Universe Toolbox Update 2/3/89

Chapter 28
Window Manager

Chamges im Behavicr
DeskTop Drawing
The window manager uses the same default desktop drawing scheme that the finder uses. When the

window manager is started up, it looks in the message center for the DeskMessage. The DeskMessage
has a message type of 2 and is in the following format:

Reserved LONG Used by message center.

MessType Word 2 2 is the DeskMessage

DrawType Word 0 = Pattern, 1 = Picture

DrawData DATA 32 bytes of pattern data or 32000 bytes of picture data.
Task Master

Bits 16, 17, 18, 19 and 20 of the task mask are now defined. NOTE: If you use any of the new
taskMask bits you must also be using the new extended task record described below, this record is
longer than the previous Task Record and taskmaster will store data into them every time taskmaster is
called. The task record is defined as follows:

Original Task Record New Task Record

wmWhat WORD wmWhat WORD
wmMessage LONG wmMessage LONG
wmWhen LONG wmWhen * LONG
wmWhere LONG wmWhere LONG
wmMoaodifiers WORD wmModifiers WORD
wmTaskData JONG wmTaskData LONG
wmTaskMask LONG wmTaskMask LONG

wmLastClickTick LONG
wmClickCount WORD
wmTaskData2 LONG
wmTaskData3 LONG
wmTaskData4 LONG
wmlLastClickPt POINT

Bit 16 of the task mask is defined as tmContentControls. When the bit is set, TaskMaster will find and
track controls in the content region of a window. TaskMaster does this by making a call to the internal
routine TaskMasterContent after it finds the mouse down in the content region of a window. See
TaskMasterContent below for details.

Bit 17 of the task mask is defined as tmControlKey. When this bit is set, TaskMaster will feed
keystrokes to controls in the active window. TaskMaster does this by making a call to the internal
routine TaskMasterKey, after it determines that an event is a key stroke. See TaskMasterKey below for
details.

Bit 18 of the task mask is defined as tmControlMenu. When this bit is set, TaskMaster will feed menu
selections to controls in the active window. TaskMaster does this by calling SendEventToControl.
This way a control can get and handle the standard edit events without any extra work from the
application. These include cut, copy, paste, clear, undo.

Chapter 28: Window Manager Page 28-1

Universe Toolbox Update 2/3/89

Bit 19 of the task mask is defined as tnMultiClick. When this bit is set, TaskMaster will keep track
double and triple clicks.

Bit 20 of the task mask is defined as tmidleEvents. When this bit is set, TaskMaster will send null

events to the active control in the active window. This is used by DefProcs to maintain blinking
cursors.

TaskMaster And Desk Accessories

In the past, Desk Accessories were not able to rely on TaskMaster to do any work for them since they
need 1o run with applications that do not use TaskMaster. To let desk accessories use TaskMaster, we
add a new entry point: TaskMasterDA. Desk accessories pass a task record to TaskMasterDA using
information obtained from the Desk Manager. TaskMasterDA processes that data just like TaskMaster
would if the event occured in an application window.

SizeWindow and ResizeWindow

SizeWindow and ResizeWindow make a NotifyCtls call whenever they change the window size. This
call allows controls to be written that "stick" to the outer edge of the control frame. For example, an
application using a grow control in the lower right comner of the window must move the control have
sizing the window. With this call, the growControl defProc could be set up to move the control
automatically.

AlertWindow

AlenWindows can also be created by referencing a resource. The input to the AlertWindow call that
tells the type of strings are being used has been expanded.

Old Definition:
stringType : word 0 if CString, 1 if Pascal string.

N\

New Definition

AlertFlags : word Bit Meaning
0 0 = cSting, 1 = pascal string
1&2 00 = AlentStRef is pointer
01 = AlentSuRef is handle
10 = AlentStrRef is resource ID
3-15 Must be zero.

Chapter 28: Window Manager Page 28-2

Universe Toolbox Update 2/3/89

' TaskMaster

The various task bits and return codes are not all documented in one place any more. This should fix
the problem.

