is the first
oscillator of the pair. The Gcb address table points to the first location
of the GCB corresponding to a generator, and the Generator table
translates from oscillator number to generator number.

The application making this call must make room on the stack for a
long word returned from the call.

Error codes:None

Example:
Pushlong $00000000 ; Make room for long address

_GetTableAddress ; Get table address macro call

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 19

GetSoundVolume Function $0C

This call will read the volume setting for a generator. The possible
range of values read back are between $00-$FF. All eight bits are valid
for DOC volume registers.

If the generator specified is greater than fourteen ($OE), then the
system volume setting will be returned. The hardware for the system
volume control uses the low nibble of a byte to set the volume. In order
to be consistent with the DOC volume registers, we map the low nibble
into the upper nibble of a byte. We end up with each possible system
volume setting mapped sixteen times. Volume settings $00-$0F
correspond to system volume setting $00, values “$10-$1F correspond to
system volume $01, etc.

Room must be made on the stack for a one word value which will be
returned from the call.

Stack configuration for Get Volume call:
Gen_number:word ; Generator number

Error codes:None

Example:
PEA $0000 ; room for volume setting
PEA gen.num ; Generator number
_GetSoundVolume ; Get volume macro call

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 20

SetSoundVolume Function $0D

The set volume call changes the volume setting for the volume
registers in the DOC and the system volume. Generator numbers $00-$0E
will set the volume on pairs of generators in the DOC. Generator numbers
$0F or greater will set the system volume control. The range of values for
the volume setting are $00-$FF. The DOC volume registers use all eight
bits of resolution. The system volume control will use the upper nibble of
the setting to determine the setting.

Stack configuration for SetVolume call:

Volume_setting:word ; new volume’ setting
Gen_number:word ; Generator number to set
} Error codes: None
Example:
PEA New.volume » new volume setting
PEA gen.num ; Generator number
_SetSoundVolume ; Get volume macro call

- ry
«.:)

' 9 Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 21

FEStartSound Function $0E
This call will enable the DOC to start generating sound on a
particular generator based on the parameter list passed to the call. If a

generator is already active and a start sound call is made for it, then the

previous sound generation process will be terminated and the new sound
process will be started. The parameter list for the Start Sound call is as

follows:
The stack configuration for StartSound call:
GenNumb./FFsynth:word ; Channel no./generator number/mode
DOC channel number ($0-$F)
Generator number ($0-3E)
) : Reserved (must be $0)
- [——Synthesizer mode ($0-$F)
o Pyl = 501
bis 0o Note_Synth=$02

Modes $03-307 reserved!
Modes $08-$0F User defined.

Pblock_ptr:Longword : Pafameter block pointer

The parameter block format:

Wave_start:Longword ; Start address of wave
Wave_size:word ; Waveform size in pages
Freq_offset:word ; waveform playback frequency?2
DOC_buffer:word ; DOC buffer start address4
DOC_buffer_size:word ; DOC buffer size code3

; 3 Nextw_addr:L.ongword : Next wave parameter block ptr5

Volume_setting:word ; DOC volume setting.4

1. The smallest which can be played back is one page. A waveform size of
$FFFF will play back 65536 pages.

2. The Frequency register setting can be calculated with the following

' formula: FR=((32'PF)/1645), where PF=Playback frequency in hertz
& FR=Frequency register value.

3. This code assigns a size for the DOC buffer used for the waveform being
played. One of these buffers is assigned for each oscillator in the
generator pair being used to play the waveform. The DOC start address
for the second oscillator is assigned at start address + DOGC buffer size.

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 22

4. For further information on these settings, please refer to
the Ensoniq DOC ERS.

5. These three bytes point to another waveform parameter block. If the
setting of the Nextw_addr and Nextw_bank are zero, then there are no

more Free-Form synthesizer waveforms to be played back through this
start sound call.

