System Software 5.0—The Times, They Are a’Changing

Youw’ve been playing with your Apple I1GS for nearly two years now. It's nice, but it’s a
lile sluggish. You've been hearing those rumors floating around that Apple doesn’t
support the Apple Il anymore, and you've had your eye on one of those other computers
with color, a mouse and an alleged user interface.

Then you get Apple’s newest version of the “System Disk”—System Software 5.0 for the
IIGS. Your eyes start to widen. Windows zip open in the Finder. AppleWorks GS™
loads from your 3.5” drive in an eighth of the time it took with the old version. A new
Control Panel NDA has pop-up menus in if. Nearly every program you have that uses the
deskiop interface is running faster, sometimes amazingly faster. Scrolling NDA and
CDA menus let you have more than the previous number of desk accessories and still get to
them all—without that “Two Apples” thing you've been meaning to read about in the
September Call -A.P.P.L.E. You can have lowercase letters in file names on ProDOS
disks. The Finder actually says your Shrinklt archives are Shrinklt documents. And
switching back from ProDOS 8 takes about 4 seconds as opposed to what seemed like 4
years. Visions of orphaned computers vanish in the light of realiry.

This is all well and good, and you spend a few days discovering how much fun it is to use
your computer again, stopping occasionally to drool a little bit. But soon the fun wears
off—there’s only so many times you can watch the Finder “Close All” and be amazed at the
Speed. You're an Apple I owner—you want to know the innards. Whar s new in there
Jor programmers? How can I do pop-up menus? Or scrolling menus? What do I have to
do to get the speed necessary? Has anything been done to make the desktop interface easier
Jor programmers? Are there new tools? Do Dogcows live in the Apple II world? Doesn’t
“ORCAIC” evaluate to “ORA” if “C” is nonzero?

Ah, you think to yourself, if only a magazine I was holding in my hands right now
answered these questions, maybe even with a source code example. . ..

The advent of System Software 5.0 is, in many ways, as revolutionary as the IIGS
itself was three years ago this month. Without a hardware upgrade, installing this new
system software on your hard drive suddenly reveals words that previously were hidden.
Desktop interfaces are easier to generate than ever before—perhaps easier than on any other
machine. Applications have access to networking through the operating system in ways
that make server access virtually transparent. One extra step in the build procedure
produces files that load two to four times faster than existing load files. New tools present
the world of resources, and a package that handles full desktop text editing functions with
barely any work by the application.

Non-programmers instantly understand that System Software 5.0 is all about
speed. Things zip along at rates they previously thought required additional hardware.
Programmers interested in 5.0 soon learn the other major component of 5.0—power.
Applications do more in less code. The system works more to make the desktop interface
happen, and the application has the freedom to be brilliant without thousands of user
interface details interfering with a programmer’s good ideas. '

As in the past, the System Software is divided into three main components—the
operating system (GS/OS), the Toolbox, and the Finder and other applications. The other
two main components of the system, the firmware (ROM) and the hardware, are obviously
not affected by new System Software. We’ll examine the changes to the three areas
separately.

Note that this article is not and can not be a tutorial. Early indications are that
developer-level documentation for 5.0 (including GS/OS and Toolbox) changes is easily

Fidgeter 7/26/89 Page 1

going to be several hundred pages long. These are references that will be available from
APDA and should be purchased by anyone wishing to use 5.0 features. Because of the
sheer volume of information, this article can only present a general overview, and specific
cxamples of one subset of the changes for 5.0. Many details will be presented, but
encyclopedic reference is left to those books desi gned to provide it. I don’t suggest tryin g
to use new 5.0 features without adequate reference unless you’re into heavy, intense
personal pain and anguish.

An overview of System Software 5.0

GS/0S8

GS/OS 3.0 is included with System Software 5.0. While the general design of
GS/OS remains the same, the specific implementation of several components of it has
changed greatly. New system calls have been provided; new capabilities have been given
to drivers; drivers have been added as has a new File System Translator (FST); and
performance has been improved.

GS/OS and the AppleTalk networking system join hand in hand on System
Software 5.0 with the addition of AppleTalk drivers and an AppleShare FST. Nommal file
level calls may be made to a server volume and the AppleShare FST will interpret them and
return the appropriate information, just as the ProDOS EST interprets calls and provides
information from ProDOS disks. New AppleTalk drivers provide general AppleTalk
parameters as well as GS/OS character output for printing text over the network (the
Remote Print Manager is now a loaded driver) and providing implementation of some
AppleTalk Filing Protocol (AFP) services as well as access to the ProDOS Filing Interface
(PFI) through another driver.

This new architecture allows GS/OS to operate fully and functionally with
AppleShare and AppleTalk. Additionally, methods documented in the AppleShare
Programmer’s Guide 10 the Apple 1IGS are still supported for backwards compatibility. In
fact, many services are not provided by the GS/OS drivers through GS/OS call
mechanisms because those services are handled by the previously-documented methods.
GS/OS programmers as well as AppleTalk programmers will find the new system software
compatible and understandable.

AppleShare is GS/OS’s first FST that not only has both reading and writing
capabilities, but also contains a disk structure and rules for file name syntax almost
completely different than those of ProDOS. Programs oriented specifically to ProDOS
disks may run into problems with AppleShare volumes. On AppleShare, file names can be
longer than 15 characters and can contain special characters such as “f” or “V” as well as
spaces. Directories can not be directly read; the GetDirEnt ry call must be used
(AppleShare directories do not have the same format as ProDOS directories—trying to read
and interpret them wouldn’t make sense). Access privileges actually mean something
significant—if an application doesn’t have permission to Destroy a file, it can’t simply
us€ GetFileInfo and SetFileInfo to change the access to something it likes better,
since the file may not belong to the user runnin g the application. The world of multiple file

systems is different than the ProDOS-only world many Apple 11 programmers are used to,
and AppleShare is the first new file System to point it out.

There are also AppleShare-specific tips to make otherwise network-compatible
applications be network-friendly. Remember that more than one person could be running
the application at once, so don’t write configuration information to the application program
file. Don’t always use the same file name for temporary files (a second user running the
application could cause a new temporary file to erase one currently being used). Catalog a
directory until you see the end (signified by the “End of Directory” error from

Fidgeter 7/26/89 Page 2

GetDirEntry), not by using a count of files obtained from that call. The count could
change during the catalog operation. You mi ght also get duplicate entries since AppleShare
directories are in alphabetical order, and someone could create a file during your catalog
operation. Most importantly, only ask for file access that you’re going to need. If you’re
only going to read a file, don’t Open it with “as available” or “read/write” permission—no
one else can then get to that file until you Close it. Also, if you Open a file with “as
available” access, GS/OS has no way to tell you what access you really got (the returned
access word is not suitable for this task), so you may get error $4E (access error) when
trying to Write to the file later on, since you only had read-only permission to the file. If
you ask for write permission when you Open the file, GS/OS will tell you right there that
you don’t have access to Write if you don’t. Instead of checking for access problems on
every call, you can resolve them at Open time.

A new capability to load specially-processed OMF load files faster than ever before
is part of 5.0, and is not surprisingly called ExpressLoad. ExpressLoad is part of GS/OS,
and resides in a file named ExpressLoad in the System folder. It is loaded at boot time
automatically except on 512K machines (to save memory).

ExpressLoad operates on files that have been “Expressed”, using the “Express”
utility that works with APW, or the ExpressT Igs tool that works with MPW IIGS.
Express takes a load file and pre-processes it, pre-expanding it in some ways. It keeps
information about the file in a dynamic data segment with the name “ExpressLoad”. The
information includes the position and size of each segment in the file (including relocation
dictionaries). It also rearranges segments for optimal disk access and converts code
segments to other OMF forms to avoid extra loader work. ExpressLoad itself special cases
certain common operations for maximum performance and keeps the application file open if
it contains dynamic segments (to avoid having to re-Open it).

