applec computer Inc®

10260 Bandley Drive
Cupertino, California 95014
(408) 9961010

THE APPLE TAPES

INTRODUCTORY PROGRAMS
FOR THE APPLE IL

1 NHH ‘

3 45
8 ESCORE IS GE’TING

m i SEBRREBEREY

m:mm i1

i
HE TR R S s T HEH R R T

] !M HH i
I PR e]

s, oy

“apple computer Inc:

NOTICE

Apple Computer Inc. reserves the right to make improvements in the
product described in this manual at any time and without notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTIWARE DESCRIBED IN THIS
MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. APPLE COMPUTER INC. SOFTWARE IS SOLD OR LICENSED
AS IS". THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE IS WITH THE
BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR PURCHASE,
THE BUYER (AND NOT APPLE COMPUTER INC., ITS DISTRIBUTOR, OR ITS
RETAILER) ASSUMES THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR, OR
CORRECTION AND ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES. 1IN NO EVENT
WILL APPLE COMPUTER INC. BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE SOFTWARE, EVEN IF
APPLE COMPUTER INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED
WARRANTIES OR LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

This manual is copyrighted and contains proprietary information. All
rights are reserved. This document may not, in whole or part, be
copied, photocopied, reproduced, translated or reduced to any electronic
medium or machine readable form without prior comsent, in writing, from
Apple Computer Inc.

©1979 by APPLE COMPUTER INC.
16260 Bandley Drive

Cupertino, Californmia 95014
(408) 996-1¢1¢

All rights reserved.

APPLE Product # $30-0@56-¢@

THE APPLE TAPES
INTRODUCTORY PROGRAMS
FOR THE APPLE If

PREFACE

This booklet contains documentation for the programs that came with your
Apple II system. These programs illustrate some of the capabilities
available to you with your new Apple. You will understand these
programs better if you read the Apple BASIC Programming Manual first,
but that is not necessary to your enjoyment of the programs. To use any
Apple program on cassette tape, LOAD the tape in the following manner.

The Usual Procedure for Loading Tapes

1. Make sure your computer is in Integer BASIC

2. Rewind the tape

3. Start the tape playing

4. Type LOAD
After you press RETURN the cursor will disappear. Nothing
happens for from five to twenty seconds, and then the Apple
beeps. This means that the tape’s information has started
to go into the computer. After some more time (depending on
how much information is on the tape, but usually less than a
few minutes) the Apple beeps again and the prompt character
and the cursor reappear.

4a. If you got an error message such as ERR , the tape did not
LOAD properly. Begin the tape LOADing process again at
step one.

5. Stop the tape recorder and rewind the tape. The information
has been transferred, and you are finished with the tape
recorder for the time being.

NOTE: If you have some experience as a programmer, it may
interest you to know that Programmer’s Aid #1 is
installed on the main board of your new Apple. Refer
to the Programmer’s Aid #1 manual for information on
its uses.

Enjoy your new Apple!

TABLE OF CONTENTS

1¢
12
12
13
14
16
16
18
2¢
27

28

Alignment Test Tone

Sampler

Brick Out

Color Demo

Color Sketch

Super Math

Applevision

Biorhythm

Pinball

Infinite Number of Monkeys

Integer BASIC Subroutines
—Automatic LOMEM:
-Integer BASIC CHR $ Function
-Moving Blocks of Memory
-Pseudo Typewriter
-Page List Program
-Integer BASIC VAL Function
~Illegal Statement Writer
~-~Integer BASIC Token Table
Space War

Apple Trek

ALIGNMENT TEST TONE

The Alignment Test Tone tape does not contain a program. It contains a
high-frequency tone with which you can align your tape recording head.
If you have problems loading programs into your Apple from cassette
tape, your recording head may need aligning.

It is possible that your problem loading programs from cassette tape is
being caused by a mechanical malfunction. Before using this tape, check
that your tape recorder is mechanically sound and your Apple is working
properly. You should be aware that tapes recorded with a poorly aligned
head will not work properly when played back on a recorder with a
properly aligned ome. Before you use the Alignment Test Tone tape, it
is a good idea to LOAD any programs you may have saved with your poorly
aligned recorder and then reSAVE them with a recorder that you know is
working well.