Error Codes:

$0812 = NO SApplnit call made
$0813 = Invalid generator number
$0814 = Synthesizer mode error
$0815 = Generator busy A
$0817 = Master IRQ not assigned

Example: :
PEA Gen.mode ; Generator/mode word
Pushlong Pblock ; Parameter block pointer
_FFStartSound , Free Form Synth start sound macro
Pblock equ * ; Waveform parameter block
DC 14'Wave.start' , Waveform start address
DC 12'Wave.size' ; Wave size in pages (1 page min.)
DC 12’DOC.Freq’ ; DOC frequency register value
DC 12'DOC .buffer ; DOC ram buffer start address
DC 12’DOC.buf.code’ ; DOC buffer size code $00-$07
DC l4'Next.wave' ; next wave parameter block ptr.
DC 12’DOC.volume' ; DOC volume register setting
Next.wave equ * ; Next wave parameter block

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

"

Page 23

FFStopSound Function $0F

This call will stop sound generators which may be running. A
generator running is defined to be one playing a waveform or one which
has completed playing a waveform. The generator will stay busy until a
stop sound call is made, even though waveform playback has ended.

Depending on the setting of a sixteen bit flag passed as a parameter to
the function any of fifteen generators will be stopped if running. Each bit

position in the stop generator mask corresponds with a sound generator.
Bit zero corresponds to generator zero, bit one corresponds with generator
number one, and so on. There are only fifteen generators defined. This

call does not return any error information back to the caller. The format
of the parameter list is as follows: -

Stack configuration for Stop Sound:
Gen_mask:word , generators to stop

‘gJT#

| STOP SOUND MASK

o|E[D]c[B[AToT8]7[6 [543]2[1]0
L

enerator #0
enerator #1
enerator #2
enerator #
enerator - #
Generator #5
Generator #85
8enerator #7
enerator #8
Generator #9
(GGenerator #A
enerator #
enerator #
Generator #D
Generator #E

= stop corresponding generator

Must be zero] =
0 = leave it generator alone
Error Status: None
Example:
PEA Stop.mask ; mask for stop generators
_FFStopSound ; Free Form Synth stop sound

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

: Page 24
)

FFSoundStatus Function $10
This call will return the status of the all fifteen generators. Any
bit position in the status word returned from the function call signifies

that the corresponding generator is active. There are no parameters

passed to the function. The format of the word returned form the call is
as follows:

, EIT#
Generators status word
OlE{D|IC|BJA]9|8|7|6|514(3|2114f0l

enerator #0
enerator #1
enerator #2
enerator #
enerator #
) Generator #5
- Generator #6
enerator #7
enerator #8
Generator #9
Generator #A
generator #
enerator #
Generator #D
Generator #E

Must be zero 1 = Generator is assigned/busy
0 = Generator free
Error Status: None
Example:
PEA $0000 : make room for status word
_FFSoundStatus ; Generators status macro call

) v Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 25

FFGeneratorStatus Function=%$11
This call will read the first two bytes of the GCB corresponding to
the generator specified. Room must be allocated on the stack for the word

returned from the call. For the Free form synthesizer these two bytes
have the following format:

$01 = Last block of
wave loaded.

$00 = Gen. available
$01 = Free Form synth.
$02 = Note Synth.

Channel $00-30F
Gen $00-$0E

/ | /l 1 1 I T I\
0 00 Mode Chan.NO. | Gen NO.
1 1 I 1 4 1

bit 15 bit O

Stack configuration for Gen. status call:
Gen_number:word ; generator number for status

Error Codes: None

Example:
PEA $0000 ; room for Generator status
PEA Gen.number ; Generator number
_FFGeneratorStatus , generator status macro call

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 26

SetSoundMIRQV Function=%$12

This calls sets up the entry point into the sound interrupt handler.
This routine will be accessed every time an interrupt is generated by the
DOC. The processor will be in full native mode when the sound interrupt

handler is entered. The parameter list for a set sound IRQ vector is as
follows: '

Set Master Sound Irq vector stack config.
SMaster_irqg:Longword ; Sound Master IRQ vector

Error Codes: None
Example:

” Pushlong Master.irqg.vect : Set master irg vector macro
) _SetSoundMIRQV ; set the master sound vector

) Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 27

SetUserSoundlRQV Function=513

This calls sets up the entry point for a users synthesizer interrupt
handler. When an interrupt occurs for a user defined synthesizer then
control will be passed to the ram based synthesizer code through this
vector. The old vector installed will passed back to the caller. This old
vector must be preserved by the caller. If econtrol is passed to the user
vector -and the synthesizer mode is not his, then control will passed
further down the chain through this vector. Control will be passed through
a JSL, therefore the ‘user must return control through an RTL instruction.
Room must be made on the stack for long word returned on the stack.

