Universe Toolbox Update 272/89

Chapter 21
Resource Manager

The Resource Manager is a ool that is loaded when the Apple IGS® is started. The Resource Manager
remains in the system the entre time the system is running.

The Resource Manager manages resources in the resource fork of a file. A resource is one or more bytes
of contnuous data. The format of the data is defined by an application or by standard resources. The
Resource Manager does not know. or need to know, the format of any resource. The Resource Manager
reads and writes resources to and from resource files, and tracks them while they are being used.

Resources are referred to by a resource type and a resource ID number. The resource type (also
referred 10 as type) defines the structure of the resource. The resource ID number (also referred to as
resource ID or just ID) is a number unique to each resource of the same type. Therefore, different types
could have the same IDs.

Example: A structure could be defined to hold a screen image, which would be a resource type.

Then there could be many screen images, all with the same defined structure, but
containing different data. Each of these would be differentiated by unique IDs.

Note
There is a glossary of Resource Manager terms provided at the end of this document.

Chapter 21:Resource Manager Page 21-1

Universe Toolbox Update 2/2/89

A preview of the Resource Manager routines

To introduce you 10 the capabilities of the Resource Manager, all Resource Manager routines are grouped
by function and briefly described in Table 1. These routines are described in detail later in this document,
where they are separated into housekeeping routines (discussed in routine number order) and the rest of
the Resource Manager routines (discussed in alphabetical order).

Table 1 .
Resource Manager routines and their functions

Routine Description

Housekeeping routines

ResourceBootlnit Called only by the Tool Locator-must not be called by an application
ResourceStartup Logs an application in with the Resource Manager for use by an application
ResourceShutdown Logs off an application with the Resource Manager when an application quits
Resource Version Returns the version number of the Resource Manager

ResourceReset Called only when the system is reset-must not be called by an application
ResourceStatus Indicates whether the Resource Manager is active

Initialization and termination routines
CreateResourceFile Creates and initalizes a file for resource use

OpenResourceFile Opens a resource fork for resource access by the Resource Manager

CloseResourceFile Close an opened resource fork

AddResource Creates and adds a new resource to an open resource file

RemoveResource Deletes a resource from an open resource file

Resource access routines

LoadResource Loads a resource into memory from an open resource file

LoadAbsResource Loads a resource into memory at an absolute address from an open resource file

DetachResource Makes a loaded resource unknown to the Resource Manager

ReleaseResource Frees memory used by a loaded resource

WriteResource Forces the write to disk of a changed resource

ResourceConvener Installs resource convert routines to allow memory formats different from disk-

CountTypes Retums the number of different resource types in all open resource files

GetndType Retumns a resource type associated with a given index, use to find every type g

CountResources Retumns the number of different resources of a given resource type

GetIndResource Loads a resource associated with a given index, used to load every resource of a
given type

Resource record access routines

GetResourceAttr Returns the attributes of a given resource such as locked, fixed, preload. etc...

SetResourceAttr Changes the attributes of a given resource such as locked, fixed, preload, etc...

GetResourceSize Returns the number of bytes a resource occupies on disk

MarkResourceChange Sets a resource to changed or unchanged so it will or will not be written to disk
MatchResourceHandle Find the resource ID and type given the handle of loaded resource
SetResourceID Changes the ID of a given resource

Chapter 21:Resource Manager Page 21-2

Universe Toolbox Update 2/2/89

Resource file routines

GetCurResourceFile Returns the ID of the current resource file, where searches start
SetCurResourceFile Changes the current resource file, which is where searches start
SetResourceFileDepth Changes the number of files to be searched when searching open resource files
GetOpenFileRefNum Returns the GS/OS open file reference number of an open resource file
HomeResourceFile Returns the file ID of the open resource file that contains a given resource
GetMapHandle Retumns the handle of a resource map that has been loaded into memory
UpdateResourceFile Writes all changed data to disk of a gi+~~ open resource file

Application switching routines

GetCurResourceApp Returns the user ID of the current appi.suon using the Resource Manager

SetCurResourceApp Changes the current application using the Resource Manager, used by
application switching and desk accessories

Resource global access routines

SetResourceLoad Tells the Resource Manager to read resources into memory or not
UniqueResource[D Returns an used resource ID for a given resource, used when creating resources

Chapter 21:Resource Manager Page 21-3

Universe Toolbox Update 2/2/89

O—

§t;'ucture of Resource Files

GS/OS files have two parts, a data part called the data fork, and 2 resource part called the resource fork.
The daa fork is where an application stores information and has a format defined by the application. The
resource fork is where the Resource Manager stores information about resources. The format of the
resource fork is defined by the Resource Manager. (See GS/OS documentation for more information
about data and resource forks.)

An application does not need to know thé format of the resource fork to use resources. However, it does

know about the format of individual resources contained in the fork. Conversely, the Resource Manager

l;iw\zs d}c format of the fork, but nothing about the format of individual resources other than they are
ocks of data.

Note: References to 'resource file' are actually referring to the resource fork part of a file.

A resource file can be created and edited with the aid of the Resource Editor (**when available for the
GS**), or with whatever 100ls are provided by the development system you are using.

Using the Resource Manager

Tool Loading The Resource Manager is loaded and initialized by the system when it starts up. The
is no need for an application to load the Resource Manager. The file
RESOURCE.MGR must be placed in the SYSTEM.SETUP directory of the boot disk.
A system resource file, if there is one, called SYS.RESOURCES must also be placed
in the SYSTEM.SETUP directory.

Startup Call ResourceStartup to log in with the Resource Manager.

Open File Call OpenResourceFile to open each necessary resource file. If there is a system
resource file it will be opened at system startup.

Access Call LoadResource to load a resource from disk to memory.
Close Files Call CloseResourceFile for each file to be closed, or NIL to close every open file.

It may not be necessary for an application to call CloseResourceFile because
ResourceShutdown will close every resource file opened by the application.

Shutdown Call ResourceShutdown before quitting. Do not make any other Resource Manager
calls, except for ResourceStartup, after ResourceShutdown.

Chapter 21:Resource Manager Page 21-4

Universe Toolbox Update 2/2/89

hh.—__x*‘ —————
Controlling how open resource files are searched

The resource manager searches open resource files to perform many of its functions. The order of the
search depends on when files were opened. When files arc opened using OpenResourceFile they are

placed in a list. As files are opened they are placed at the front of the list. After making the following .
calls in the following order:

OpenResourceFile File A
OpenResourceFile File B
OpenResourceFile File C

the list will look like:

Current file ~—e——pp .

also, the first file File C
File B
File A

Last file ———p» System File
(if there is one)

The most recendy opened resource file, file C, will be the currens resource file. It is also considered the
first resource file (most recently opened). The file that was opened the longest ago is considered the /as:
resource file. When asked to find a resource, which happens for almost every call that passes a resource
ID and type, the Resource Manager will first search file C, then file B, then file C, then the system file.
Generally, the current file will be searched first and continue to the last file. The first occurrence of a
resource with the matching ID and type will stop the search. This means the that second occurrence of a
resource with the same ID and type, even if in different files, will never be found by the Resource
Manager during normal search operations.