You will need the following articles in order to align your tape
recording head with this method:

1. The Alignment Test Tone cassette tape.

2. A non-conductive surface to work on, such as a wooden table or desk.
If you work onm metal or any other conductive surface, you may get an

) electrical shock, or damage your recorder’s electronics.

3. A Phillips screw driver.

4. Batteries for your cassette recorder.

The Alignment Test Tone is not a program. In fact, your Apple isn’t
even used in the head-aligning process. Disengage your cassette
recorder from your Apple, and rewind the Alignment Test Tone tape to the
beginning. Now, unplug your recorder, and you are ready to begin.

Note: Your recording head can only be adjusted to approximately its
ideal alignment with the Alignment Test Tone. For a more accurate
adjustment, your tape recorder must be serviced by a trained techmician.

The head-aligning process is really quite simple. The tape is played on
the cassette recorder you wish to adjust. The high-pitched sound
emitted by the tape is about 5 kilohertz or five thousand cycles per
second. While the tape is playing, the azimuth adjustment screw is
adjusted until the sound made by the tape is at its loudest. When the
sound is as loud as it will go, the recording head is adjusted properly.

Cassette tape recorders are all a little different. On some of them the
azimuth adjustment screw is easy to get to, while on others (such as the
Panasonic) the outside cover must be removed from the recorder in order
to locate the screw. Unplug your recorder, remove the Alignment Test
Tone tape, and press the PLAY button. The recording head, (the shiny

metal thing, usually centered just behind the control buttons) and some
other metal and plastic parts, will move forward (toward the speaker).

If you didn’t see this in action, press the STOP button and then press
the PLAY button again, watching carefully.

1 Azimuth Adjustment Screw

2 Recording Head

3 Comtrol Buttons

Locate the recording head in the photograph, then locate the recording
head on your own tape recorder. The rounded, highly polished surface on
the recording head puts recorded information om the tape. This surface
should not be touched. In fact, you should avoid touching all the parts
on the inside of your recorder as much as possible. O0il from your skin
can ruin some of these parts, and a slip of your finger could cause
delicate parts to slip out of adjustment.

On most cassette recorders, you will have to remove the plastic casing
that houses the recorder in order to get to the azimuth adjusment screw.
Locate the azimuth adjustment screw in the photograph. The dark area
surrounding the screw is a sealant to help keep the screw from slipping

out of adjustment. The sealant is probably colored red on your
recorder. If you can reach the azinmuth screw well enough to adjust it
with a screwdriver without removing the cover, you can skip the next two
paragraphs, as they deal with removing the recorder’s outside casing.

To remove the casing, turn the recorder bottom-up and remove all the
screws on the bottom, including the one in the battery case undermneath
the batteries. (The Panasonic has five screws holding the case to the
inner mechanism, counting the one in the battery case.) Make sure you
know which screw fits in which hole so that they won’t get mixed up when
you put your recorder back together. Then gently remove the bottom
casing, being careful of the wires that hold it to the inmer mechanism.
These wires are not very strong and some care must be taken to see that
they are not damaged.

Now that the back has been removed, the handle and the top part of the
casing should come right off. If they don”t come off easily, look for
screws on the front. Be careful not to remove any screws unless they
attach the inner mechanism to the outside cover. When all the screws
are out, the top casing can easily be removed. Again, be very careful
of the wires. They are easily damaged. Arrange the parts of the
recorder so that the inside section is laying flat on your work surface,
and there is no tension on any of the wires.

Again find the azimuth adjustment screw in the first photograph. Then
find the azimuth adjustment screw on your own tape recorder. Put
batteries in your recorder’s battery case, (wires commect the batteries
to the recorder’s inner mechanism), and play the Adjustment Test Tone
tape. When you hear the high-pitched tone, adjust the azimuth
adjustment screw with a phillips screw driver until the tome is as loud
and piercing as you can make it. Put a little nail polish or white glue
on the azimuth adjustment screw to help keep it from slipping out of
adjustment. Don’t move the recorder until the polish or glue is
thoroughly dry (nail polish dries faster).