Since the Express segment is a dynamic data segment, it’s only loaded if someone
asks for it. The application and the regular System Loader won’t, so Express format is
fully compatible with existing applications. For example, AppleWorks GS™ 1.0v2
shipped in Express format, and loads just fine with or without ExpressLoad. Future
linkers (Apple’s or third-party) could be revised to automatically create Express format
files. They are slightly bigger than non-Expressed files, but their speed in loadin g will
nearly always make up for it.

ExpressLoad gets first crack at calls made to the System Loader, which is then
called to process a file if it is not in Express format or if Express can’t handle it. Express is
designed to speed up the majority of applications, so certain special cases may not work.
In particular, ExpressLoad will not work with files that it did not IntialLoad. The
regular System Loader has worked in the past with files it had not InitialLoaded (for
example, LoadSegName might succeed on a file that had not already been
InitialLoaded), but this isn’t really guaranteed by Apple and should be avoided. It
might continue to work in the future, and it might not—it definitely prevents your
application from using the advantages of ExpressLoad.

ExpressLoad also doesn’t support some Loader functions and it’s recommended
you avoid others. Since Express rearranges segments for optimal performance, and
segments are consecutively numbered, it follows that the segments will be renumbered as
well. Although Expressl_oad can still load segments properly (since it keeps a mapping
from old numbers to new numbers in the Express segment), the regular System Loader
does not know about this mapping. Therefore, loading or unloading segments by number
(LoadSegNum and UnLoadSegNum) will not work and should always be avoided.
Always load segments by name, not by number. Furthermore, GetLoadSegInfo
returns internal data structures from the System Loader that ExpressLoad does not use or

Fidgeter 7/26/89 Page 3

Support, so Get LoadSegInfo is not supported by ExpressLoad. All other current
Loader calls are supported.

Several changes to the driver mechanism of GS/OS provide new functionality and
improved performance. The Device Manager has significantly improved performance on
GS/0S “device” system calls like DRead and DWrite, as well as on single-character input
and output through character devices. Also, the Device Manager now knows when an
Apple peripheral needs a loaded driver that isn’t present—it warns the user that the loaded
driver is needed and doesn’t generate a driver. Devices now have the option of being
fenameable and restartable. A restartable driver can start itself more than once without
having to be reloaded from disk. Thin gs such as pre-initialized data that is later changed or
self-modifying code are examples of thin gs which could prevent drivers from being
restartable. All the Apple drivers included with 5.0 are restartable except the Apple 5.25”
Disk driver.

The Apple 3.5 Driver (AppleDisk3. 5) also includes a new capability referred to
as “scatter read”. Although the driver still can’t write to the disk at 1:1 interleave (this is
physically impossible), it pulls a nifty trick in reading. It reads an entire track in on one
spin of the disk, decoding the interleave later. So instead of two spins to read one track at
2:1 interleave, it now takes one spin to read one track (even at 2:1 interleave). This
capability happens on multi-block reads without cachin g to non-shadowed memory, since
timing conditions are kind of tight. Although it’s not guaranteed that such conditions will
always invoke scatter read, not meetin g them currently prevents it. For giant reads (such as
entire disks), this results in an almost 2X speed increase over regular 2:1 interleave reads.

New SCSI peripheral support arrives in 5.0 with the introduction of the SCSI
Manager, the full-fledged GS/OS Supervisory Driver for SCSI peripherals Apple promised
to developers at 4.0 time. The SCSI Manager takes full control of the Apple I SCSI card
or cards in the system (it does not work with non-Apple SCSI cards) and provides a nearly
5X performance increase, from 16 MB/second under the 4.0 SCST .DRIVER to 80 MB/sec
with the new SCSI Manager. Also included are two drivers that run under the SCSI
Manager Supervisory Driver (“slave” drivers, if you will) for SCSI hard disks and Apple
CD SC drives. Apple’s Developer Technical Support department will help those interested
in creating SCSI peripherals and drivers, since the details of using the SCSI Manager get
quite detailed and technical, and bore the pants off those not incredibly intensely interested
in SCSI.

GS/OS also now has a method for drivers and other parts of the operating system to
let interested applications know when certain events have happened. Through new calls
AddNotifyProc and DelNotifyProc (Add or Delete Notification Procedure), GS/OS
or drivers can notify applications when the system switches GS/OS to ProDOS 8 (or back),
when disks are inserted or ejected, when the system is shut down or when there is change
to a volume (writing occurred to a volume). Applications like the Finder use this
mechanism to reduce the amount of polling done to disk devices. (It’s true that the
Macintosh doesn’t poll disks in the Finder, but Apple II owners can eject disks without
asking the computer to do it—doin g that on the Macintosh can confuse the operating
system.)

GS/OS now provides for standard input, output and error. These are standard
methods of obtaining input (reading from “standard in™), producing output (writing to
“standard out”) and handling either input or output generated by error conditions (reading
or writing to “standard error’”). GS/OS implements this through the use of prefixes 10, 11
and 12 respectively. Unless a launching application specifically requests that GS/OS not
do this, those prefixes are changed to . CONSOLE” before launching an application. The
application may then simply open “10:” for standard input, “11:” for standard output and

Fidgeter 7/26/89 Page 4

“12:” for standard error, using GS/OS Read and Write calls to obtain the data.
Additional support for this is provided in new system calls.

New system calls? Yup. In addition to the new system calls for the Notification
Queue, GS/OS has added a few new system calls for dealing with open files as well.
Get St dRe fNum returns the reference number of the last Open call to standard in, out or
error (prefixes 10, 11 and 12) so others can know which reference number to use in these
instances. GetRefNum returns the reference number for an open file, while
GetRefInfo returns the pathname and access information on an open file given the
reference number. The new DRename call lets yourename a device (provided the device is
renameable, naturally). The system preferences have been expanded to allow applications
to suppress error dialogs (those with only one button, such as “Volume /XXX may be
damaged”) or to request that volume mount dialogs do not have the “cancel” button. This
is now used by the Loader to load dynamic segments, since pressing “cancel” would cause
GS/OS to return error $45 (Volume Not Found) to the Loader, which is always fatal when
trying to load dynamic segments. GS/OS nos uses prefix 8 for partial pathnames if prefix
0 is null (useful since prefix 0 can’t be longer than 64 characters). Format and Erase no
longer let you destroy data by wiping out a volume on which there are currently open files.

A new symbolic prefix has been added. GS/OS sets the “@ prefix at application
launch time. If the application is launched from a server, the prefix points to the user folder
on the server. If not launched from a server, this prefix is the same as prefix 1: or prefix
9:—the same directory the application was launched from. This provides a convenient and
standard location for configuration files. GS/OS also checks the auxiliary type of a
program at launch time to see if it has identified itself as “GS/OS aware.” If it has not,
GS/OS displays a warning when the application is launched from a folder whose path is
more than 64 characters long, since older programs using only class zero calls can not
access such pathnames. The user may cancel the launch at this point.

The option list has been clarified and enhanced as well. This list of FST-
specific information s available as input or output from many GS/OS file calls, including
Open, GetDirEntry, GetFileInfo and SetFileInfo. In the calls, your
application passes a pointer to an option 1ist buffer. The buffer starts with a word
describing the length of the buffer, followed by a word result space where GS/OS tells you
how much information was placed in the buffer. Following that is the addition of a word
file system ID (file sys ID) which tells you the file system of the file in question.
Following the file system ID Ts file-system specific information that is important to the host
file system but not to GS/OS. For example, AppleShare keeps Finder Info (for the
Macintosh Finder) here, as well as access privileges and parent directory IDs. This
information is important to non-Apple II users of AppleShare, so it should be copied with
the file. By placing it in the option_list, the AppleShare FST (and GS/OS overall)
provides a convenient and easy way to do it. Since most file copy operations use
GetFileInfo and SetFileInfo to set the attributes of the copy of the file correctly,
simply including the option_list inthese calls assures it will be copied. The FSTs are
smart enough not to use the data in the list if the file system ID indicates the source and
destination file systems are different. (For example, passing an AppleShare
option_list to ProDOS does no harm—the ProDOS FST knows not to try to interpret
the information as ProDOS-specific attributes since the file system ID says “AppleShare™.)