Task Master Result Codes
Name Value Description
Null $0000
mouseDownEvt $0001 .Event Code -
mouseUpEvt $0002 Event Code -
keyDownEwvt $0003 Event Code -
autoKeyEvt $0005 Event Code -
updateEvt $0006 Event Code -
activateEvt $0008 Event Code -
switchEvt $0009 Event Code -
deskAccEwvt SO00A Event Code -
driverEvt $O00B Event Code -
applEwvt $000C Event Code -
app2Ewvt $000D Event Code -
app3Ewvt SO00E Event Code -
app4Ewvt $O00F Event Code -
wNoHit $0000 alias for no event
inNull $0000 alias for no event
inKey $0003 alias for keystroke
inButtDwn $0001 alias for button down
inUpdate $0006 alias for update event
winDesk $0010 On Desktop.
winMenuBar $0011 On System Menu Bar.
wClickCalled $0012 SystemClick called (returned only as action).
winContent . $0013 Incontent region.
winDrag $0014 In drag region.
wInGrow $0015 In.grow region, active window only.
winGoAway $0016 In go-away region, active window only.
winZoom $0017 In zoom region, active window only.
wininfo $0018 In information bar.
winSpecial $0019 Item ID selected was 250-255.
winDeskItem SO01A Item ID selected was 1-249.
winFrame $001B In frame, but not on anything else.
wilnactMenu $001C Inactive menu item selected.
wClosedNDA $001D Desk accessory closed (returned only as action).
wCalledSysEdit SO01E SystemEdit called (returned only as action).
wTrackZoom $SO001F Zoom box clicked, but not selected (action only).
wHitFrame $0020 Button down on frame, made active (action only).
winControl $0021 Button or keystroke in control (can be returned as event code
and as action).
winSysWindow $8000 high bit set for system windows

Chapter 28: Window Manager Page 28-3

Universe Toolbox Update 2/3/89

Task Master TaskMask Flags

Name Value Bit _Description

tmMenuKey $00000001 O Calis MenuKey

tmUpdate $00000002 1 Handles update events

mFindW $00000004 2 Call FindWindow for mouse down events.

tmMenuSel S00000008 3 Call menuSelect when FindWindow returns inMenu.

tmOpenNDA $00000010 4 Call OpenNDA when MenuSelect returns the ID of an
NDA.

tmSysClick S00000020 5 Call SystemClick when FindWindow returns button down
in system window.

tmDragW $00000040 6 Call DrawWindow when FindWindow returns button
down in drag region.

tmContent $00000080 7 Activate window on click in content region

tmClose $00000100 8 Call TrackGoAway when FindWindow returns inClose.

tmZoom $00000200 9 Call TrackZoom when FindWindow returns inZoom.

tmGrow $00000400 10 Call GrowWindow when FindWindow returns inGrow.

tmScroll $00000800 11 Enable scrolling and activate inactive windows when user
clicks on scroll bar.

tmSpecial $00001000 12 Handle special menu items (ids < 256)

tmCRedraw $00002000 13 Redraw controls upon activate event.

tminactive $00004000 14 Return winactMenu when user selects inacit

tminfo $00008000 15 Don't activate the window on click in the info bar.

tmContentControls $00010000 16 Call FindControl & TrackControl when FindWindow
returns inContent and window is already selected.
tmControlKey $00020000 17 Pass key events to controls in the active window.
tnControlMenu $00040000 18 Pass menu events to controls in the active window.
tmMuldClick $O00080000 19 Put multiclick information in the task record.
tmldleEvents $00100000 20 Pass IdleEvents to the active control in the active window.

Chapter 28: Window Manager Page 28-4

Universe Toolbox Update 2/3/89

New Calils
TaskMasterDA Call $SFOE
Input
Space : WORD
eventMask :WORD Not used
taskRecPtr :LONG Pointer to task record
Output
Result :WORD taskCode

This is the entry point used by desk accessories after the event is passed from the desk manager.
TaskMasterContent Call $S5DOE

Input
private

Output
private

This is an internal entry point used to handle events inside the content region of a window. Thisisa
separate call so that it can be easily patched.