However, the files searched by the Resource Manager can be controlled by an application. The current
file can be set to any file, SetCurResourceFile, and the number of files searched can also be set,
SetResourceFileDepth. From the above example, to search files B, A and the system file the current
would be set to file B and the depth to SFFFF. To search only files C, B and A the current would be set
to file C and the depth set 10 3. To search files in any order the depth would be set 1o 1 and current file
would be set to the desired file repeatedly. To reset to search all files, pass NIL to
SetCurResourceFile and $SFFFF 10 SetResourceFileDepth.

Chapter 21:Resource Manager Page 21-5

Universe Toolbox Update 2/2/89

———-“_-_“_———-.——“—-—___-¥

Resource file ID numbers

Each open resource file can be referred to by a file ID. Every open resource file has an unique ID. The
ID is returned by OpenResourceFile when a file is opened. A file's ID is not the same as its open file
reference number. A file's open file reference number can be obtained by calling
GetOpenFileRefNum.

Resource Types

Resource types are a word in size. Resource types have the following ranges:

Decimal:

0 Reserved, not a valid resource type.
1 through 32,767 Reserved for application use.
32,768 through 65,535 Reserved for system use.

Hex:

$0000 Reserved, not a valid resource type.
$0001 through $7FFF Reserved for application use.
$8000 through $FFFF Reserved for system use.

See Appendix A for information about some resource types that have a public format.

Resource ID Numbers

Resource ID numbers are a long in size. A resource ID must be unique for every resource with the same
resource type in the same file. Resources of different types may have the same ID. ID numbers are
divided into the following ranges:

Decimal:
0 Reserved, not a valid ID number.
1 through 134,152,191 Reserved for application use.
134,152,192 through 134,217,727 Reserved for system use.
134,217,728 through 4,294,967,295 Reserved for future expansion.

Hex:

$00000000 Reserved, not a valid ID number.
$00000001 through $O7FEFFFF Reserved for application use.
$07FF0000 through $O7FFFFFF Reserved for system use.
$08000000 through SFFFFFFFF Reserved for future expansion.

See Appendix A for information about some resource ID that are defined by the system.

Chapter 21:Resource Manager Page 21-6

Universe Toolbox Update 2/2/89

GS Resource Manager Standard Routines

$011E ResourceBootInit

Warning
An application must never make this call.

Does nothing.
2arameters The stack is not affected by this call. There are not input or output parameters.

Zrrors None

$021E ResourceStartup
Called by applications to log in.

Important
Your applicatdon must make this call before it makes any other Resource Manager calls.

Farameterss

Stack before call

I |

| previous contents |

| I

userlD I Word - Application's user ID.
i

I<-- SP

!
I
I

|
previous contents |
I
l<-- SP

Stack after call
|
|
|
|

Errcrs Memory Manager errors Returned unchange¢

Chapter 21:Resource Manager Page 21-7

Universe Toolbox Update 2/2/89

$031E

Parameters

-
=Iror

ResourceShutdown

Called by applications to log out. All of the current application's open resource files are,
updated, closed and their resources freed.

Important
If your application has call ResourceStartup, it must make this call before 1t quits.

The stack is not affected by this call. There are not input or output parameters.

None

$041E

Parameters

Stack before
|

| previous contents
|

ResourceVersion

Retumns the version number of the Resource Manager.

call

' wordspace Word - Space for result

" .- SP

Stack after call

; previous contents :

li versioninfo : Word - Version number of the Resource Manager
i I<-- P

i

ITOrs

None

Chapter 21:Resource Manager Page 21-8

Universe Toolbox Update 2/2/89

h‘

$O51E ResourceReset

Resets the Resource Manager; called only when the system is reset.

Warning
An application must never make this call.

Parameters The stack is not affected by this call. There are not input or output parameters.

Zrrors None

$061E ResourceStatus

Indicates whether the Resource Manager is active. If the Resource Manager was loaded at
system boot time, and was able 1o initialize, ResourceStatus wil] return TRUE. If one
of these items failed the Resource Manager will not install as a tool at all.

Parameters

Stack before call
I i
I previous contents |

i-= -
|

' wordspace Word - Space for result

T <-- SP

Stack after call

; previous contents :

li acaveFlag : Word - BOOLEAN; always returns TRUE
i :<-- SP

Zrrors None

Chapter 21:Resource Manager Page 21-9

Universe Toolbox Update 2/2/89

$0C1IE AddResource

Adds a resource to the current resource file. The resource will be marked as changed and
written to the file when the file is updated.

Parameters

Stack before call
|

| previous contents
[

| resourceHandle

]
|
|
| Long - Handle of resource in memory
! |
- |
| resourceAnr | Word - Attributes of the resource
I |
| resourceType | Word - Type of resource
| | ;
| resourcelD | Long - ID of resource
| i
I]
I l<-- SP
Stack after call
|]
| previous contents |
- |
| l<-- SP
2rrors $1E04 resNoCurFile There is no current file to add the resource to
$1EO5 resDupID ID is used by the type in the current file

Memory Manager errors Retumned unchanged

Chapter 21:Resource Manager Page 21-10

Universe Toolbox Update 2/2/89

Parameter description

resourceHandle If the handle is empty a resource of zero length will be written. The size of the
resource is the size of the handle. Never pass a handle that was created by the
Resource Manager unless the resource has been detached (see DetachResource),

resourceAnr Bits that describe some atributes of the resource:

Reserved, must be zero.
atrPage, 1 = page aligned.
atrNoSpec, 1 = no special memory.
atrNoCross, 1 = not cross bank.
resChanged, 1 = changed.
resPreload, 1 = preloaded. e
resProtected, 1 = write protected. =

1
1sfs¢fusfszfu]iofo [a [7 6 s]« [s]2]1]0]
= aarPurge, purge level.
P resAbsLoad, 1 = no handle.
=——————resConverter, 1 = needs converter.
Reserved, must be zero.

aurFixed, 1 = not move.
aurLocked, 1 = not move or purge.

resource will be loaded by OpenResourceFile. ResProtected means the resource
cannot be changed in the file. AttPage, attrNoSpec, atrNoCross. attrPurge,
anrFixed, and atrLocked are pass to NewHandle when allocating a handle for the
Tesource. See Memory Manager documentation for more information about these

bits.
resourceType Resource type. See Resource Types for more information.
resourcelD Resource ID. Must be unique for resources of the same type. See

UniqueResourcelD call to obtain a unique ID.