GS/OS has always allowed ProDOS 8 applications to be launched off ProDOS
disks, and loads and switches to ProDOS 8 for you. This now happens as well when
ProDOS 8 applications are launched from AppleShare. (This can happen since the PFI part
of AppleShare allows ProDOS 8 and AppleShare to co-exist. This would be impossible
for other filing systems such as DOS 3.3 or MS-DOS, since ProDOS 8 can’t read files

Fidgeter 7/26/89 Page 5

from those disks as it can from AppleShare.) The switching of operating systems is even
faster. When ProDOS 8 is launched, GS/OS now goes into a dormant state while staying
in memory. Under 4.0, GS/OS disposed of itself and reloaded it from disk when it was
time to return. If memory is not available to keep GS/OS around when ProDOS 8§ is
launched, GS/OS is disposed and you have to reboot to get back to it. Since GS/OS is
now in memory instead of being reloaded, switching back to GS/OS from ProDOS 8 takes
somewhere from three to six seconds. Older drivers which have not been made restartable
will have to be reloaded from disk, but most of Apple’s drivers provided with 5.0 are
restartable. Examples of non-restartable drivers include the Apple 5.25” disk driver and
most third-party drivers. Even so, the time to reload those few drivers is trivial compared
to the rest of the operating system, and switching is indeed a joy compared to 4.0. Because
GS/0S is in memory, ProDOS § applications which use IIGS extended memory will find
less of it available, but the speed in going back and forth is well worth it.

The ProDOS FST has undergone some changes as well for 5.0. Handling of
updated blocks in memory has been improved to handle files which will remain open all the
time (such as the System Resource file, discussed later). The FST can now add a resource
fork to an existing file (part of the new GS/OS capability to do this as well), and will only
display the “Volume /XXX may be damaged” error once. The ProDOS FST also uses the
Cache Manager more often for improved performance, and has added the idea of a “volume
modification date” to know when a volume has changed. But most noticeably, the ProDOS
FST allows lower case letters in file names. Two bytes of the ProDOS directory entry have
been redefined to be character bits, indicating the case of the file name (the actual file name
itself is still stored entirely in upper-case for ProDOS §’s benefit). More information on the
details of how this works can be found in Apple’s GS/OS Technical Note #8, “Filenames
With More Than CAPS and Numerals”.

And the Cache Manager itself uses a new toolbox feature so that when an out of
memory condition is near, the cache is flushed and released, giving the memory back to the
application. Under 4.0, if a user had unwisely used a 256K disk cache that had gotten full,
the only way to release the memory was to make the ResetCache call or reboot the
system. Under 5.0, it’s handled automatically.

The Toolbox

Extensive though they are, the GS/OS changes for 5.0 are minor compared to the
changes in the Apple IIGS Toolbox. Two new tools have been added and most of the tools

have undergone profound chan ges, from adding support for resources to almost-automatic
extensions of the user interface.

The Resource Manager

The Macintosh™ has an architecture where discrete, often small amounts of data are
kept in individual chunks of a file called resources. Every file on the Macintosh is
divided into two logically equal parts, called forks. The data fork is the “normal” part of
the file, and is the part of the file IIGS owners have always dealt with. It contains the file’s
normal data. For example, the data fork of a text file would contain ASCII text. The other
fork is the resource fork, and it contains resources. Resources typically contain
definitions for dialog boxes, or windows, strings to be displayed, segments of code, or the
like. This separation of data from program code makes it immune to changes in the
program code—even to changes in the programming language itself. The program could
go from Pascal to C to assembly, and the data in the resources would remain the same.

Although dividing portions of the file into standard, discrete segments is a good
idea, more than that is needed. If resources were nothing but a file format, every

Fidgeter 7/26/89 Page 6

application would have to contain a fair amount of code Just to access the individual
resources. What makes them valuable is a part of the System Software—new to the 1IGS
with 5.0—called the Resource Manager.

On the HIGS, resources are identified by a two-byte resource type and a four-byte
resource ID. The type indicates the generic kind of information in the resource, and the ID
differentiates a particular resource from any other with the same type. It’s similar to a file’s
file type and auxiliary type, except only one resource with any particular type and ID
combination may exist in a file. Some types are defined by the System as standard
resource types, which will contain data in a standard format. Other types are left to each
application, and their format will vary from program to program. Resource types from
$8000 to $FFFF are reserved for standard definitions and should not be defined by
applications; types from $0001 to $7FFF are reserved for applications and will not be
defined by the System. IDs have a similar restriction. Application-definable resource IDs
range from $00000001 to $O07FEFFFF. The range from $07FF0000 to $07FFFEEF is
reserved for the System, and other values are invalid.

The Resource Manager manipulates resource files, which correspond to GS/OS
resource forks. It opens them when asked, reads resources from the file, writes them to
the file when needed and closes the files. The only time your application need not use the
Resource Manager to manipulate resource forks is when you’re just copying them and
don’t care about the format of the information they contain. If your application wants a
specific resource from the file, always use the Resource Manager to access it.

Resources have attributes similar to Memory Manager attributes, determining how
the resource can be used. Resources have purge levels, can be locked, fixed, may be
restricted so not to load in special memory or cross bank boundaries, and may be page-
aligned. They may also indicate that they should be pre-loaded (meaning the Resource
Manager should load the resource when the resource file is opened, and not wait for
someone to specifically load it), that they are protected (and should not be written to
disk), changed (indicating the resource has changed and should be rewritten to disk,
unless protected), absolutely loaded (loaded at a specific memory location) or needs a
resource converter (a special routine provided by your application that converts
resource from a disk format into a memory format). Resource converters are powerful
tools. The System provides a code resource converter so that code resources can be
converted from OMF format on disk to relocated code in memory. Another example might
be an Apple Preferred format picture converter, which would take a resource containing an
Apple Preferred format picture on disk and leave it as a pixel map in memory. The
converter would also take a pixel map as input and write it to disk as an Apple Preferred
format resource. Note that the code resource converter does not convert code which has
been loaded back into OMF before writing it disk, so don’t try to write a code resource that
you’ve already loaded! (The Resource Manager will write a resource to disk automatically
when you close the file if the resource has been marked as changed, so don’t do that to
code resources.)

The Resource Manager is implemented as a permanent initialization file named
Resource.Mgr; it must be present or 5.0 will not boot. Although it is called through the
Tool Locator, this implementation allows it to be available to the System even if the
application has not started it up. The System uses resources in several instances as well;
the code to handle a new type of control (Icon Button controls) and Event Manager
translation tables, as well as other system resources are contained in a system resource
file named Sys.Resources. (This is different from the Macintosh, where most of the
System is contained in one file called System, including system resources.) The
Sys.Resources file is always open on the boot disk, regardless of whether an
application has opened it or not. It will not be closed by a Close call with reference
number zero, although resource files your application opens (including the resource fork of
your program file) will be closed by such a procedure, making it a nice thing to avoid.

Fidgeter 7/26/89 Page 7

When the Resource Manager is asked to load a resource, it first checks to see if the
resource is already in memory. If so, the handle to the already-loaded resource is returned.
If not, it is loaded and the handle to the just-loaded resource is returned. The Resource
Manager owns the handles to resources; your application should not do anything but read
from them, lock them or unlock them. If you need to do other things to the handle, you

may take the handle from the Resource Manager with the DetachResource tool oall.
Resources may be written to disk, or simply marked as changed, in which case the
Resource Manager will automatically update them on disk when the resource file is closed.