How It Works. When TaskMasterContent gets control it does the following:

Zero TaskData2, TaskData3 and TaskDatad

Call FindControl

Put resulting partCode into low word of TaskData3
Put resulting ControlHandle into TaskData2 ‘
Put resulting ID into TaskData4

IF partCode <> 0 THEN
CALL TrackControl with ActionProcPtr set to SFFFEFFEF
Put resulting partCode into hiword of TaskData3
if partCode = 0 THEN
Put winControl into TaskData
Return nullEvt ($0000)
ELSE

if the control is a check or radio box, Set or clear the value.
Return winControl
ELSE

Return winContent

The idea is that TaskMaster will call FindControl. If the mouse did not go down in a control,
TaskMaster returns winContent. If the mouse went down in a control, TaskMaster calls TrackControl
and tells the control manager to use the action proc assciated with the control. When trackControl
returns, TaskMaster looks at the partCode. A part code of zero indicates the user changed his mind
(mouse came up too far from the control) and TaskMaster returns a result of nullEvent and puts
winContent into the taskData. If the part code is non-zero, the result is winControl. TaskData2
contains the control handle for the case where the mouse went down in a control. Loword of -
TaskData3 contains the part code for the control at mouse down time. Hiword of TaskData3 contains
the part code for the control at mouse up time. TaskData4 contains the control ID (if there is any).

Chapter 28: Window Manager Page 28-5

Universe Toolbox Update 2/3/89
TaskMasterKey Call $SEOE ’

Input
private

Output
private

This is an internal entry point used to handle events inside the content region of a window. This is a
separate call so that it can be easily patched. An application should never make this call,

How It Works. When TaskMasterContent gets control it does the following:

if wmTaskMask bit tnMenuKey = 1| THEN
Call MenuKey
glglenul(cy indicates that a selection was made, we are done
E
Zero TaskData2 and TaskData3
Call SendKeyToControl
Put result code into low word of TaskData3
Put resulting ControlHandle into TaskData2
Put resulting ID into TaskDatad
IF resultCode <> 0 THEN
Put keyDownEwt into TaskData
Return nullEvt (0000)

The idea is that TaskMaster first sees if the Menu Manager wants the key stoke. If the Menu Manager
does not want it, TaskMaster looks for a control in the active window that wants the keystroke. Ifa
control claims the event, TaskMaster puts keyDownEwt in TaskData and returns nullEvt. If no control
wants the keystroke, TaskMaster returns keyDownEvt.

CompileText Call 600E
Input
HandleSpace : LONG space for resulting handle to string
SubType :WORD type of substitution strings: O=cstrings, 1=pascal
SubStringsPtr :LONG Pointer to substitution array
SrcStringPrr :LONG Pointer to source text
SrcSize :WORD Size of source text
Output
StringHandle : LONG Handle to compiled string,handle size is size of text.
Possible Errors:

$0E04 - compileTooLarge - destination text is larger than 63k.

This call creates a handle to text starting from text in a source buffer and substituting special
characters in the original text with strings from the substitution array or the standard substtution
list. The calling routine is responsible for disposing of the handle after it is created. (No handle
has been created if an error is returned.)

The substitution array is an array of 1 to 10 long pointers to strings. The strings can be either
Pascal or C format. Any * character followed bv an ASCII decimal digit (0-9) will be replaced with

Chapter 28: Window Manager Page 28-6

Chniverse Toolbox Update 2/3/89

the corresponding string from the substirugon array. First string pointer in the array would replace
*0 in the source string.

The # character followed by an ASCII decimal digit (0-6) will be replaced with a corresponding
standard string.

#0 will be substitutes with OK

#1 will be substitutes with Cancel
#2 will be substitutes with Yes

#3 will be substitutes with No

#4 will be substitutes with Try Again
#5 will be substtutes with Quit .
#6 will be substitutes with Continue

Both the # and * characters can be made part of the final compiled string by doubling them in the source
string.