Chapter 21:Resource Manager Page 21-11

Universe Toolbox Update 2/2/89

—————

SOBIE CloseResourceFile

Parameters

Note

Most applications will not have to make this call because ResourceShutdown will close
all resource files opened by the application.

Updates the resource file, frees memory used by resources in the file and the resource
map, and closes the file. If the file being closed is the current resource file the next file in
the file list will be made the new current resource file.

System resource files will not be affected by this call.

Stack before call

| previous contents

|

i fileID Word - ID of open resource file, NIL to close all files opened by the caller
| <SP

Stack after call

; previous contents :

i <. 5P

Zrrors GS/OS errors Retumed unchanged

Chapter 21:Resource Manager Page 21-12

Universe Toolbox Update 2/2/89

—‘_—%

$221E CountResources

Note

Most applications will not have to make this call. This call is a rather slow process.
Applications should consider not using this call in time critical procedures.

Retumns number of resources of a given type in all open resource files.

Parameters

Stack before call
|

| previous contents
|

longspace

resourceTvpe

tack after call

previous contents

totalResources Long - Total number of resources of the given type in all open files

S
!
|
I
!
|
I
I

-- SP

Errors None

Chapter 21:Resource Manager Page 21-13

Universe Toolbox Update 2/2/89

e ettt

e e ——— e

$201E CountTypes

Note

Most applications will not have to make this call. This call is a rather slow process.
Applicatons should consider not using this call in time critical procedures.

Returns number of different resource types in all open resource files.

Parameters

Stack before call
E previous contents :
| wordspace : Word - Space for result
I l|<-- SP

Stack after call

|
! previous contents |
' I

I totalTypes | Word - Total number of different resource types in all open files
! - |

I i<-- SP

Zcreorss Memory Manager errors Returned unchanged

Chapter 21:Resource Manager Page 21-14

Universe Toolbox Update 2/2/89

$091E

Parameters

Stack before call
|

| previous contents
|

CreateResourceFile

Initalizes a resource fork with no resources for a file that has an empty resource fork. If
the file does not exist it is created with the given aux type, filetype, file access, filename,
an empty data fork, and an initialized resource fork. If the file exists and has something’in
the resource fork an error is returned. If the file exists and has an empty resource fork an
initialized resource fork is made.

.

l

|
| |
| auxType | Long - File aux type used to create file (used only if file does not exist)
I |
- |
I fileType I Word - Filetype used to create file (used only if file does not exist)
| |
| fileAccess I 'Word - File access used to create file (used only if file does not exist)
I |
I fileName | Long - Pointer 1o GS/OS class 1 input file pathname of resource file
! |
} |
| I<-- SP
Stack after call
! |
| previous contents |
l -
i I<-- SP
Brrors $1E01 resForkUsed Resource fork not empty.

GS/OS errors Returned unchanged

Chapter 21:Resource Manager Page 21-15

Universe Toolbox Update 2/2/89

$181E DetachResource

Resource Manager will no longer know the resource is in memory. Additional memory
will be allocated for the resource if the resource is asked for again. It will be up to the
application to dispose of the handle after it is detached. A resource can only be detached if
it is marked unchanged, meaning it does not need to be written to disk.

To make a copy of a resource DetachResource can be called followed by
AddResource.

Parameters

Stack before call
|

| previous contents
{

resourceType Word - Type of resource

Long - ID of resource

]
}
] resourcelD
|
{
]

-- SP
Stack after call
: previous contents :
" <-- P
Zrrors $1E06 resNotFound The given resource was not found
$1EOC resHasChanged The resource has changed and not been updated

Chapter 21:Resource Manager Page 21-16

Universe Toolbox Update 2/2/89

$141E GetCurReso;;:eApp

Note
Most applications will not have to make this call.

Returns the user ID that is currently working with the Resource Manager. User ID of the
Resource Manager is returned if there is no current application. This call is used by desk
accessories and application switchers. This call should not normally be called by an

application. See Appendix C for more information about application switching.

P2rameters

Stack before call

| |

I previous contents |

I |

| wordspace | Word - Space for result
} i

i I<-- SP

Stack after call
I]

I previous contents |

I |

! userlD I Word - User ID of current application, NIL if no current application
i

.

-1
l<-- SP

None

{1
»y
(o]
©
*y
w

Chapter 21:Resource Manager Page 21-17

Universe Toolbox Update 2/2/89

$121E GetCurResourceFile

Retumns ID of current resource file. Returns NIL if there is no current resource file.

Pararmeters
Stack before call
]

|
| previous contents |
! |

| wordspace | 'Word - Space for result

| l<-- SP

Stack after call

I I
| previous contents |
|

| acaveFlag | 'Word - ID of current resource file, NIL if no current file
A |

| i<-- SP

2rrors $1E04 resNoCurFile No current resource file

Chapter 21:Resource Manager Page 21-18

Universe Toolbox Update 2/2/89

$231E

Parameters

GetIndResource
Note

Most applications will not have to make this call. This call is a rather slow process.
Applications should consider not using this call in time critical procedures.

Retumns the resource ID of a given resource index and type.. This call can be used to find
every resource of a given type in all open files by passing indexes of one through n. The
error resindexRange is returned when there are no more resources of the given type.

Stack before call

| previous contents

|

|

|
! |
I longspace | Long - Space for result
I |
I |
| resourceType | Word - Resource type
| I
| resourcelndex | Long - Index
| I
I |
! I<-- SP
Stack after call
[|
| previous contents |
| |
| resourcelD I Long - ID of resource
| | '
| |
I I<-- SP
Errors $IEOA resindexRange Index is out of range

Memory Manager errors Returned unchanged

Chapter 21:Resource Manager Page 21-19

Universe Toolbox Update 2/2/89

_
$211E GetIndType

Note

Most applications will not have to make this call. This call is a rather slow process.
Applications should consider not using this call in time critical procedures.

Returns a unique resource type associated with a given index. This call can be used to
find every different resource type in all open files by passing indexes of one through n.
The error resIndexRange is returned when there are no more types.

Parameters
Stack before call

I
| previous contents

|
I
|]
' wordspace | Word - Space for result
I |
| typelndex I Word - Index
| [
[I<-- SP
Stack after call
| |
| previous contents |
! |
I resourceType | Word - Resource type associated with the given index
| — -
I I<-- SP
Errors $IEOA resindexRange Index is out of range
Memory Manager errors Retumned unchanged

Chapter 21:Resource Manager Page 21-20

Universe Toolbox Update 2/2/89

$261E GetMapHandle

Note
This call is provided for application flexibility. Most applications will not need to use this
call.

Returns a handle to an open resource map. All open resource files will be searched
starting with the first open file. See Appendix B for information about the format of a
map.