Stack configuration for Set User's Sound IRQ vector.
User_irg_vector:Longword ; New user IRQ vector

Error Codes: None

Example: :
Pushlong $00000000 ; make room for old vector
Pushlong New.vector ; hew vector
_SetUserSoundIRQV ; set user sound irg vector macro

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 28

)
FESoundDoneStatus -Function #14
This call will return the status of the Free Form synthesizer sound
playing status. If the generator specified is currently playing out a
waveform, then the status returned to the caller will be $0000. If the
generator is done playing then the status will be $FFFF. Room must be
made on the stack for one word of status returned to the caller.
Stack configuration for FFSoundDoneStatus
Gen_number:word ; Generator number
Error codes:
$0813 = Invalid generator number
) Example:
PEA $0000 ; Make room for status
PEA Gen.number ; Generator number to check
_FFSoundDoneStatus ; FFsynth Sound done stat. macro

9 Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 29

Read register**

This low level routine lets an application read any DOC register. The
routing is entered through the Jump table provided by the
"GetTableAddress” function call. This call will return to the caller

through an RTL instruction. After this call is made the Sound Glu register
is left in register access mode with auto increment enabled.

Through the generator to "oscillator” table, an application can
ascertain the setting of any register corresponding to an oscillator.

Import:

e = 0 ; native mode

m = 1; 8 bit accumulator

x = 0 ;16 bit index registers
X = DOC register to read

Export:
AL = contents of register requested

Error codes: None

DOC register table

REG# | Function D7 6 D5 ip4 {D3 [D2] D1 DO
00-1F FREQ. LOW FL7 {FL8§ FL5§ FL4i FL3{FL2{ FL1} FLO
20-3F FREQ. HI FH7 1 FH6E FH5 FH& FH3(FH2] FH1 FHO
40-5F VOLUME V/ EVet Vb V4T V3 (V2 § V1 :1V0
60-7/F DATA SAMPLE W/7E W6} Woi Way W3i W2 W1 WO
80-9F WAVEFORM TABLE PTR P7{ P6f P3 P4i P3{iP21i P1i PO
AO-BF CONTROCL CA3 {CA2iCATICADE 1E IM2 I M1: R

CO-DF BANK SEL/TBL. SIZE/RES. X iBSiT2{T1i{TOiR2 i R1{ RO
=0 OSCILLATCOR INTERRUPT iRQ} 1 04; 03§ 02§01 {00 ¢ 1

Et OSCILLATOR ENABLE X X 1 E4] E3] E2|E1] EO] X

E2 A/D CONVERTER S7; S6¢ S5 S4i S3§S2i S1} SO

Note: Register types are grouped into register classes.
register class, the register number for each oscillator is assigned ‘in
ascending order. For example: the low byte of the frequency register
for oscillator zero is register $00, the low byte of the frequency for
oscillator number is register $01. The high frequency register for
oscillator number zero is accessed through register number $20,
oscillator one uses register number $21 etc... The register numbers
are provided in the table defined above.

Within each

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 30

Write reqgister **

The Write DOC call will write a one byte parameter to any
register in the DOC chip. The call will be made through the jump
table provided to the application by the tool call "Get Address". To
write to an oscillator register corresponding to a generator we get
the oscillator number from the oscillator table, bump it by one if we
want to access the odd oscillator of the pair, add the base register
of the specific register we want to access and then make the write
register call through the Write register routine address in the jump
table. This call will return to the caller through an RTL instruction.
After this call is made the Sound Glu register is left in register
access mode with auto increment enabled. Please refer to the "Note”
in the Read register description for information . on register
assignments for each oscillator.