The Resource Manager becomes an instantly-useful part of the System since several
of the tools have been changed to use resources. For example, instead of passing a
template in memory to the Window Manager to create a new window, you can pass a
resource type and ID to the Window Manager’s NewWindow? call. The Window Manager
then loads the resource and creates the window from it. As graphical resource editors
become available, you will be able to design these parts of their user interface by drawing
them, rather than by specifying coordinates and “fine-tuning” them one slow recompile
after another. Once resources are set, they never have to be recompiled (unless the
programmer desires it), saving compile time. They can make your program’s memory
management more flexible and reduce your programming time. In the sample program
discussed later, nearly all the static data in the program is provided in resources, built
through the resource compiler “Rez”, soon to be part of APW and MPW 1IGS.

TextEdit

Although the Resource Manager is a very important tool, it can be a little difficult to
describe. TextEdit is conceptually easier, so the description will take considerably less
space.

TextEdit implements text-processing primitives in the desktop interface with very
little work on the part of the application. TextEdit includes vertical scrolling of text (with a
scroll bar), word-wrap, multiple tab types (so when tabbed to, text may be left-aligned,
center-aligned or right-aligned), ruler-based formatting similar to MacWrite (TextEdit
currently supports only one ruler), intelligent cut and paste, four justification styles (left,
right, center and full) and multiple styles, fonts and colors. TextEdit can work with large
blocks of text, up to the limits of available memory. Text is selected through standard
mouse movements, clicks and drags, as well as through standard Apple 1II keyboard
equivalents (including Control-Y as delete to end-of-line).

To use TextEdit in your programs is almost trivial. The Fidgeter program in this
article takes the most simple route, which is implementing a TextEdit field as a control.
With new extensions to TaskMaster, most of the work involved even for complex, multi-
part controls like TextEdit can be handled for you. TextEdit provides calls to get and set
the text in the field, to get and set the offsets to the current selection, or to get information
about the text in the field. It will also convert points in local coordinates to text offsets (and
back), scroll to specified locations, handle standard editing functions (cut, copy, paste and
clear), and draw the text as a pixel map into a specified port, which is useful for printing.
Advanced routines are available to further customize TextEdit for specific purposes,
although most people will never need to do this.

In most cases, applications simply want a way for the user to enter some text that
could be longer than 255 characters long (the limit of LineEdit), or to contain large amounts
of text in a small location (LineEdit fields don’t scroll). TextEdit handles this with
remarkable ease for the application. In the Fidgeter program, a TextEdit control is used. It
Supports cut, copy, paste and clear, as well as standard text editing (typing, deleting,
moving text around) with absolutely no TextEdit-specific calls done by Fidgeter.
TaskMaster and TextEdit do all the work. You may use TextEdit as TextEdit fields (as
opposed to controls), if you so desire. In this case TaskMaster and TextEdit do not do

Fidgeter 7/26/89 Page 8

most of the work for you, but you gain some more flexibility over the way actions are
handled.

The best way to get the feel for what TextEdit will and won’t do for you
automatically is to try it out. Fidgeter uses standard actions in its two TextEdit fields.
Extensions (such as retrieving the text edited, changing styles or custom editing) can be
implemented through TextEdit calls on the TextEdit control. Apple has a sample program
called “Teach” which demonstrates more of these capabilities in a very simple word-
processing type program.

The other tools

Just because there are only (!) two new tools included with 5.0, don’t think the
changes to the toolbox are minor. Many of the tools have undergone significant
transformation—in fact, preliminary toolbox delta documentation is several hundred pages
long!

The tool dispatcher itself is a little faster, having had a few cycles squeezed out of
each call. A new capability has been added to work with the Message Center—
MessageByName allows you to manipulate messages based on an ASCII string of your
choice; the call maps that into a message number you can then use. This means anyone can
use Message Center without having to get a Message number assignment from Apple.

But the most significant change to the Tool Locator is the addition of
StartUpTools and ShutDownTools. The first of these calls takes a reference to a
table largely formatted like the table used as input to LoadTools, and starts up all those
tools, in the proper order, allocating direct page memory for those that need it. Code to
start up all the necessary tools used to take several pages of source code in assembly —
now it takes less than one screen. High-level language tool startup used to take a couple of
screens—now it takes about three lines. You start the Tool Locator, the Memory Manager,
and tell the Tool Locator which mode to use (320 or 640 mode) and what tools to start—it
takes care of the rest. Fidgeter contains examples of these calls.

The Memory Manager has better performance. When allocatin g non-fixed handles,
the Memory Manager remembers where the last handle was allocated and starts looking
immediately following that handle, instead of at the beginning of the list each time. This
increases memory fragmentation but dramatically affects the speed of NewHandle, which
is often a bottleneck operation in both applications and in QuickDraw. An “out of memory
queue” has been added as well—routines can install themselves in this list, and the Memory
Manager will call them when it is unable to allocate a handle. Each routine can be called
twice—once when the Memory Manager was immediately unable to allocate a handle
without purging or compacting memory, and a second time when the Memory Manager
was unable to allocate the memory even after purging and compaction. The Cache Manager
in GS/OS uses this feature to release the cache memory when memory is critically low.
This scheme allows your applications to create much more complex memory management
techniques than the Memory Manager’s built-in three purge levels can handle (no pun
intended. Really).

The Desk Manager now limits the number of CDAs and NDAs only to available
memory—both the CDA and NDA menus scroll if more desk accessories than fit on one
screen are present. Also added are ways to remove CDAs and NDAs from the Desk
Manager’s lists, and for applications or anyone else to add themselves to the Desk
Manager’s “run queue”—the list of routines which get “run events” like NDAs.

The Event Manager now has key translation features. This allows a user to type a
key combination like “option-e-e” and get a character like “é”. The default translation is the
same as on the Macintosh, so the keystrokes already familiar to many now work on both
machines. The Event Manager has new calls to allow the translation to be set to default,
none, or custom (using a key translation table you provide).

Fidgeter 7/26/89 Page 9

The Window Manager has all kinds of new goodies. TaskMaster has been
extended to handle controls in windows. For standard controls (the list of which has also
been extended, as will be described shortly), TaskMaster can handle almost all the
work. It flashes simple buttons, handles keys for TextEdit and LineEdit controls (both of
which are new), checks and unchecks check boxes, selects and deselects radio buttons,
tabs between “target” controls (there’s a lot of new Control Manager stuff, as you’re
seeing!), tracks menus—and tells you when it was done that the user selected a control,
then gives you the ID of the control selected. Pretty nifty. In fact, with one exception,
TaskMaster does all the work in Fidgeter, as you’ll see when we explain that program in
more detail. All this support has been added for Desk Accessories as well—the new
TaskMasterDA call allows NDAs to use TaskMaster features for the first time. (This
was previously impossible since TaskMaster assumes things about the system that
NDAs don’t have the right to assume—NDASs written with TaskMaster often had severe
problems when opened under applications that don’t use TaskMaster.)

The Window Manager has support for resources, so a new window template may
be kept in a resource which the Window Manager will automatically load and use.
AlertWindow also takes resources, and the code that compiles the alert strings, making
the necessary substitutions, has been broken out into a separate call, CompileText, for
your application to use if it desires. A new ErrorWindow call takes standard GS/OS
errors (and more) and translates them into simple dialogs presenting real English messages
to the user. The Window Manager now uses the default desktop pattern message
previously used only by the Finder (but not previously documented). A utility creating this
message could provide a custom desktop for every application until reboot with the greatest
of ease.

The Menu Manager supports resources through a new menu template format.
Menus can be defined in this way instead of as ASCII strings, making the job of graphical
menu resource editors easier. You can create menus, menu items and menu bars from
resources (although if you use a menu bar resource, a strange anomaly in 5.0 forces you to
use a resource ID with a high word of zero, or the call will not work). The Menu Manager
also allows outlined and shadowed menu items, as well as the creation of empty menus (to
get an empty menu previously, you had to create a menu with one item and delete the item).
And, very noticeably, menus with more items than fit on the screen automatically scroll (as
long as more than three items in the menu fit on the screen, usually only a concern for
menus not in the menu bar). This includes the Apple menu (which contains New Desk
Accessories) and a font menu created with FixFontMenu.