That’s all there is to it. If you think you may have gotten skin oil on
any sensitive part of the recorder, you can clean it carefully with

rubbing alchohol and a cotton swab. Remove the tape and put your tape

recorder back together, making sure to include the handle, and being
very careful of the wires, of course.

SAMPLER

Submitted by: Bruce Tognazzini
Program Language: Integer BASIC

Ah, San Francisco, the romantic city. The lights, the cable cars, the
Golden Gate Bridge. Many people journey far just to see this beatiful
city. Whether you’ve been there or not, you ought to see Bruce
Tognazzini’s lovely needlepoint rendition of San Francisco.

"Needlepoint on a computer?” you say? Well, yes. And the needlepoint
you can create on the Apple has dimensions your grandmother’s needlework
certainly never did. You’ll notice that, in Bruce’s needlepoint, lights
flicker and the water of the Pacific ocean moves gently. You can almost
hear the calm ocean lapping against the quiet shore. Try and top that
with needle and thread!

To see Apple’s needlepoint sampler, LOAD the tape marked SAMPLER and
then type RUN . After the program title, copyright notice, and some |
brief instructions appear on the screen; just press the space bar and
you will be rewarded with Bruce’s vision of "The City".

BRICK OUT

Submitted by: Bruce Tognazzini
Program Language: Integer BASIC

Is your eye sharp? Is your hand quick? Brick Out will test your
reflexes. To play Brick Out, first use the usual procedure to LOAD the
tape marked BRICK OUT. Once the tape is LOADed, type RUN and the game
title will appear on the screen followed by the all-important question
"HI, WHAT’S YOUR NAME?". The name you type must be less than eighteen
characters long (including spaces) because this program can’t read words
any longer than that. If you do type a name that is too long, and get
an error message from your Apple, just type RUN and the program will
begin over again.

After asking your name, the program will ask whether or not you prefer
the standard colors. If you reply with a YES, the game board will
appear on the screen in the standard colors. If you reply with a NO,
all kinds of interesting things will happen. We won’t tell you what
kinds of things; you’ll just have to try it and find out.

No matter what answer you give, be ready with one of the game controls.
Your Apple will tell you if you are using the wrong one. Have fun!

COLOR DEMO

Submitted by: Jef Raskin and Rod Holt
Program Language: Integer BASIC

Color Demo is a low-resolution color graphics demonstration program. To
see the Color Demo program do its stuff, LOAD the tape labeled COLOR
DEMO, and then type RUN . A list of options numbered ome through four
will appear on your Apple’s screen.

This kind of list is called a "menu" and works just like a menu in a
roadside cafe. If you wanted, for instance, two eggs, fried potaoes,
whole wheat toast, and coffee, you could order a number 6. To use the
menu, just type the number you have chosen. Press the RETURN key to
stop any demonstration and return to the menu.

You may notice that the first selection is handy for setting the color
on your TV. If you choose this selection, some bars of light will

appear on the screen. Turn off any automatic fime tuning on your TV
and, with some adjustment of the Picture, Brightness, Color, and Hue
knobs, these bars of light will become sixteen bars of color
corresponding to the sixteen colors that can be used for programming the
Apple. The names of the colors are abbreviated below the corresponding
bars.

The second option is the same as the first one except that numbers from
zero to fifteen have replaced the color names that appeared below the
color bars. The Apple refers to the colors by these numbers.

You’ll have to figure out the third and fourth options yourself. We
don’t think you’ll have any trouble. Why don’t you try one now?

COLOR SKETCH

Submitted by: Bruce Tognazzini
Program Language: Integer BASIC

If you like to draw, you’ll enjoy Color Sketch. The Color Sketch
program is fun for children and adults alike. With it, you can draw

pictures on the Apple screen in fifteen different colors. Then, if you
choose, you can save your pictures on cassette or diskette for future
enjoyment.