Parameters

Stack before call
i

| previous contents
{

longspace Long - Space for result

filelD Word - File ID, NIL for current file, SFFFF for system file

-- SP

Stack after call
I
]

bprevious contents

|

' mapHandle Long - Handle of resource map, NIL if none

|

|

| -- SP

Errors $1E07 resFileNotFound Invalid file ID passed

Chapter 21:Resource Manager Page 21-21

Universe Toolbox Update

2/2/89

————

$IF1E

GetOpenFileRefNum

Note
This call is
call.

provided for application flexibility. Most applications will not need 1o use this

resource fork of the file.
the Resource Manager shou
number 1o read data from th

format unless the structure of

Parameters

Stack before call
| |

| previous contents |
{

wordspace

fileID

tack after call
|
previous contents |

S
I
!
I
I
I

.................

¢ reference number should not be used to close the file,
Id close files it has opened. Itis OK to use the reference
¢ file, but writing to the file could destroy the resource fork
the fork is maintained.

only

openRefNum Word - GS/OS open file reference number
l<-- SP
Zrrers $1E07 resFileNotFound Invalid file ID passed

Chapter 21:Resource Manager

Page 21-22

Universe Toolbox Update 2/2/89

$1BIE GetResourceAttr

Retumns attributes of resource.

Parameters

Stack before call
|

| previous contents
|

wordspace Word - Space for result

resourcelD Long - Resource ID

I

I
| |
! |
| i
I resourceType | Word - Resource type
I |
I !
I |
I |
I I

-- SP
Stack after call
; previous contents :
li resourceAnr : Word - Amributes of resource
| <-- SP
Zrrors $1E06 resNotFound Resource not found

Resource attributes word

Reserved, must be zero.
arPage, 1 = page aligned.
atrNoSpec, 1 = no special memory.
atrNoCross, 1 = not cross bank.
resChanged, 1 = changed.
resPreload, 1 = preloaded. ——————ee—
resProtected, 1 = write protected.

o |
15]1a]13faz2f:1]i0] o [a [1]e]s]s]3];]1-];]
LJ

aurPurge, purge level.

= resAbsLoad, 1 = no handle.
==—————— resConvernter, 1 = needs converter.
Reserved, must be zero.

aurFixed, 1 = not move.
aurLocked, 1 = not move or purge.

Chapter 21:Resource Manager Page 21-23

Universe Toolbox Update 2/2/89

$IDIE GetResourceSize

The size of the given resource is returned. The size is the number of bytes the resource
occupies on disk.

Parameters

Stack before call
|

previous contents

| longspace Long - Space for result

|

|

| resourceType Word - Type of resource
leemccmmmm e

I resourcelD Long - ID of resource

I -- SP

Stack after call

; previous contents :

i resourceSize : Long - Size of resource

| N

! I<-- SP

Zrrors S$1E06 resNotFound Resource not found

Chapter 21:Resource Manager Page 21-24

Universe Toolbox Update 2/2/89

\\“.—‘;;
$I51IE HomeResourceFile

Returns the file ID of the file containing the given resource. If the resource 1s not found in
any open resource file, NIL is returned on the stack and error is returned.

Parameters
Stack before call
i

I previous contents
l

|
|
} |
| wordspace | 'Word - Space for result
I]
I resourceType | Word - Type of resource to find
| |
| resourcelD I Long - ID of resource to find
| |
} l
! I<-- SP
Stack after call
| |
| previous contents |
I !
I filelD I' Word - ID of open resource file that owns the resource, NIL if not found
I]
I I<-- SP
Zrrors S1E06 resNotFound Resource was not found.

Chapter 21:Resource Manager Page 21-25

Universe Toolbox Update 2/2/89

—-——___4_—____“_“_____—#¥

$271E

Parameters

Stack before call
|

LoadAbsResource

Note

Most applicatons will not have to make this call. Using this call requires a understanding
of using absolute memory and how it can corrupt the system. The programmer must
accept a great deal of responsibility when using this cail.

Reads a resource into an absolute memory location. The resource will be read from disk
into the given memory address, but no more than the given maximum size will be read. In
order for a resource to be loaded to an absolute address it must have its resAbsLoad bit
set. If NIL is passed as the address the value stored in the resHandle field of the
resource's entry in the resource index is used as the absolute address. If that address is
NIL. or some other inappropriate value, the resource will be loaded there and corrupt the
system.

The size of the resource on disk is provided if the programmer would like to compare it to
the maximum size passed to determine how much of the buffer was used.

f

I previous contents |

} |

I longspace I Long - Space for result

| |

|]

I loadAddress | Long - Address to load resource at, NIL to load at preassigned address

! |

- -1

: maxSize ! Long - Maximum number of bytes to load
| .

; |

| resourceType | Word - Type of resource to find

| |

| resourcelD I Long - ID of resource to find

! i

| |

! I<-- SP

Stack after call

I I

| previous contents |

} I

| resourceSize I Long - Size of resource on disk

I I

I |

| I<-- SP

Chapter 21:Resource Manager Page 21-26

Universe Toolbox Update 2/2/89

Zrrors $1E06 resNotFound Resource was not found.
GS/OS errors Returned unchanged

Chapter 21:Resource Manager Page 21-27

Universe Toolbox Update 2/2/89

$OEIE

Parameters

LoadResource

Reads a resource into memory. LoadResource can be called repeatedly whenever a
resource is needed without having to wonder if it has already been loaded. If the resource
has not been load, it will be and a handle retumed. If the resource has been loaded. but its
handle is empty (purged), the resource will be loaded again and the handle returned. If the
resource has been loaded and its handle is not empty, the handle is rerurned and no action
is performed. In any case; other than memory error, a handle to the resource will be
returned.

Handles to resources should not be disposed of by an application (unless
DetachResource is used) unless the application wants to mess up memory in which
case a jump into a random memory location would be faster. The handle can be resized to
any size other than zero. The handle data can be changed and move around in memory. If
the resource changes, and the application wants the change to occur in the file, pass TRUE
to MarkResourceChange. The next time the file is updated the new information will
be written to disk. The resource can be forced to be written immediately after the call to
MarkResourceChange by calling WriteResource or UpdateResourceFile.

Stack before call

| previous contents
|

|
!
I
| Long - Space for result
I
I
I

I longspace

|

| ——

I resourceType Word - Type of resource to find
| resourcelD Long - ID of resource to find

! <-- SP

Stack after call

| |

| previous contents |

}]

| resourceHandle | Long - Handle of resource in memory

I I

| |

| I<-- SP

Zrrors $1E06 resNotFound Resource was not found.
Memory Manager errors Retumned unchanged
GS/OS errors Returned unchanged

Chapter 21:Resource Manager Page 21-28

Universe Toolbox Update 2/2/89

$101E MarkResourceCﬁge B

Tells Resource Manager to write a given resource 10 the resource file the next ime the file
is updated.

Farameters

Stack before call
|

| previous contents
|

i changeFlag Word - BOOLEAN; TRUE marks as changed, FALSE marks as not changed
|

i resowrceTvpe Word - Type of resource to find

I resourcelD Long - ID of resource to find

[

f i<-- SP

Stack after call

i |

I previous contents |

l-- |

i i<-- SP

Zroors S1E06 resNotFound Resource was not found.