The biggest new Menu Manager addition for programmers iS pop-up menus.
Pop-up menus are little rectangles on the screen that look a lot like simple rectangular
buttons with drop-shadows. However, clicking in them makes a real menu “pop up”
around the cursor, with the previous selection remaining directly under the cursor. The
Menu Manager tracks the menu just as if it were pulled down instead of popped up. When
a selection is made (if one is made), it becomes the new item listed in the rectangle.

Pop-up menus can be implemented two ways, like TextEdit fields—as controls or
as themselves. If they are controls (as is the pop-up menu in Fidgeter), TaskMaster and
the Control and Menu Managers do most of the work for you. As pop-up menus, you
have more work to do (detecting when someone clicks in the menu, highlighting the title,
calling PopUpMenuSelect, etc.), but you also gain more flexibility. The example in
Fidgeter is implemented as a control, and shows a pop-up font menu (using a little
trickery).

ryNo tool that existed on 4.0 shows more change than does the Control Manager.
Going far beyond adding support for creating controls from Resources, the Control
Manager works with the new TaskMaster extensions to create new control records we
refer to as super controls. Super controls are created by the NewControl2 call, and

Fidgeter 7/26/89 Page 10

have an extra word of flags (known as the moreF1lags field, naturally) and a control ID,
assignable by the application. Although the ID and the RefCon are both four-byte fields
under the control of the application, the ID is intended to be a compile-time assignment of a
value so you can write code that knows minimally which controls were selected
(TaskMaster returns the control ID in the extended Task record when a control is
selected). Also, calls are provided to transfer a control ID into a control handle and vice-
versa to make such code easier to write.

There are seven more types of standard super controls than regular controls.
Static Text controls display text in a rectangle supplied by the control creator. The text is
drawn with LETextBox2, 50 all the formatting possible with that tool is possible with
Static Text controls. The text can’t be edited by the user. Picture controls draw a
QuickDraw picture in a rectangle you specify, scaling it as necessary. LineEdit controls
allow you to have line edit items as controls; TextEdit controls are similar. Pop-up
controls are pop-up menus implemented as super controls, and Icon Button controls are
simple buttons that contain icons, with or without titles. Fidgeter contains examples of
each of these controls.

Standard controls may have keystroke equivalents—you can set it up so that a
simple button is selected when the user types a given key (such as “return”). You also
have control over modifiers, so you can specify which modifiers must be pressed and
which ones can’t be pressed. One of the radio buttons in Fidgeter has the key equivalent of
“6”, but will only recognize it if the key is pressed on the keypad and not on the main
keyboard.

To have keystroke equivalents and handle things like LineEdit and TextEdit, you
may have guessed that super controls may also accept events. Controls like TextEdit
controls accept not only keystrokes, but mouse clicks and drags, and even menu
selections—if you use standard edit menu numbers, TextEdit controls will handle cut,
copy, paste and clear for you. Other controls accept events as warranted. Super controls
also introduce the notion of a target control; the target control is the active recipient of user
keystrokes. In a window with more than one control capable of taking keystrokes (the
Fidgeter window is such a window; it contains two TextEdit controls and two LineEdit
controls), one of them has to be the currently “active” recipient of keystrokes. It wouldn’t
do at all for one key to be seen in all the editable items. The Control Manager has calls to
find and change the current target control, and LineEdit and TextEdit controls can allow
you to set it up so pressing “tab” changes to the next target control.

Another new Control Manager feature is reciprocated in the Window Manager.
Calling SizeWindow now sends a message to super controls that the window size has
changed, and you can create grow box controls so that they automatically call
SizeWindow.

QuickDraw II itself has been sped up considerably. ODStartUp offers two new
options to allow QuickDraw to operate even faster if your application will allow it. One
new feature to QuickDraw is to use hardware shadowing if memory in bank $01 is
available. Since hardware shadowing allows reads and writes to take place to fast memory
instead of slow memory, operations go faster. The other new option tells QuickDraw that
you are not going to change any of the fields in a GrafPort except through standard
QuickDraw calls. This allows QuickDraw to skip a fairly lengthy set-up process on many
calls, which also increases speed.

QuickDraw Auxiliary has two new routines—SeedFill and CalcMask.
SeedF 111 takes a specified pixel map and and a starting point and “fills” the shape around
the starting point, much like a paint bucket tool would do in an art tool. CalcMask
generates a mask from a specified pixel map and a given pattern by filling in from the
boundary rectangle, an operation useful in implementing “lasso”-like tools. Each one is
loaded with options for flexibility. QuickDraw Auxiliary also now allows full text
justification in pictures.

Fidgeter 7/26/89 Page 11

The Print Manager has added calls to allow you to get and set the name of a
document (mainly useful when printing over the AppleTalk network). You can also get
more information about the current printer, and can get and set the page orientation of the
current document. A new driver structure is provided to allow new drivers to add the new
calls, but older drivers still work properly. Changes in driver structure will be documented

in Apple IIGS Technical Note #35 and #36. Also, the PrChoosePrinter call is no
longer supported—the Control Panel New Desk Accessory should be used to select
printers. Making PrChoosePrinter results in a dialog asking you to use the Control
Panel NDA to select a printer.

i Standard File has been completely rewritten. The new version uses class one
GS/OS calls and is fully network-aware. It features new calls that allow filter procedures
to access GS/OS GetDirEntry records instead of synthesized ProDOS directory entries,
and a new multi-get mode that allows one standard file “open” dialog box to open many
files. More flexibility for the application is present, although some of the features may not
be fully implemented on this release.

The Font Manager and QuickDraw have teamed up to support fonts with greater
than 64K font strikes. Fonts up to 255 points may be created by the toolbox,although you
should be very aware that large fonts take large amounts of memory—the font strike grows
by both height and width for each character. In a simplified example, a 12 point font that
requires 10K of memory may be scaled into a 24 point font that will require 40K of
memory (double the width and the height means the font strike grows by a factor of four).
So if a 48 point font takes 50K, a 96 point size of the same font will probably take around
200K! A new font format (version 1.5) is defined to allow larger fonts to exist, and the
Font Manager and QuickDraw deal just fine with fonts of the older format.

The List Manager is extended to handle list controls (one of the new types of super
controls). Several List Manager calls have been added to work with list control handles
instead of list records. This means that for many normal purposes, applications won’t have
to carry around list records just as input to List Manager calls. Other new calls allow
manipulation by item number rather than the less-useful list record pointer. The List
Manager now also allows applications to control whether the scroll bar is created inside or
outside the bounding rectangle.

Other toolsets have undergone minor changes as well. The Sound Tools have new
calls to allow the setting up-and the playing of sounds, as done by FFStartSound, to be
split into two separate stages for application flexibility. There are also new calls to read and
set DOC registers more easily. The Text Tools saw minor changes to make them less Slot
Arbiter unfriendly (for when dynamic slot arbitration is available), but they’re still pretty
unfriendly and should be avoided when writing new text-based applications. And the
VideoMix toolset (new to the System Software release) is updated to a 1.1 version.

Finder, Applications and Ultilities

Although Finder changes normally don’t affect most applications, most
programmers will be pleased to see the changes implemented. First and foremost, the
Finder is fully AppleShare Aware. Server volumes are dynamically updated, access
privileges are respected (and changeable if you own the folder) and network-friendly
programming practices were used. The overall toolbox and OS changes greatly increase
Finder speed, and more enhancements were made to the Finder code itself for even more
speed.

P The Finder now looks for the strings to display as a file’s “kind” in disk files
referred to as File Type Descriptors. These files have a file type of $42 and are of
public format, so any application can use these files to know what string to display to
identify a particular file by file type and auxiliary type. Multiple files are supported by
priority, so developers can supply their own description strings for the Finder and for other

Fidgeter 7/26/89 Page 12

programs which use this scheme. The file format is documented in Apple II File Type
Note for file type $42.