The cursor, controlled via the game controls, leaves a trail of color
behind it, except when the special "invisible" color is used.
"Invisible" allows you to move the cursor around the screen without
changing in your picture. The colors are all displayed below the
sketching screen. If you wish to change the color you are using, simply
type the letter that appears below the color of your choice. The
current color’s name is shown in the text window at the bottom of the
screen.

All the instructions you need to draw colorful pictures with Color
Sketch are included in the program. Just LOAD the tape labeled COLOR
SRETCH and then type RUN . When your picture is finished, press the
ESC key to access more Color Sketch program features. These extra
features include the ability to LOAD pictures from tape or diskette and
to SAVE pictures onto tape or diskette, a "back to the drawing board"
feature, and more. All the extra features are as easy to use as typing
a number.

When you have finished using the Color Sketch program, type CALL =340
if you wish to look at another program. The Color Sketch program stores
information in areas of the Apple”s memory in which programs are not
usually stored. CALL -34f puts things back in the order the

Apple expects them to be. Typing CTRL B from the monitor (asterisk
prompt) will do the same thing, but, with CALL -340 , you don”t have to
enter the monitor first.

SUPER MATH

Submitted by: Ron Graff
Program Language: Integer BASIC

Kid: "Aw, gee, I don’t like flashcards. Can’t we do it later?"”

Parent: "Come on, dear. If you had studied for your math test you
wouldn’t have to practice your arithmetic now."

Does this scene sound familiar? Flash cards can be uninteresting, but
if you fall behind in math class + « .

Fortunately there is a solution to the flash card dilemma . . . the
Super Math program. With your Apple and this program you can practice
arithmetic to your heart’s content (or your teacher’s) without once
glancing at a flash card.

To use the Super Math program put the tape labeled SUPER MATH into your
recorder and LOAD it. Then type RUN . The program will first greet
you and ask for your name. When it does, type your name and then press
RETURN . Now you are ready to set up your lesson.

Several options are open to you at this point. The first one lets you
choose the type of problems you would like to practice (addition,
subtraction, multiplication, division). After that you can choose
whether or not you would like to have one number consistent in all the
problems for this lesson (handy for learning the multiplication tables).
Then you get to choose the level of difficulty at which you wish to
practice (from one to ninety-nine). If you aren’t sure what level to
choose, type @ and the program will give you a series of test
questions designed to determine the level that is right for you.

After you“ve chosen the level at which you wish to practice, the
problems will appear on the screen one at a time. A "dash" appears
where the answer will appear when you type it. The dash moves over as
you type each digit of your answer. If you mistype something, you can
use the arrow keys to edit your answer. When you think your answer is
right, press RETURN and the program will check to see that it is. If
your answer is incorrect, you will be given a chance to correct it, but

the answer will be scored as wrong; if the answer you give is correct,
the program will raise the problem level and let you choose whether you

would like to do another problem, or whether you would like to score

your progress so far. You can continue doing problems as long as you
like.

That”s all there is to using the Super Math program. Now that you know
how to use it, you will never have to use flash cards to study
arithmetic again.

APPLEVISION

Submitted by: Bob Bishop
Program Language: Integer BASIC

Bob Bishop did a wonderful job with Applevision. It is certainly one of
the best examples of computer animation ever done on the Apple.
Applevision is reminiscent of an old-fashioned vaudeville act, complete
with music. So curl up by the fire with a big bowl of popcorn and the
family gathered all “round, to watch Applevision.

To see this marvelous piece of animation in action type HIMEM:16384

and then press RETURN . If you are an experienced programmer, you will
know what this command means. Now LOAD the program from cassette tape,
and then RUN it. If you LIST the program before you RUN it, you will
see that it is not written in the BASIC you are used to. That is
because the first part of this program is written in machine language.
Not to worry. It will RUN just as well as a program written entirely in
BASIC.