Chapter 21:Resource Manager Page 21-29

Universe Toolbox Update 2/2/89

$1E1E

MatchResourceHandle

Retumns the resource ID and type of the resource that owns the given resource handle.
The handle passed must be a valid handle. All open resource files will be searched
starting with the first open file.

Note

The Resource Manager is desi

gned to use resource ID and types in an efficient manner no

matter how many resources are in a file. For small number of resources (less than 100)
MatchResourceHandle can work very well. But, for files with a large number of
resources, this call can be very slow if it is used often. A faster method is to include the
resource’s ID and type inside the resource structure., This way the ID and type can be
pulled directly from the resource rather than making a MatchResourceHandle call.

Parameters

Stack before call
!

| previous conrents

|
SoundRec

|
|
[
| resourceHandle
|
}
|

Long - Handle of resource

Long - POINTER to space to store type and ID of resource

-- SP
Stack after call
| |
| previous contents |
l-- |
| I<-- SP
Errors $1E06 resNotFound Resource not found

Chapter 21:Resource Manager

v

Page 21-30

Universe Toolbox U'pdate 2/2/89

-

$SOA1E OpenResourceFile
Opens a resource file and makes it the current resource file. The resource map for the file
is loaded into memory as well as any resources marked resPreLoad. The Resource
Manager will allow an application to open a maximum of 4,095 resource files.
The order the files are opened may be important depending on how an application
structures resource use. If files A, B and C are opened in this order, C will be considered
the first resource file (most recently opened), B the second, and A the last. Also, C will
be the current resource file When performing many search operations the Resource
Manager will start with the current file and look through to the last. The system file, if
there is one, will be the last (end of search list) of every application's resource file list.
All open resource files will be searched starting with the first open file when finding a
unique file ID for the file.

Parameters

Stack before call

I |

| previous contents |

| -1

I wordspace I Word - Space for result

! !

' mapAddress I Long - Address of map in memory, NIL if map not in memory

! ! ‘

l- |

| fileName I Long - Pointer to GS/OS class 1 input file pathname of resource file

I !

T [

| I<-- SP

tack after call

previous contents

S
|
I
l-
!
|
!

|

|

|

: Word - ID of open resource file
|

SfilelD
-- SP
Zrrors $1E02 resBadFormat Fork has an unknown format
$1E09 resNoUniqueID No ID available for file, 100 many files open
GS/OS errors - Returned unchanged
Memory Manager errors Retummed unchanged

Chapter 21:Resource Manager Page 21-31

Universe Toolbox Update 2/2/89

'w
|

$171E ReleaseResource

Frees memory used by a resource. Memory used by the resource is freed by setting its
purge level or disposed of if negative is passed as a purge level. See Memory Manager
documnentation for more information about purge levels and purging. If the resource is
needed again it will be unpurged or loaded from disk.

Parameters

Stack before call
I

| previous contents
f

i purgelLevel Word - Purge level of O through 3 or negative to dispose of handle
i resourcel ype Word - Type of resource

i resourcelD Long - ID of resource

|

!

<-- SP
Stack after call
; previous contents II
i <-- SP
Zrrors $1E06 resNotFound The given resource was not found
$1EOC resHasChanged The resource has changed and not been updated

Chapter 21:Resource Manager Page 21-32

Universe Toolbox Update 2/2/89

me——v——

$OFIE RemoveResource

Deletes a resource from a resource file and releases any memory the resource occupied.
The resource will no longer be available.

Parameters

Stack before call
!

: previous contents :

é resourceType : Word - Type of resource

! resourcelD : Long - ID of resource

| |

I I<-- SP

Stack after call

; previous contents :

i :<-- SP

Errers $1E06 resNotFound The given resource was not found

Chapter 21:Resource Manager Page 21-33

Universe Toolbox Update 2/2/89

$281E

Parameters

ResourceConverter

There are two kinds of converter lists the Resource Manager maintains. One is the
application converter list. Each application has its own converter list that it can add and
delete convener from. The other kind is the system converter list. Converters added to
this list can be used by all applications. When the Resource Manager looks for a converter
to read or write a resource it will first search the application’s list then the system list.

This way an application can install a converter that overrides a converter installed in the
system list. Applications should not install or delete converters in the system list.

Up to 10,922 converters can be logged in by any one application. This limit is not
checked by the Resource Mana ger and no error is returned. The same can converter can
be logged in more than once for different resource types. Logging in the same converter
for the same resource type more than once does nothing. Logging in or out a different
converter for a resource type already in the list results in a resDiffConverter error.

Stack before call

I

|

| previous contents |
converter : Long - Address of converter routine
....................... |
resourceType | Word - Type of resource the converter will convent
"""" logFlags | Word- Bit0<1if logging in, 0 if logging out

------ I Bit 1 = 1 if logging into system converter list, 0 if applicadon list

I Other bits must be zero.

Stack after call

l

| previous contents

Errors

I<-- SP

!

!

I

I<-- SP
$1EOD resDiffConventer Different converter logged in for the type
Memory Manager errors Returned unchanged

L Y

Chapter 21:Resource Manager Page 21-34

Universe Toolbox Update 2/2/89

Converter Routines

Converter routines are called by the Resource Manager to read and write resources to disk. Converters
allow one format to reside on disk and another in memory. With a converter an application can deal with
Just the memory format of resources and let the converter worry about the disk format. .

Some uses for converters might include the following. Code resources can have a relocatable format on
disk and be relocated into memory by a converter. Graphic images and sound data can be packed on disk
and expanded in memory. Dialog windows can be stored on disk in 640 mode format and converted for
320 mode if read in while in 320 mode. Hopefully there will be many more uses created in the future.

Converters must take a great deal of responsibility for system integrity. First, the converter must deal
with the flexibility of the resource reference record and the GS/OS parameter blocks. A resource can be
configured many ways, such as absolute memory or handle. GS/OS parameter blocks can contain a
variable number of parameters. The converter must understand all these parameters to properly
accomplish their task. Second. the converter must deal with the system context. The Resource Manager
is called by an application which controls the state of the system.

Parameters to Converter Routines
Stack before call

!
| previous contents
|

|
|
I |
I longspace I Long - Space for result
I I
I |
| convertCommand | Word - Command the converter should perform
| |
I convertParam | Long - Parameter defined by converrtCommand
| I
! |
I resPointer I Long - Pointer to resource reference record
| !
I]
| |

-- SP
Stack after call
; previous contents :
! result : Long - Result returned is defined by the convertCommand
! |
! I<-- SP

Chapter 21:Resource Manager Page 21-35

Universe Toolbox Update 2/2/89

Parameter description for Converter Routine

Direct page and data bank pointers are undefined when the converter is called. If the converter
changes either of these values it must restore the original values before returning to the caller.

convertCommand

Command number that tells the converter what operation to perform. It also defines the format of
other parameters. The defined commands follow, but a converter must make sure the command

passed is in the

range that it can handle. If a command is out of range the converter should rerurn

an error (any error code) and a NIL result.