The Control Panel NDA is new for 5.0. Through a series of small program
definitions called “CDevs” (after the Macintosh Control Panel’s four-character file type
CDEV), the Control Panel NDA acts as a shell for a lot of minature programs that affect the
operating parameters of the computer. The Control Panel NDA serves as a combination of
the Macintosh Control Panel and Chooser desk accessories. System Software 5.0 comes
with sixteen CDevs, not all of which will be installed on every system since many of them
relate to network activities. The Alphabet CDev allows selection of display and keyboard
languages, as well as key translation control. The AppleShare CDev allows you to select
and log onto AppleShare file servers, providing for automatic log-on at boot time with or
without requiring you to type in your password. AT IWriter and AT IWriterLQ allow
selection of ImageWriter and Image Writer LQ printers over the AppleTalk network. DC
Printer lets you choose a directly-connected printer (what most of us have). General is
not nearly as crammed full of stuff as on the Macintosh Control Panel, since the IIGS
Control Panel NDA generally has a separate CDev for each category listed in the text-based
Control Panel CDA (which is still fully functional). Keyboard sets key repeat and delay
rates; LaserWriter lets you select LaserWriter printers over AppleTalk; Printer Port and
Modem Port allow setting the parameters for either of those serjal ports; Monitor sets
display colors, 40 vs. 80 column defaults and color vs. monochrome graphics; Mouse
controls mouse behavior (surprisingly enough); RAM gives scroll bars to set the RAM
Disk and GS/OS Disk Cache sizes (the old “Disk Cache” NDA has gone away); Slots lets
you change slot settings and assignments; Sound controls system volume and pitch; and
Time sets the system clock and controls how the time is returned by the toolbox (wanna
see a pop-up menu with 60 entries, one for each second you could set the clock to? This is
the place!).

The Advanced Disk Utility now allows up to 32 partitions per SCSI Hard Disk, as
this functionality is present in the GS/OS SCSI Manager. The Installer allows multiple
script selection (continuously with shift-clicking, or discontinuously with apple-clicking),
has better error reporting and can install over the network. It also allows installation on the
boot volume (unlike the Macintosh Installer), but forces a reboot when done so the System
can’t confuse itself. CD Remote (included with Apple SC CD Compact Disk ROM drives)
has been updated for the new System Software as well.

You’ll find most of the user-visible features of 5.0 just by playing around with your
programs and applications after installing the new system. However, you won’t find the
programmer-specific changes—and there are plenty of them—until you start using them in
your own programs. And what better way to get the general idea than with a simple
programmatic example of how the new world works?

Fidgeter—a simple program using 5.0 features

Fidgeter is a simple sample application that demonstrates one of each kind of the
new super controls, along with a couple of interface tricks and the general use of resources
in tool calls. It doesn’t do anything incredibly useful—you can check boxes and select
radio buttons and type text and pop menus, but it doesn’t take action on what you do
(except in the case of standard editing functions, as will be explained below). Nearly all of
the static data is provided through resources, and since most of the program is the controls
and their definitions, the resource source code is nearly as large as the program code itself.

The program will look familiar to many of you—it’s based on a new revision of the
Apple 1IGS Source Code Sampler “Shell” program. The revision used here is 1.182,
obviously not final. The Shell has been revised to start more tools (friendlier to desk

Fidgeter 7/26/89 Page 13

accessories), be cosmetically more pleasin g, and to use all its data from resources where
possible. All of the Shell’s resources have ID in the $07FExxxx range, with the exception
of the menu bar resource (as noted earlier, menu bar resources currently must have IDs in
the $0000xxxx range or they will not work with NewMenuBar2). The modularity
associated with the Shell is maintained, and the style will be familiar to those who have
worked with or studied the Source Code Sampler. Fidgeter is built on the Shell, but there
are some properties of the resulting program that are present because I put them in Fidgeter,
and some are present because of the Shell. Unless they need distinction, I’1l just refer to
everything as “Fidgeter”.

; Fidgeter uses only standard resource types. That means there are no application-
defined resource types present; all the resources are of public format. With one exception,
the toolbox loads all the resources needed by the program without direct Resource Manager
calls from Fidgeter or the Shell. For example, to create the menu bar and all the menus
within it, the Shell passes the ID of a MenuBar resource to NewMenuBar2 along with a
descriptor saying to use resources. NewMenuBar 2 knows the standard resource type for
a MenuBar resource ($8008), so it takes the ID passed to it by the Shell and loads a
resource with that ID and type $8008, and uses that resource to describe the menu bar.
Each reference to an individual menu within that menu bar is a resource ID as well, which
NewMenuBar2 passes to NewMenu?2, and it also loads resources of that ID with the type
of a menu resource ($8009). NewMenu?2, in turn, takes resource IDs of new menu items
(type $800A) and loads them with the given IDs. The menu items then reference Pascal
String resources (type $8006) for the string data displayed as the menu item text. The
strings, menu items, menus and the menu bar are all linked together through resource IDs
in a way totally transparent to the Shell—it’s all determined by the resources themselves.
In one instance, Fidgeter does specifically load a resource so it can work with the data in
that one resource.

About Super Controls

Super Controls are created from control templates. Each template has a count of
the number of parameters, followed by the control’s four-byte application-assi gned ID and
the control’s boundary rectangle. Affer that are a word of flags, a word of more flags and
the four-byte refcon. The remaining parameters depend on which kind of control is
being created. Figure 1 shows the control templates for some of the standard controls. To
save a little space, I’ve not drawn the templates for Icon Button, Line Edit, Text Edit, List
or Pop-Up controls, but their format is very similar, and it’s the format that’s the point.

Fidgeter 7/26/89 Page 14

T
]
l
!
|
|
i
T
i
1
l
i
I

i
|

T
i
]

®

|
|
It
L
T
1L
|
11
I
L1
i
L
LN
L1

FTTTTTTT
TTTTTTT
i
IHEENEN
ITTTTTT
LELirad
ITTTTTT
1
Ll
TTTTTTT
H
Litillg
TTTTTT
i
EERENNE

TR
e —
- — — b w—d e - —t -—
— peocaer — prochet — procket - proctar — e procRar — prociat -—
. — - — -— -
T | T B————
P ——et e ——— P
- flag - flags — flagm ot aup —f fags — fage [S " flage —
A ——. e ee———————
—— — —_——
F - 3F — JF - 3F m dF —apr—a ——
[N .] —t -t j - b —t = -—
= arcon -t ezcon —t seon f escon — b atcon - - rescon — e -
- -t — - j - — — -
o
= — b — P mextiae —f — e L= 3 —
oo TitlaRat g fo trtreaer o . 1t1amar — e —t -riar — = pretucen.
- S . — —_— b e - b -_— —_
= 3 F e e | ep—" —
s ColorTablals? mmd b Colorfableimf e
- o) — r =
m ———— . o L — rTabl el —
—— ———— —
= Ly M— |
e —— | P rarrmasessd
i TR S SRS B o e - o— |
= L —
P xayCaradits s Baser ReyCazaBits e Aeyhads

Figure 1—Obnoxious Diagram

As you can see, each template starts with the same header, and then progresses to
the specific parameters for the control type. Standard controls are determined by the value
of the procRef field. Controls handled by the toolbox have a procRef with a non-zero
high-order byte (for example, the procRe £ value for a size box control is $88000000, and
a scroll bar control is $86000000). A bit in the moreF lags word tells the Control
Manager that the procRe £ field is not a pointer to a custom procedure, and is always set
for standard Super Controls. You can see the values for the other standard controls in the
Fidgeter resource source code.

The flag word is used to control the ct 1Hilite and ct 1Flag bytes in the
control record as the control is created. The high-order byte is used for ct 1Hilite: the
lIow byte is ct 1F1ag. These values work just like described in the Toolbox Reference
manuals.