Error Window Call $620E
Input
ResultSpace :WORD space for button number selected
SubType :WORD type of substitution strings: O=cstrings, I=pascal
SubStringPtr :LONG Pointer to substitution string
ErrNum :WORD Error message number
Output

StringHandle :WORD Button number selected

Possible Errors:
Resource manager errors are returned unchanged.

This call creates a dialog box containing the specified error message. Error numbers $0 through $71
correspond to GS/OS errors. These can be used by programmers during program development. The
errors bevond $71 are more explicit and are used by system and toolbox routines.

The ErrorWindow call reads its messages from a resource file. The error messages have a
resource type ID of $8020 and are of the form of an alert string. The resource ID has $O7FF as its high
word, and the error numbers (see the appendix) in the low word.

Descriptions of the messages in the system resource file (sys.resources) are given in the
appendix. Since the system resource file is the last to be searched. it is possible to display custom error
messages by opening another resource file containing $8020 resources with the proper ID numbers. If
glis is the case, the ErrorWindow call will automatically display the message from the current resource

ie.

NewWindow2 Call 610E

This call is very similar to NewWindow except that the definition of the window is kept in a resource
instead of at a particular address in memory.

Inputs:
HandleSpace :LONG space for result. . o
TitlePr :LONG pointer to Pascal string for window title, NIL to use title in
RefCon :LONG any value the applica.ion desires.

Chapter 28: Window Manager Page 28-7

Universe Toolbox Update 2/3/89

ContentDrawPtr : LONG address of content draw routine, NIL if none.
DefProcPur : LONG address of window defProc, NIL for standard.
ParamTableDescriptor : WORD indicate what inReference means
ParamTableRef :LONG see below.
Resource Type :WORD resource type of resource that is window parameter table
template.
Output:
GrafPuPu :LONG pointer to window graphPort, NIL if window not created.
Possible Errors:
Resource Managers errors
Memory Manager error

Window Manager errors from NewWindow
Control Manager errors from NewControl2

The TitlePtr, RefCon, ContentDrawPtr, and DefProcPtr are all provided so that you can have
newWindow2 modify the template areas before it calls NewWindow. This way, you can have a
standard template and use these parameters to create different windows.

g'hc InputVerb parameter describes what is being passed in the inReference parameter, they are as
ollows:

$0000 - InReference is a pointer to a template
$0001 - InReference is a handle to0 a template
$0002 - InReference is the resource ID of the template.

NOTE: You should still use the appropriate ResourceType for the template you are using even if y
are passing the template as a pointer or a handle.

Definition of window parameter table resource kind 1

Resource Type $800E rWindParaml

Chapter 28: Window Manager Page 28-8

Universe Toolbox Update 2/3/89

Resource Structure:

pllength WORD Number of bytes in parameter list. $004E
plFrame WORD Type of window, frame flags. $nnnn
plTide LONG Reference to window's title. $nnnnnnnn or NIL
p1RefCon LONG Reserved for application. Replaced
plZoomRect RECT Size and position of zoomed window. $nnnn...
p1ColorTable LONG Reference 1o window's color table. $nnnnnnnn or NIL
p1YOrigin WORD Content's vertical offset. $nnnn
p1XOrigin WORD Content's horizontal offset. $nnnn
plDataHeight WORD Height of total data area. $nnnn
pl1DataWidth WORD Width of total data area. $nnnn
plMaxHeight WORD Max grow height. $nnnn
p1MaxWidth WORD Max grow width. $nnnn
plVerScroll WORD Amount to scroll vertically (arrows). $nnnn
plHorScroll WORD Amount to scroll horizonally (arrows). $nnnn
plVerPage WORD Amount to page vertically (page region). $nnnn
plHorPage WORD Amount to page horizontally (page rgn). $nnnn
plinfoText LONG Any value, passed to info draw routine. $nnnnnnnn
plinfoHeight WORD Height of infomation bar. $nnnn
p1DefProc LONG Address of definition procedure. Replaced
plinfoDraw LONG Address of routine to draw Info Bar. NIL
plContentDraw LONG Address of routine to draw content region Replaced
pl1Position RECT Size and position of window. $nnnn...
plPlane LONG Plane window should be in. NIL or-1
p1ControlList LONG Reference to ControlList. $nnnnnnnn or NIL
plinVerb WORD describes the Reference fields above $0000

PlInVerb describes the three reference fields p1Title, p1ColorTable, and plControlList.