Commands

readResource

writeResource

reurnDiskSize

0 - Read resource from disk. ConvertParam is a pointer to a GS/OS read file
parameter block. The file mark is set to the beginning of the resource on disk and
the block is set up to read the entire resource from disk. To simply read the
resource from disk perform the following instructions.

push convertParam Pointer to read parameter block.

push $2012 GS/OS read command.
3s1 $E100BO Call GS/OS.
Return any errors.

This will ready the resource into memory. For conversion you can find the
address of where the data is in memory as well as its size from the read parameter
block. The address to read the data into is either the resource handle dereferenced
or the resource's absolute address (check the resource reference record to see
which). If it is a handle it was locked by the Resource Manager and should be
locked when the converter returns. Result returned must be NIL.

2 - Write resource to disk. ConvertParam is a pointer to a GS/OS write file
parameter block. The file mark is set to the beginning of the resource on disk and
the block is set up to write the entire resource to disk. To simply write the
resource to disk perform the following instructions.

push convertParam Pointer to write parameter block.

push $2013 GS/OS write command.
Js1 $E100B0O Call GS/OS.
Return any errors.

The size of the resource on disk is the same as the converter returned from the
returnDiskSize command (defined next). Resulr returned must be NIL.

4 - Return amount of disk space needed on disk for resource. ConvertParam

is undefined. Resulr is the size the resource will need on disk. If the size is different from the
amount of disk space the resource currently uses the disk space will be freed and new space

allocated. This
cannot change.

command is not made for resources loaded into absolute memory as their sizes

Chapter 21:Resource Manager Page 21-36

Universe Toolbox Update 2/2/89

convertParam
Defined by convertCommand. Pointer 10 GS/OS read parameter block if readResource command.
Pointer t0 GS/OS write parameter block if writeResource command. Undefined if rerurnDiskSize
command.

resPointer
Pointer to resource reference record. See Resource Manager Summary for a description of a
resource reference record. The record contain information that many be needed by the converter.

result

Defined by convertCommand. NIL if readResource or writeResource command. Size resource
needs on disk if rerurnDiskSize command.

Chapter 21:Resource Manager Page 21-37

Universe Toolbox Update . 2/2/89

$131E SetCurResourceApp

Note
Most applications will not have to make this call.

Tells the Resource Manager thar a different application will now be making Resource
Manager calls. This call is used by desk accessories and application switchers. See
Appendix C for more information about application switching.

Parameters

Stack before call

I I

I previous contents |

R . I

! userID | Word - User ID of application, NIL is OK to pass, it has no effect

| I<-- SP

Stack after call
! I
| previous contents |

Zrrers $1E08 resBadAppID Applicaton has not called Resource Startup

Chapter 21:Resource Manager Page 21-38

Universe Toolbox Update 2/2/89

e —— r——

$111E §e?CurResourceFile

Makes a given resource file current. All open files are available starting with the first file.
Most searches will start with the given file and continue to resource file the application
opened first. This call can be used to control which files are searched for resources. Also
sec SetResourceFileDepth to control also control the number of files searched.

Parameters
Stack before call
]

I previous contents
|

|
|
| |
| filelD I Word - ID of open resource file
|
|

Stack after call
| |
| previous contents |
l-- |
] |

Zrrors $1E07 resFileNotFound Resource file not open

Chapter 21:Resource Manager Page 21-39

Universe Toolbox Update 2/2/89

e

$1C1IE SetResourceAttr

The atributes of the given resource are changed to the given atributes. Atribute changes
will only affect future Resource Manager calls. For example, the resource handle for the
given resource will not be locked by SetResourceAttr if the attrLocked bit is passed as
1. However, the resource will locked the next time the Resource Manager allocates a
handle for the given resource.

Parameters

Stack before call
| |
| previous contents |
|

i resourceAmnr | Word - New attributes of resource
I- |
| resourceTwvpe | Word - Type of resource
I- -
l resourcelD I Long - ID of resource
I

! l<-- SP

Stack after call

! |

! previous contents |

4 —

! l<-- SP

=rrors $1E06 resNotFound Resource not found

Resource attributes word

Reserved, must be zero.
aurPage, 1 = page aligned.
atrNoSpec, | = no special memory.
aurNoCross, 1 = not cross bank.

resProtecied, 1 = write protected. —
[1s|14|13|12]11]1o|9|a]7 ls]s]q]3 Iz]z]o]

aurPurge, purge level.

S resAbsLoad, 1 = no handle.
e resConverter, 1 = needs converter.
Reserved, must be zero.

aurFixed, 1 = not move.
agricckas, ¢ = mat meve or purge.

Chapter 21:Resource Manager Page 21-40

Universe Toolbox Update 2/2/89

Chapter 21:Resource Manager Page 21-41

Universe Toolbox Update 2/2/89

$251E SetResourceFileDepth

Sets the number of open resource files the Resource Manager will search during file

search operations. The number will be used by all Resource Manager calls unless the call
notes otherwise. ‘

Parameters

Stack before call
|

| previous contents
}

Word - Number of files to search, $FFFF to search o very last file,
NIL o just return current depth

|
|
L) I
' wordspace | Word - Space for result
| |
' searchDepth [
J-- - |
l i<-- SP

tack after call

previous contents

S
!
I
|
[
|
!

|
!
|
originalDepth | Word - Search file depth before call
I
|

Errors None

Chapter 21:Resource Manager Page 21-42

Universe Toolbox Update 2/2/89

S—TAIE SetResourcelID

The resource's ID is changed to0 a new ID.

Parameters

Stack before call
|

|
| previous contents |
|

newlD Long - Resource's new ID

currentD Long - Resource's current ID

| |

| |

| |

| !

' resourceType | Word - Type of resource
e I

! {

| [

I -1

| |

-- SP
Stack after call
: previous contents :
! :<-- SP
Zrrors $1E06 resNotFound Resource not found
S1EOQS resDupID New ID already used for the resource type

Chapter 21:Resource Manager Page 21-43

Universe Toolbox Update 2/2/89

$241E SetResourceLoad

Note
Most applications will not have to make this call.

Disables and enables reading of resources from disk. When loading is set to FALSE the
Resource Manager will not read resources from disk, but will allocate handles for the
resource. For example a call to LoadResource will return an empty handle if the
resource had not yet been read into memory. This is true for any Resource Manager call
that reads resources from disk unless noted otherwise by a Resource Manager call.