The moreFlags word is new for Super Controls. The Control Manager uses the
high byte for standard flags; the low byte is defined by the control being created. The
standard flags are as follows:

fCtlTarget bit 15 If set, this control is the current target control and is
the active recipient of keystrokes.

fCtlCanBeTarget bit 14 If set, this control can be the target control.

fCtlWantsEvents bit13 If set, the new Control Manager call

SendEventToCtl may send events to this
control. A control that can be the target control will
always get events, even if this flag is not set.

Fidgeter 7/26/89 Page 15

fCt1ProcRefNotPtr bit 12 This bit, when set, tells the Control Manager the
procRef field does not point to a custom control
definition procedure.
fCt1lTellAboutSize bit I1 If this bit is set, the control will be notified when
the window it’s in has changed size.
fCtlIsMultiPart bit 10 If the control has more than one part (like a list or
TextEdit field with a scroll bar or grow box), this
bit must be set. It helps the Control Manager hide
multi-part controls (since Control Manager doesn’t
always know about all the parts).

The low order byte is used by standard controls (and is therefore suggested for
custom controls) to define references as follows:

titleIsPtr $00 The title reference is a pointer.
titleIsHandle $01 The title reference is a handle,
titleIsResource $02 The title reference is a resource ID.
colorTableIsPtr $00 The color table reference is a pointer.
colorTableIsHandle $04 The color table reference is a handle.

colorTableIsResource $08 The color table reference is a resource ID.

Note that the color table references are the same as the title references shifted to the
left by two bits.

The options specific to each control are far too numerous for TechAlliance to pay
me 1o go into here. You can see many of them in the control samples for Fidgeter.

About Fidgeter’s Controls

Everything in Fidgeter’s window is a control, from the text displayed by items
(static text controls) to the TextEdit fields. There are standard controls (a simple button,
two check boxes and three radio buttons), but each has a key equivalent (the number key
included in the control’s title). For “Radio Button #6”, the key equivalent is the “6” key,
but the key equivalent format lets us be more specific than that. Not only does it give us
two key equivalents (usually upper and lower case versions of the same character), but it
also allows us to specify which modifiers must be set, but also which modifiers must not
be set. The equivalence test takes the modifiers word from the keypress and ANDs it with
the value found in KeyCareBit s, then compares it against KeyModifiers. If the
comparison doesn’t return the two values to be equal, the Control Manager says there was
no key equivalent pressed. This allows us in Fidgeter to say that Radio Button #6 has the
key equivalent of “6” (or “A”) as long as the keypad bit is set, but the “option” bit is not
set. Try it for yourself—“6” works unless you press the “option” key.

Key equivalents are obviously a good thing, but there are a couple of things of
which you should be aware. First, key translation is probably in effect. Having a key
equivalent of “option-d” for something probably isn’t a good idea, because if translation is
in effect (and it usually is), you won’t see “option-d”. The Event Manager will translate it
to “9”—but if you use “9” as a key equivalent and translation is off, you’ll see “option-d.”
Second, if you have editable fields (like LineEdit or TextEdit fields, keys that are
equivalents (like the number keys for Fidgeter’s controls) will not get through to those
items, so you’ve effectively limited the user’s typing. The Icon Button controls are set up
to take key equivalents in their templates, but they’re turned off by clearing the bit that says

Fidgeter 7/26/89 Page 16

the control wants events. If you turn them back on(OK?), notice that the letters used to
activate the buttons can’t be typed in the LineEdit or TextEdit fields.

There are two TextEdit fields—one is a read-only field and one is fully editable.
The TextEdit control and TaskMaster handle standard edit menu choices for us since we
use one of TaskMaster’s new features—send menu events to controls.

The pop-up menu is actually a font menu. This is done by calling F i xFont Menu
on the pop-up control after it’s created. Note that the current menu bar has to be set for
FixFontMenu to work, so we set the menu bar to the pop-up (each pop-up is a miniature
menu bar) first.

The tricky part to this is the size of the control rectangle. What we specify as the
control rectangle in the resource control template is what the Control Manager uses as the
rectangle for the “unpopped” menu selection. Although calling CalcMenuSize on the
new font pop-up menu correctly sizes the menu, nobody redraws the rectangle. However,
the Menu Manager has calculated the proper size for us, so we take advantage of it. We get
the control handle from the pop-up control ID (assigned by us when we wrote the
program), dereference it and read the lower right corner of the correctly-calculated menu
rectangle out of the control record. It’s highly illegal to change values in the control
record, so to use this new knowledge we have to dispose of the pop-up and recreate it. We
load the resource containing the pop-up control template, call Det achResource to tell
the Resource Manager we’re going to take over the handle, and replace the control
rectangle’s lower right point with the one calculated by the Menu Manager (offset by a few
pixels in each direction to account for the drop shadow). We then use that as input to a
NewControl2 call, and the pop-up is recreated. The window is then made visible (it was
created invisible so no one could see all this chicanery going on).

You’ll notice the NewControl2 call to recreate the pop-up is the only
NewControl2 call in the program. Others aren’t needed—one of the features of
NewWindow2 (which we call to create our window from a window template resource) is
the capability to link a control template list to the window template. If one is there, the
Window Manager will call NewCont rol2 to create all our controls for us. Everything in
the window (except the pop-up font menu, as we handle that specially) is created by the
one NewWindow?2 call.

Below the pop-up control are two LineEdit controls. One shows a new feature of
LineEdit—password fields. No matter what character you type, the “*” character
appears, as a form of visual protection. The AppleShare CDev uses this so that people
looking over your shoulder don’t see your password for file servers on the screen as you
type it. The other Line Edit field is a standard one, without the password protection
feature.

Under those are the Icon Button controls. These are icons, with strings centered
under them (as titles), framed as a rectangular simple button would. You have your choice
of frames, as you do with simple buttons. They’re an easy way to get a custom graphical
button.

Below that is a picture control. The picture doesn’t look like much (and it isn’t; it’s
a very small portion of a fractal drawn on the IIGS) because a complicated picture would
add even more time to that already required to type in the program. It is a QuickDraw
picture, and the rectangle specified in the template is not the same size as the original picture
rectangle, so true to form, the picture is scaled to fit the new rectangle. You might try
playing with the control rectangle and watching the scaling effect. Or, if you have a file
that contains a standard QuickDraw picture (file type $C1, auxiliary type $0001), you can
replace the entire resource definition with a Rez command to read the resource from disk.
Suppose the file is “/MyDisk/Picture”. Replace the resource definition with:

read rPicture (0x3015) "/MyDisk/Picture™

Fidgeter 7/26/89 Page 17

The Fidgeter Routines

Main is the core of the entire program—it calls the initialization routines, the main
event loop, the shutdown routines and then quits.

Globals contains all our global data. Since most of our data is in resources,
there’s not a whole lot here.

i InitTools starts up the tools, using the new StartUpTools call. It then
creates the menu bar (with NewMenuBar2), adds the New Desk Accessories to the Apple
menu and draws the menu bar.

FatalError is called when we detect an error that we can’t recover from. Being
a fairly simple example, there isn’t much of an error mechanism in Fidgeter. Any place
where recovering from an error would be messy, we justbranch to FatalError. This is
not acceptable error handling except in a learning exercise (like this one) where we want
our mistakes to jump out at us.

CloseTools uses the new ShutDownTools call to shut down all the tools we
started up. Note how these two new Tool Locator calls have replaced literally pages of
source code with just a few lines. The Memory Manager and Tool Locator are then shut
down after ShutDownTools returns.

InitApp does our application-specific setup. In this case, it’s creating the
Fidgeter window (invisibly), making our pop-up control into a pop-up font menu and
showing the window.

CloseApp does our application-specific shut down. We don’t have any in this
case; we only have one window, and the Window Manager closes it for us when it gets
shut down by ShutDownTools.