Import:

e = 0 ; native mode

m = 1; 8 bit accumulator
X = 0 ; 16 bit index registers
AL = data to write

X = DOC register number

Error codes: None

DOC register table

REG# Function D7 D6 D5 ib4 (D3 |D2] D1 D)
00-1F FREQ.LOW FL7 i FL8§ FL5f FL4i FL3 {FL2§ FL1} FLO
20-3F FREQ. HI FH/7 FHB; FHS FH4 FASIFHZ2: FHT FRO
40-5F VOLUME V7 §V6 i V5§ Vai V3 1V2 { V1iV0
60-7F |DATA SAMPLE W7! W6 | W5 W4] W3IW21 Wil Wo
80-9F WAVEFORM TABLE PTR P7¢ P6 P8 P4} P3{P21i P1i PO
AO-BF |CONTROL CA3 [CAZICATICADl 1E M2 [MiTH
CO-DF BANK SEL/TBL. SIZE/RES. X iBS{T2§T13i TOIR2 { R1} RO
Eo OSCILLATOR INTERRUPT IRQ§ 1 04: 03 § 02 {01 Q0 1
E1 OSCILLATOR ENABLE X X t E4§ E3f E2{E1§{ E0O} X
E2 A/D CONVERTER S7: S6§ S5§ S4i S3i S2}{ S1i SO

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 31

Read Ram**

This call will read any Ensoniq ram location. specified by the
caller. This call leaves the address pointer register in the Sound Glu
in auto increment mode and in ram access mode. The call does not do
any type of error checking on the address, or data. This call exits
back to the caller through an RTL instruction. After this call is
made the Sound Glu register is left in RAM access mode with auto
increment enabled.

Import:

e = 0 ; native

m = 1 ; 8 bit accumulator

X = 0 ; 16 bit index registers

X = Ensoniqg ram address to read

Error codes: None

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 32

Write Ram**

This call will write a one byte value to any Ensonig ram
location specified. The call does not do any type of error checking
on the address or data value to be written. This call returns to the
caller through an RTL instruction. After this call is made the Sound
Glu register is left in RAM access mode with auto increment enabled.

Import:

e = 0 ; native -
m = 1 ; 8 bit accumulator '

x = 0 ; 16 bit index registers

AL = data value to be written A

X = Ensonig ram address to write to

Error codes: None

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 33

Read_ Next** .

This call will read the next location pointed to by the Sound
Glu address register. The previous call must have been a Read
register, write register, read ram, or a write ram call for this call
to work properly. Any of these four calls will leave the Sound Glu
set to auto increment and pointing to DOC register or ram access
mode. After the read is made the Sound Glu address/DOC register
pointer will be incremented to the next location.

Import: -
None

Export:

AL = data byte read

Error codes: None

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Page 34

Write Next**

This call will write one byte of data to the next DOG register
or ram location depending on the setting of the Sound Giu control
register. The call will write to DOC registers or ram and then
increment the address pointer register in the Sound Glu, if the

address pointer register was enabled for auto increment. If a Read

register, read ram, write register or write ram ecall is made then
that call will leave the Sound Glu control register in that type of
access mode and with auto increment enabled.

Import:
AL = byte value to be written

Error codes: None

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

:<5$§

Page 35

Disable Incr, **

This call will disable the auto increment mode set up by read
ram, write ram, read reg. or write reg. By disabling the auto
increment bit an application program can read a DOC register or
memory location continuously. This can be useful when reading the
analog to digital converter. As an example to read the AtoD register
a program would make a read register call to register $E2, followed
by.a Disable Increment call. For each subsequent read to the analog
to digital converter the program would call read next. This mode
will stay in effect until a read register, write register, read ram or
a write call is made. ‘

Import: NONE
Error codes: NONE

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

Hreng
\

Page 36

1.2.1 Error code summary.

$0810
$0811
$0812
$0813
$0814
$0815
$0817
$08FF

= No DOC chip/DOC ram found.
= Address range error.
Sound Tools not started error.
= Invalid Generator number.
Synthesizer mode error.
Generator already in use (busy) error.
Master interrupt not assigned error.
= Unclaimed sound Interrupt error.
NOTE: Error $08FF reported through the System Death
Manager.

[l

i

It

Sound Tools ERS Rev. 2.0 Tue, Feb 24, 1987