Parameters

Stack before call
I !
| previous contents |
J-- - |

' wordspace | Word - Space for result

. |

I readFlag | Word - NIL to not read resources, 1 to read, negative to just return current
leem oo [:

I I<-- SP

Stack after call
: previous contents :

:- oniginalFlag) : Word - Read flag before call, 0 if not reading, 1 if reading
] <-- P

Zrrors None

Chapter 21:Resource Manager Page 21-44

Universe Toolbox Update 2/2/89

e ——
m—

$191E UniqueResourcelD

Returns a resource ID for a given type which is not used by any resource of that type in
any of the application's open resource files.

Parzameters

Stack before call
|

| previous contents

! longspace Long - Space for result

!

!

! IDrange Word - Range of ID to return, $FFFF for any range of applicaton reserved ID
|

| resourceType Word - Type of resource

|

|

--SP
tack after call

previous contents

S
|
|
|
I
I
I
I

resourcelD Long - Unique resource ID
B <-- SP
Zorors $1EQ9 resNoUniqueID No unique ID found.
$1E04 resNoCurFile There is no current file
ID range

UniqueResourceID can be limited to finding an ID with a 64K boundary by passing an IDrange
parameter from $0000 to $7FFF (applications should never pass a range greater than $07FE). The
purpose of the range is to enable an application to place resources into logical groups in addition to
resource types. The following table show some examples of /Drange parameters and their result.

IDrange Lowest possible ID returned Highest possible ID returned

$0000 $00000001 (NIL is invalid) $0000FFFF

$0001 $00010000 S0001FFFF

$0002 $00020000 $0002FFFF

etc...

S$O7FE $07FE0000 $O7FEFFFF (end of application reserved IDs)
SO7FF SO7FF0000 (system reserved) $O7FFFFFF

S0800-SFFFE are invalid ranges

Chapter 21:Resource Manager Page 21-45

Universe Toolbox Update 2/2/89

7
SFFFF $00000001 SO7FEFFFF (end of application reserved IDs)

Chapter 21:Resource Manager Page 21-46

Universe Toolbox Update 2/2/89

—_———__——————_.—_—_"_——_————-
$ODIE UpdateResourceFile

I

Note

Most applications will not have to make this call because ResourceShutdown will
update all resource files opened by an application.

Does any changes, adds, or deletes of resources to the resource file and writes out the
resource map if needed. All open resources files will be searched startung with the first
file when searching for the given file ID.

Farameters

Stack before call
; previous contents :
5 filelD | Word. of open resource file
i <-- SP

|
previous contents |
-1

Stack after call
|
|
|
!

I<-- SP
Zrrors S$1E07 resFileNotFound The given file ID is invalid
GS/0S errors Returned unchanged

-

Chapter 21:Resource Manager Page 21-47

Universe Toolbox Update 2/2/89

$161E WriteResource

Note

Most applications will not have to make this call because ResourceS hutdown will write
all changed resources to disk.

Writes a resource to the resource file if it has been changed or added. WriteResource
will only write the resource to disk if it is marked as changed. A resource is marked as
changed only if AddResource, MarkResourceChange, or SetResourceAttr have
been called.

Farameters

Stack before call
|

| previous contents
|

resourceType Word - Type of resource to find

Long - ID of resource to find

s

}
|
| resourcelD
i
|
|

-- SP
Stack after call
: previous contents :
- <-- SP
Zrrors $1E06 resNotFound Resource was not found.
GS/0S errors Retumed unchanged

Chapter 21:Resource Manager Page 21-48

Universe Toolbox Update 2/2/89

S———

Xp‘pendﬁA: Standard Resource Types
There are currently no standard types.

Chapter 21:Resource Manager Page 21-49

Universe Toolbox Update 2/2/89

Appendix B: Resource File Structure

This appendix is intended only for application programmers writing tools used to create, delete and edit
resources in the resource fork. Other applications should not need to know this information.
Applications that access the data fork or its map directy are probably just making things hard for
themselves. It will be just another place that bugs and incompatibility will occur.

The format of the resource fork is diagramed as:

Always first in resource fork ——

rFileToMap

Any place in file after header ¢

Resource

Any place in file after header — —

Any place in file after header

Any place in file after header
Resource

The header is the only block of information in the fork that is at an absolute locadon, first data in the fork.
The header then contains an file offset to the map. The map then contains file offsets for every resource.
The map and resource pants of the fork are allocated and moved within the file as the Resource Manager
requires. Therefore, the position of any resource, or map can never be at an qbsolutc lpcauon. Loading a
resource, or map, from an absolute location in the file is a for sure way to be incompatible.

The first LONG in the resource fork is the version of the file's forrnat. The version defined in this \

document is version 0. Versions 0-127 are GS Resource Manager formats, versions greater than 127 2.
Macintosh formats (although the Macintosh really doesn't have a version number as the first LONG. but

Chapter 21:Resource Manager Page 21-50

Universe Toolbox Update

2/2/89

the LONG is always greater than 127 as the structure is currently defined). The format version defines
the format of the entire resource fork. The format described in this document is version 0. Not checking
the version and assuming the format of the resource fork will help your application to first destroy the

user's file then crash in the future.

Version 0 Format;

The file header is a fixed size with the following format:

rFileVersion LONG
rFileToMap LONG
rFileMapSize LONG
rFileMemo

The memo space is reserved for a
this area. Reads and writes must

BYTE[128])

Version of file's format, 0.

File position of resource map, if format version is 0.
Size of map, if format version is 0.

Reserved for application use, if format version is 0.

pplication use. There are no Resource Manager calls to read or write to
be done through GS/OS calls. Be sure not 10 write more than 128 bytes

into the memo area, it will damage the fork's structure.

The format the resource map for format version 0 is:

mapNext LONG
mapFlag WORD
mapOffset LONG
mapSize LONG

mapTolndex LONG
mapFileNum WORD
maplD WORD
mapindexSize LONG
maplndexUsed LONG
mapFreeListSize WORD
mapFreeListUsed WORD

mapFreeList RESBLK([n]
RESREF(n]
RESBLK record definition:
blkOffset LONG
blkSize LONG
RESREEF record definiton:
resType WORD
resID LONG
resOffset LONG
resAtr WORD
resSize LONG
resHandle LONG

Chapter 21:Resource Manager

Space for handle of next resource map, NIL terminates list.

0 = application map, 1 = system map.

Map's file position.

Size of map in file (size can change when in memory).

Offset to index in map from start of map.

IS-_paccz for open resource file reference number (file ID).
ie ID.

Total number of RESREF records in index.

Number of used RESREF records in index.

Number of RESBLK records in mapFreeList array.

Number of RESBLK records used in mapFreeList array.

Array of free blocks in file (RESBLK defined below).

Resource index (RESREF defined below).

Offset to block from start of fork, NIL terminates the array.
Size of the block in bytes.

Resource type, NIL terminates index.

Resource ID.

Offset to resource in file from start of file.