P1Title can be a pointer, handle, resourceID, or NIL. If p1Title is NIL, then the template is assumed

not to have a tide in it. If you pass a titlePtr when you make the newWindow2 call, the plTitle field

will be ignored completely, If you pass a pointer or a handle in p1Title newWindow2 will make a

copy of the title and use the copy when creating the window. If you pass a resource ID in p1Title,
newWindow2 will load an rPString resource with the given ID and use it as the windows title. To

t§plelc1fy what p1Title contains set the appropriate bits (bits 8 and 9) in p1InVerb with one of the
ollowing:

titleAsPir $0000 - pltitle parameter is a pointer to a title
tideAsHandle $0100 - pltitle parameter is a handle to a title
tileAsResource $0200 - pltitle is the resource ID of a rPString resource

NewWindow2 always copies the desired title into a handle for its own use, CloseWindow will
dispose of this handle. Window titles that are handles can be differentiated from pointers by handles
having their high bit (bit 31) set. All calls to the Window Manager that fetch or set window titles
must conform 1o this convention. SetWTide will also dispose of the exsisting title if it is a handle.

P1ColorTable can also be a pointer, handle, resourceID, or NIL. If P1ColorTable is NIL, then the
template is assumed not to have a color table. If you pass a pointer or a handle in P1ColorTable
newWindow?2 will make a copy of the title and use the copy when creating the window. If you pass
aresource ID in p1Title, newWindow2 will load an rWindColor resource with the given ID and use
it as the windows color table. To specify what rWindColor contains set the appropriate bits (bits 10
and 11) in plInVerb with one of the following:

ColorAsPr $0000 - P1ColorTable is a pointer to a color table
Chapter 28: Window Manager Page 28-9

Universe Toolbox Update 2/3/89

ColorAsHandle $0400 - P1ColorTable is a handle 10 a color table
ColorAsResource $0800 - P1ColorTable is the resource ID of an rWindColor resource

CloseWindow will dispose of the color table if it is a handle. SetFrameColor will dispose of the
exsisting color table if it is a handle. Format of the rWindColor resource follows (NOTE: it is the
same format as color tables required by NewWindow).

rWindColor $8010

Structure of the resource is the same as the window color table defined in Window Manager
documentation.

frameColor WORD
titleColor WORD
tBarColor WORD
growColor WORD
infoColor WORD

The plControlList parameter is passed directly to the newControl2 call, the lower 8 bits of plinVerb
are passed as the verb for that call. Please see the control manager chapter for information on the
NewControl2 call.

NOTE: If you are creating a window template resource, and you want to include a title, color table,
or control list, you may only pass references to resource ID's.

Definition of window parameter table resource kind 2

Resource Type $800F rWindParam2

Resource Structure:
p2ListID . WORD Version of resource format. NIL
p2DefProc LONG Address of window defProc. Replaced
p2Data BYTE[n] Defined by version format.

A valid defProc pointer must be passed to NewWindow2 when using the rWindParam2 template.

Chapter 28: Window Manager Page 28-10

Universe Toolbox Update 2/3/89
APPENDIX
NOTE: The descriptions of error messages beyond $71 in this appendix is preliminary.

The button numbers refer to the following:

0. OK

1. Cancel

2. Yes

3. No

4. Try Again

5. Quit

6. Continue .

7. Replace

8. Initalize

9. Eject

10. Skip file

11. Erase

12. Shut Down

Error Number (hex) Message Icon Buttons
0. No error occured (30). No Icon 0
1. Bad system call number ($1). No Icon 0
4. Invalid parameter count ($4). No Icon 0
7. GS/OS already active ($7). No Icon 0
10. Device not found ($10). No Icon 0
11. Invalid device number ($11). No Icon 0
20. Bad request or demand ($12). No Icon 0
21. Bad contol or status code (323). No Icon 0
22. Bad call parameter ($22). No Icon 0
23. Character device not open ($23). , No Icon 0
24. Characier device already open ($24). No Icon 0
25. Interrupt table full ($25). No Icon 0
26. Resources not availabie ($26). No Icon 0
27. 1/O Error ($27). No Icon 0
28. Device not connected ($28). No Icon 0
29. Driver is busy and not available ($29). No Icon 0
2B. Device is write protected ($2B). No Icon 0
2C. Invalid byte count ($2C). No Icon 0
2D. Invalid block number ($2D). No Icon 0
2E. Disk has been switched ($2E). No Icon 0