When you are finished watching the program, turn your Apple off, and
then, if you wish to continue using it, turn the Apple back on again.
This must be done because the Applevision program resets memory
locations in the Apple so that, when it is finished, other programs will
not RUN properly.

BIORHYTHM

Submitted by: Computer Generation
Program Language: Integer BASIC

The theory of biorhythms has been in the news in recent years. It
states that human capacities vary in cycles. The most important cycles
are these:

Physical
The physical biorhythm, varying over a 23-~day cycle, is regarded as an

indirect indicator of physical well-being, basic bodily functions,
strength, coordination, and resistance to disease.

Emotional

The emotional biorhythm, varying over a 28-day cycle, is regarded as an
indirect indicator of sensitivity, mental health, mood, and creativity.

Mental

The mental biorhythm, varying over a 33-~day cycle, is regarded as an

indirect indicator of alertmness, analytical ability, and mental
receptivity.

These biorhythms are thought to affect behavior. When they cross a
"baseline” the functions change phase--become unstable——and this causes
Critical Days. These days are, according to the theory, our weakest and
most vulnerable times. Accidents and illnesses are thought most likely
on physically critical days. Depression, quarrels, and frustration are
thought most likely on emotionally critical days. Mental slowness,
resistance to new situations, and unclear thinking are thought most
likely on mentally critical days.

To get a color plot of your three biorhythms over a month-long period,
follow these steps:

1. LOAD the program.
2. Type RUN and press RETURN .

3. When asked, type your name.

4. When asked, type your date of birth.
5. When asked, type the date for which you want a forecast.

The program will calculate the number of days between the birth date and
the forecast date, and print it on the screen, then plot the three
biorhythms in three different colors on the screen. It will then ask
you whether you want another plot, or whether anyomne else wants one. If
you reply No to both questions, the program will end.

PINBALL

Submitted by: Charlie Kellner
Program Language: Integer BASIC

What do you do on a Friday evening when you’ve sprained your ankle and
can’t walk down to the neighborhood pizza parlor to play pinball? Let
your fingers do the walking and play pinball with your Apple, of coursel
It"s easy and fun, and you’ll save plenty on shoe leather.

The Pinball program is a dynamic simulation of a real-life pinball
machine, complete with bumpers, spinners, flags, and more. You move the
"flipper" back and forth with one of the Apple’s game controls. The
program scores your game and keeps track of the highest scores for that

game. This feature makes it easy to compete against yourself and
others.

To play Pinball, LOAD the tape labeled PINBALL and then type RUN .
Your Apple will give you playing instructions on request. You may never
go to a pizza parlor again—-except to get pizza.

INFINITE NUMBER OF MONKEYS

Submitted By: Bruce Tognazzini
Program Language: Integer BASIC

What high-placed, red-faced government officials would rather this story
never got out? What federal agency did its best to suppress it and
almost got away with it? What Washington paper thought the story just
too hot to handle?

Now, for the first time ever, anywhere, APPLENEWS prints the TRUTH of
the most mendacious mess of monkey-business since the Cooper-Simian
scandals of 1883.

Apple’s fearless reporter went where others with greater olfactory
sensibilities feared to tread to bring back the greatest story of the
2¢th century. Find out why that New England paper company chopped down
a 100@ yvear-old forest in Georgia. Learn the truth behind the recent
Brazilian banana shortage.

Instructions

LOAD the program in Integer BASIC and RUN it; you will be presented with
the menu. For a discussion of choices 2 and 3, see the Integer BASIC
Subroutine Package, described on the mext page. Type "1" and press
RETURN , and the story will be told. Since the author can’t imagine why
anyone would wish to leave this program during its execution, the only
way out before the end of the story (once it has begun) is to type a
CTRL-C .

Our intrepid journalist made three trips to the historic site during the
course of writing this program; three subjects were viewed, and three
results were recorded. Unfortunately, at some point the manuscripts
became jumbled, so do not be surprised to discover three different
outcomes, chosen almost, it seems, at random.

After the story has been presented, you will be told that pressing
RETURN will return you to the menu. Having returned, you may then exit
the program by selecting choice 4.