File's attributes (see GetResourceAttr for bit definition).
Size, in bytes, of resource in file.

Handle of resource in memory, NIL if not loaded.

Page 21-51

Universe Toolbox Update 2/2/89

Appendix C: Desk Accessory and Application Switching

Switching between applications is the responsibility of the code doing the switch. The current application
ID must be saved before switching to a different application and restored when switching back to the

original application.
Desk Accessories must handle this switching themselves. This can be done by:

(On entry 10 desk accessory task handler.)

pha Space for result.
-GetCurResource App Get original app, save on stack.

pei <myUserID Pass my user ID.

-SetCurResourceApp Switch to my resource files and current file.

(Perform task including resource calls.)

Pass result from GetCurResource App.
-SetCurResource App Restore original app resource file list.

(Retumn 10 caller.)
The only exception to the above code is when ResourceStartup is called. In this case the code sho

(On entry to desk accessory task handler.)

pha Space for result.
-GetCurResourceApp Get original app, save on stack.
pei <myUserD Pass my user ID.
_ResourceStartup
(Perform task including resource calls.)

Pass result from GetCurResourceApp.
_SetCurResource App Restore original app resource file list.

(Retumn 10 caller.)

The only difference is that the first call to SetCurResourceApp is not made. Instead a call 1o
ResourceStartup is made. ResourceStartup will actually perform the same function as
SetCurResourceApp with the addition of some initialization..

Chapter 21:Resource Manager Page 21-52

Universe Toolbox Update

2/2/89

Resource Manager summary

This section briefl
Resource Manager.

Resource Manager data structures

y summarizes the constants, data structures, and tool set error codes contained in the

Name

Offset Type-

——ae - -

Definition

ResHeaderRec (resource file header record)

rFile Version
rFileToMap

rFileMapSize

rFileMemo
rFileRecSize

$0000

LongWord

$0004 LongWord

$0008
$000C
$008C

LongWord
128 bytes

MapRec (resource map record)

mapNext $0000 Handle
mapFlag $0004 Word
mapOffset $0006 LongWord
mapSize $S000A LongWord
mapTolndex SO00E Word
mapFileNum $0010 Word
maplD $0012 Word
maplndexSize $0014 LongWord
mapindexUsed $0018 LongWord
mapFreeListSize $001C Word
mapFreeListUsed $001E Word
mapFreeList $0020 n bytes

FreeBlockRec (free block record)

bikOffset $0000 LongWord
blkSize $0004 LongWord
blkRecSize $0008

ResRefRec (resource reference record)
resType $0000 Word
resID $0002 LongWord
resOffset $0006 LongWord
resAttr $O00A Word
resSize $000C LongWord
resHandle $0010 Handle
resRecSize $0014

Chapter 21:Resource Manager

Format version of resource fork

Offset from start of fork to resource map record
Number of bytes the map occupies in file
Reserved space for application

Size of ResHeaderRec record

Handle of next resource map

Bit flags

Map's file position

Number of bytes the map occupies in file

Offset from start of map to resource index

GS/OS open file reference number of resource file
ID assigned to this resource map

Total resource records allocated in the resource index
Number of resource records used in the resource index
Total free block records allocated in the free list
Number of free block records used in the free list
Array of free block records

Offset from start of file to a free space in the file
Number of bytes free in the free space
Size of free block record

Resource type

Resource ID

Offset from stant of file to the resource

Bit flags, attributes of the resource

Number of bytes the resource occupies in the file
Handle of resource loaded into memory

Size of resource reference record

Page 21-53

Universe Toolbox Update

Resource Manager constants

2/2/89

Name Value
Map flag values

mapChanged $0002
romMap $0004

Resource flag values

resChanged $0020
resPreload $0040
resProtected $0080
resAbsLoad $0400
resConverter $0800
resMemAtr SC31C

Resource Manager error codes

Description

TRUE if the map has changed and needs 10 be written to disk
TRUE if the resource file is in ROM
All other bits are reserved and must be Zer0.

TRUE if the resource has changed and needs to be written 1o disk
TRUE if the resource should be loaded by OpenResourceFile
TRUE if the resource should never be written to disk

TRUE if the resource should be load at absolute address

TRUE if the resource requires a converter for loading and writing
Bits passed to NewHandle when allocating memory for a resource
All other bits are reserved and must be zero.

Code Name Description

$1EO01 resForkUsed Resource fork not empty

S$1E02 resBadFormat Format of the resource fork is unknown

$1E03 resNoConverter No converter logged in for resource

$1E04 resNoCurFile There are no current (open) resource files

$1EO05 resDupID ID is already used

$1E06 resNotFound Resource was not found

S1E07 resFileNotFound Resource file was not found

S1EO8 resBadAppID User ID was not found, caller has not called ResourceStartup
SIEQ9 resNoUniqueID A unique ID was not found

SIEOA resIndexRange Index is out of range

$1EOC resHasChanged Resource is marked as changed, operation cannot be performed
$1EOD resDiffConverter Different converter logged in for the given resource type.

Chapter 21:Resource Manager

Page 21-54

Universe Toolbox Update 2/2/89

Glossary

applicadon
current file
file list

first file

last file

map

resource

resource file
resource [D

resource type

Any code that has a unique user ID and wants to keep its resource files separate
from other applications that may run at the same time. Applicadons include
programs, parts of the same program, and desk accessories.

The file the Resource Manager starts with when searching open resource files.
OpenResourceFile makes the opened file the current file. The current file can
be set by the application with SetCurResourceFile.

A list of files in the order they were opened. The most recently opened file is
considered the first file in the list, the file that was opened the longest ago is
considered the last resource file.

The most recently opened resource file.

The resource file that was opened the longest ago. If there is a system resource
file it will always be the last file because it was opened when the Resource
Manager first started. If there is no system resource file the first file opened by
the applicarion is considered the last file.

The resource map contained in a resource file that has information about all the
resources in a resource file. The resource map is read into memory from disk
when the resource file is opened. Map usually refers to the resource map in
memory rather than on disk.

Zero or more bytes of continuous data. Although the format of the data is
defined by an application or by standards, the Resource Manager does not
know, or need to know, the format of any resource.

The resource fork of a file. Sometimes refers to the resource map in memory.
A unique number given to a resource of a specific resource type.

A number that specifies a unique a resource format.

Chapter 21:Resource Manager Page 21-55

Universe Toolbox Update 2/2/89

Change History
01 Feb Harry Yee

Changed descripton of UpdateResourceFile (BRC #39758).

LoadAbsResource call number changed from $1B1E to $271E.

Changed definidon of resDuplD error in AddResource call (BRC #401 17)
Changed definition of resBadFormat error in OpenResourceFile call (BRC #39759)
Minor grammatical errors fixed (BRC #40474)

Removed all menton of "rcsNonrApp" errors.

Chapter 21:Resource Manager Page 21-56