Chapter 28: Window Manager Page 28-11

Universe Toolbox Update

2F. Device off line/no media present (S2F).
40. Invalid pathname syntax (S40).
43. Invalid reference number (S43).
44. Subdirectory does not exist (544).
45. Volume not found ($45).

46. File not found ($46).

47. Duplicaie path name ($47).

48. Volume full ($48).

49. Volume directory full (349).
4A. Version error ($4A).

4B. Bad storage type (84B).

4C. End of file encountered (S4C).
4D. Position out of range (S4D).
4E. Access not allowed (S4E).

4F. Buffer 100 small (S4F).

50. File is already open ($50).

51. Directory error ($51).

52. Unknown volume type (S52).
53. Parameter out of range ($53).\
54. Out of memory (S54).

57. Duplicate volume name ($57).

58. Not a block device ($58).

59. Specified level is outside legal range ($59).

5A. Block number 100 large ($5A).

5B. Invalid pathnames for change_path ($5B).

5C. Not an executable file ($5C).

5D. Operating system no supported ($5D).
SF. Stack overflow (SSF).

60. Data unavailable ($60).

61. End of directory has been reached ($61).
62. Invalid FST call class ($62).

Chapter 28: Window Manager

No Icon
No Icon
No Icon
No Icon
No Icon
No Icon
No Icon
No Icon

No Icon

No Icon
No Icon
No Icon
No Icon

No Icon

No Icon

No Icon
No Icon
No Icon
No Icon
No Icon
No Icon
No Icon
No Icon
No Icon
No Icon
No Icon
No Icon
No Icon
No Icon

No Icon

© O o ©o o o © ©o o

© O O o o © © o o o

2/3/89

Page 28-12

Universe Toolbox Update

63. File does not contain requested resource ($63). Nolcon

64. Specified FST is not present in system ($64). Nolcon

65. FST does not handle this type of call (865). No Icon

66. FST handled call, but result is weird (366). No Icon

67. Internal error ($67). No Icon

68. Device list is full ($68). No Icon

69. Supervisor list is full (369). . No Icon

70. Cannot expand file, resource already exists ($70).

71. Cannox add resource fork to this type of file ($71).

80. Error creating the new directory: Stop
(reason substitution)

81. Error saving the file: Stop
(reason substitution)

82. Insufficient access privaledges to open that folder.

83. The selected folder cannot be opened: Stop
(reason substitution)

84. You cannot replace a folder with a file. Stop

85. That file already exists. Stop

86. Insufficient memory to perform that operation. Stop

About (byte substitution)K additional needed.

87. Initialization failed: Disk write protected. Stop

88. The pathname is 00 long. Stop

89. The disk is write protected. Caution

8A. The disk is full. Stop

8B. The disk directory is full. Stop

8C. The file is copy-protected and can't be copied. Stop

8D. Memory is full. Stop

8E. There isn't enough memory remaining to compiete

this operation. Pleueclosemewmdcwsmdu'ymin.

8F. The item is locked and can't be renamed. Stop
90.Anl/0enorlmoccunedwhileusingthedisk. Stop
91. This disk seems to be damaged. Stop
92. Not a ProDQS disk. Stop
93. No on-line volumes can be found. Stop

Chapter 28: Window Manager

No Icon

No Icon

Stop

Stop

© © o © o o o

2/3/89

Page 28-13

Universe Toolbox Update 2/3/89

94. Insen the disk (disk name substittion). Swap 1

Chapter 28: Window Manager Page 28-14