If you have only 16K bytes of memory, you may reduce the program size by
typing

DEL 7¢¢, 132¢

before SAVEing it. This will delete the page-list program which is not
used by The Infinite Number of Monkeys program itself.

INTEGER BASIC SUBROUTINES

Submitted By: Bruce Tognazzini
Program Language: Integer BASIC

The Infinite Number of Monkeys (see previous page) is an approximately
8K program which has been expanded to almost 20K by adding a large
number of REM statements. These REM statements describe in detail the
Integer BASIC Subroutine Package, a group of short but powerful
subroutines and functions (many just a single line long) which expand
the power of Integer BASIC. This program was also designed to be
studied by those who are just learning BASIC. It assumes nothing beyond
the user’s having read the Apple II BASIC Programming Manual. It is
structured in clearly defined subroutine blocks which interact as little
as possible. This allows the user to lift, for example, the VAL(V)
function, whole, out of this program and append it to any other program.
(Please see the Programmer’s Aid #1 manual, chapters one and two.) The
author keeps a diskette of such routines that can be immediately EXECed
into place (see the Apple Do’s and Don”ts of DOS manual).

The Subroutine Package in The Infinite Number of Monkeys program
contains the following subroutines and functions:

1) Automatic LOMEM:

2) Integer BASIC CHRS Function
3) Moving Blocks of Memory

4) Pseudo Typewriter

5) Page LIST Program

6) Integer BASIC VAL Function
7) 1Illegal Statement Writer

Instructions
LOAD the Infinite Number of Monkeys program in Integer BASIC and RUN it.

You will be presented with a menu. For a discussion of choice 1, see
the discussion of The Infinite Number of Monkeys on the previous page.

10

If you have a 16K byte Apple, you may reduce the size of the Subroutine
Package by typing

DEL 190¢, 280¢¢

This will eliminate the text portion of The Infinite Number of Monkeys
while retaining the entire subroutine package.

A Note on Renumbering

Select choice 2, THE TABLE OF SUBROUTINES , from the main menu. Yes,
it did happen. Return to the menu (by pressing the RETURN key) and
select choice 2 again. When the author began this program, it was
decided to make frequent, almost constant use of the Renumber/Append
program, which you probably have on-board in Programmer’s Aid #1, but
which is also available in a softer form. To allow fluid renumbering,
everything in this program, including the line numbers on this menu,
must be updated when the program is renumbered. If you LIST line 184§,
you will see the line that produced the menu; as the menu is a LISTing,
rather than a print—-out, the updating is done by the renumber program
itself.

On Using the Auto-List Program

If you are not already there, please return to the main menu (by
pressing the RETURN key) and select choice 3, THE AUTO-LIST PROGRAM .
You will again be shown the Table of Subroutines and will be given
instructions on the use of the auto-lister. This lister will show one
text screen of lines at a time and then pause either until you are ready
for the next page (press the space bar) or until you wish to cancel the
listing and return to the Table of Subroutines (press ESC). You give
Apple your list request by typing the word LIST followed by the number
of the line with which you wish to start LISTing. (There is no need to
specify an ending line as pressing ESC will end the listing at any
time.) One of the delights of the program is that it allows such
variants as LSIT and LIAR without giving you a SYNTAX ERR .

(Just to show how far some people will carry something, ESC to the
Table of Subroutines and, after noting the line in the lister’s
instructions which says, TYPE "LIST 3¢" AND PRESS "RETURN" , LIST
beginning at line 728. This is how one gets an updated line reference
inside a print statement! All this will be much more dramatic if you

subject the program to renumbering; we suggest you try it. Please ESC
back to the head of the list program.

An Exploration

The following documentation will provide an overview of the various
blocks, starting from the beginning of the program, and give more
in—-depth information where appropriate. Please type LIST and look at
the program’s comments as you read those supplied here.