EventLoop does most of the work in Fidgeter. It first tests to see if the top
window is a desk accessory; if so, the Undo item (which Fidgeter doesn’t use) is activated
in the Edit menu. TaskMaster is then called to get an event. TaskMaster actually
handles most everything that happens since we don’t really do anything in this application.
We then jump through a table based on the taskCode returned to us. Most of the
possibilities are ignored because they’re either irrelevant for a program as simple as
Fidgeter or because TaskMaster handles them for us. We do handle menu selections, but
that’s it. Routines are called for clicks in the content region or events in controls, but both
routines called in those instances do nothing. Before looping again, we look to see if the
Quit item was selected. If so, we return from Event Loop to Main, which will then shut
down everything and quit.

MenuSelect dispatches for the one kind of event we do actively handle—menu
selections. We turn the item ID into an index and call a subroutine to handle the menu item
selected. On return, we unhighlight the selected menu’s title and return to Event Loop.

Ignore is called for most of the possible TaskMaster return values—it ignores
them. It just returns. So does doUpdate, since TaskMaster handles our updates.
InControls also returns, since we don’t take any specific action on any of the controls.
If we actually wanted to call ChooseFont, for example, when the “Choose Font” item
was selected in the pop-up control, this would be where we dispatch to that code. After the
selection of the “Choose Font” pop-up menu item, TaskMaster will send us to
InControls since the event went to a control.

DrawContent is not called by any routine within Fidgeter; instead, it’s called by
TaskMaster to update our window. Since all we have in our window is controls, it’s easy
to update it. We just draw the controls with DrawControls. Note that we use long
addressing to get the window pointer to push, since the direct page and data bank registers
aren’t guaranteed when TaskMaster calls this routine.

Fidgeter 7/26/89 Page 18

TestTopWindow is called by EventLoop to see if the top window has changed
kind. If it has, we call DoSysChange (immediately after it) to activate or deactivate the
Undo item. Code to do the entire Edit menu is present, but the deactivate portion of it is
commented out.

doQuit is called when the “Quit” menu item is selected. It sets a flag to let
EventLoop know it’s time to quit, and returns.

doAbout gets control when someone picks “About Fidgeter...” from the Apple

menu. It puts up an AlertWindow (with the data in a resource) for our about box.
. doCut, doCopy, doPaste and doClear are called when their respective edit
menu items are selected. Although TextEdit controls handle standard editing menu
selections automatically, LineEdit controls do not. If we want to be able to cut, copy, paste
and clear in LineEdit items, we have to do it ourselves. It’s not too difficult, but there are a
couple of fine points.

First we call IsTtLineEdit to determine if the current target control is a LineEdit
control. (This routine is described below.) If it comes back with the carry set, it wasn’t a
LineEdit item, so we just return. If it was, the handle to the LineEdit record (the
LERecord) is in the A and X registers, so we push them on the stack to save them. Then
we get the current port and save it, since we’re going to tinker with it. Next we do a
StartDrawing to prepare to change the contents of the window. Remember that cutting
or pasting will force a change to the way the LineEdit item looks, and we have to set up the
drawing environment before doing that. TaskMaster does it when it handles changes to
controls, and so do we. Next, we get a copy of the LERecord off the stack and push it on
the top of the stack (the stack-relative offsets are both 7 because the first PHA increased
what would have been 5 to 7 again). We’re now ready to do the editing work at hand, so
we call the appropriate LineEdit tool (LECut, LECopy, LEPaste or LEDelete). If we
are cutting or copying, we also make sure the scrap size is non-zero (as required by Apple
IIGS Technical Note #59) and if it is, we put it to the desk scrap. If it is zero, we call
ZeroScrap to clear the desk scrap. If pasting, we put the desk scrap into the Line Edit
scrap earlier, before saving the current port. The rest is easy—we set the ori gin back to
(0,0), we restore the port we previously saved, and return.

IsItLineEdit gets the current target control (Fidgeter knows that there always
is one, but returns gracefully if it gets an error) and gets the control handle for it from its
ID. The moreFlags field is checked to be sure the £ProcRe fNot Pt r bit is set. If it
is, the handle is dereferenced and the procRef field is examined. It must equal
$83000000 for this to be a standard LineEdit control. If it is, we know that the LERecord
handle is stored in the ct 1Data field of the control record. We retrieve it in the A and X
registers and return to the caller.

Conclusions

There really isn’t a conclusion here; just a beginning. Take Fidgeter, this article,
System Software 5.0, the reference manuals and your favorite development environment
and start playing around. Some simple extensions to Fidgeter are easily possible—change
the key equivalents on the controls. Make the font chosen in the pop-up menu be the font
used in the TextEdit field. Make the TextEdit fields resizable. Use your imagination; 5.0
makes it a lot easier for the system to handle the interface and for you to be brilliant. And
that’s what’s important after all.

Fidgeter 7/26/89 Page 19

[Sidebar]

I change development tools like some people change shirts, and the one I was “wearing”
when I wrote Fidgeter was the MPW IIGS cross-development assembler from Apple. This
is the assembler that runs under the Macintosh Programmer’s Workshop (MPW) but builds

IIGS applications. I think it’s a powerful assembler and I like it a lot, and I hope some of
you feel the same way. Even if you don’t, you’ll find it fairly easy to translate the Fidgeter
program into APW/ORCA, Merlin, Lisa, or whatever your favorite happens to be. Here
are the tips you need:

. DC.character means, similar to APW/ORCA, “Define constant”. However, the
character following the period defines how big the resulting constant is. B means
byte, W means word and L means long. The argument of the expression can be
any type of data. For example, DC.B ‘This is a string’ is the MPW IIGS
equivalent to DC C*This is a string’. DC.L 13 is the equivalent of
DC 14'13’. DS works in a similar way, except it means “define storage”. The
character after the dot means the same thing, and the argument is how many of them

to define. DC.W 1 means define one word of storage space. Storage space is
automatically pre-zeroed.

. With is kind of like the APW/ORCA USING statement, except that routines that
you reference with With must have been previously defined. With Globals is
seen in nearly every Fidgeter routine, and Globals is the second segment.

. APW/ORCA’s START/END combination is replaced with PROC/ENDP. Data

segments are delineated wtih RECORD /ENDR. Also, the entire program must end
with an END statement.

. The PRINT and EJECT statements are used to control listing options.

Man
[Sidebar]

I tried, where possible, to use symbolic definitions in the resources rather than numbers.
I’'m sure I failed once or twice, but the effort is there.

The reason is that this was all written with preliminary development tools. It worked when
I wrote it (months before the magazine went to press), but things can change before final
release. I tried to use the symbolic parameters so you could know what the controls were
trying to do, rather than what numbers go where. For instance, instead of saying “$1000”
for moreFlags in a control template, I'd say “fProcRefNotPointer”. If the defines
change in the Types .Rez file before you see it, those will have to be changed or they
won’t compile. However, you have a lot better idea of what it’s trying to do by reading a
label than by reading a number.

Marnt

Fidgeter 7/26/89 Page 20

[Sidebar]

The resources not only have to be built (compiled with Rez in this case), they have to make
it into the resource fork of the program file. I did this with a handy tool called “duplicate”.
Duplicate lets you copy both forks of a file (the default), only the data fork (by specifying

“~d”) or only the resource fork (by specifying “~r™). If you only copy one fork, the other
one is not touched. So I got the assembler and linker to output the program into a file I
called “Fidgeter .DFork” (the data fork), and I got Rez to output the resources into a
file called “Fidgeter.RFork” (the resource fork). The rest was easy:

Duplicate -d Fidgeter.DFork Fidgeter
Duplicate -r Fidgeter.RFork Fidgeter

And since I was using the MPW IIGS system, I added afterward:
DuplicateIIgs -y -mac Fidgeter :
I eventually got a make file built that would only build the fork whose source code had

changed. Once the resources were set, the resource fork of the file wasn’t rebuilt unless I
changed the Rez source. Not too difficult, and speedy when developing.

Man

Fidgeter 7/26/89 Page 21