1

AUTOMATIC LOMEM:

Line 5¢

Attempting to enter LOMEM: within an Integer BASIC program will produce
a SYNTAX ERR ; line 50 allows you to accomplish the same task legally.
The desired LOMEM: address in this case is 3¢72; just replace 3072 (in
both places where it appears) with whatever LOMEM: your program
requires. This must be done before any variables or arrays are either
DIMentioned or assigned values, because the LOMEM: subroutine will clear
the variable table when it is run. The second and third statements in
the line will act as a CLR command when used alone.

Purpose: to set LOMEM: to a desired number from within a BASIC program.

To Use: Place at beginning of program and execute before initializing
any variables.

Affect: equivalent to typing LOMEM: in immediate mode. Resets bottom
of variable table and CleaRs variable table.

CALLS: No other lines are referenced by this routine.

INTEGER BASIC CHR $ FUNCTION

LINES 11¢, 12¢
11¢ CHS = CHR +128*% (CHR<128)

12¢ LC1= PEEK (224): LC2= PEEK (
225)-(LC1>243): POKE 79+LC1l-
256*(LC2>127)+(LC2-255*%(LC2>
127))*256,CHS : CHR $="A" : RETURN

The author was able to make free use of quotation marks throughout The
Infinite Number of Monkeys program because of the inclusion of this
routine. It is also the alleged generator of monkeytalk.

This subroutine gives you the same ability in Integer BASIC that the
CHRS$ function delivers in, for example, Applesoft BASIC.

In BASIC, the CHR$ function returns a character when given its numerical
position in the list of ASCII characters. (The list may be found in the
Applesoft Reference manual.) Many characters camnnot be generated on the
Apple II since its keyboard is upper—case only. Other characters, such
as CTRL-C , cannot be stored in a program since they have special
functions in the system. Yet these characters are often necessary when
controlling external devices, writing programs that write programs, and
in many other applications.

12

It is important that the second line of the routine be typed exactly

as shown, with the exception that the line number may be changed. If an
error is made, your program may be irreversibly altered. SAVE the
program before RUNning, so should an error be discovered upon RUNning,
you may relOAD the program and correct the line. Once entered and
checked, the program is completely safe and has the advantage over other
Integer BASIC CHRS schemes of being completely independent of the
variable table. If the line is used in a long program on an Apple with
more than 32K bytes of memory, there is a very remote possibility that
one could get a *** >32767 ERR. If this should happen, insert a REM
statement with about 80 characters on a higher line number to force the
CHRS$ function down in memory.

Theory of Operation: See Illegal Statement Writer

Purpose: to convert the ASCII code number placed im CHR into its
equivalent character in CHR$

Setup: no initializing is necessary
To Use:
Input—-Is placed in CHR

GOSUB 11¢
Output--Is found in CHR$

Variables Affected: CHS, LC1l, LC2, CHRS$
Calls: no other lines are referenced by this routine.

Example: contained on line 18%

MOVING BLOCKS OF MEMORY

LINES 330, 380

You may move any block of memory to any other block by changing the
addresses listed on line 330, or replacing the variable names with your
desired addresses. The author used these names to make the process as
clear as possible. ("DESTINACION" is purposely mispelled:
"DESTINATION" contains the reserved word, "AI".) Be sure you do mnot
move a block of memory on top of your program.

13

Purpose: Move a block of memory to another position in memory.
Equivalent to Monitor move routine.

Setup: No initializing is necessary

To Use:
Input-—None

GOSUB 33¢
Output—-—None

Variables Affected: DESTINACION, SOURCESTART, SOURCEFINISH

Calls: No other lines are referenced by this routine.

PSEUDO TYPEWRITER
LINES 3¢¢, 69¢

This is a very handy package that will take loosely entered PRINT
statements and "type" them out to the screen, breaking lines between
words, with options for typewriter-like sound and hesitation. With
minor modification, as described below, it can be used for higher speed
word-at-a—time output. The author developed it because he found he was
spending an inordinate amount of time carefully formatting PRINT
statements in his programs, only to find himself doing it all over every
time he changed one word. With this system, editing is quite
reasonable.

Theory of Operation

The programmer supplies the routine with a sentence or phrase contained

in $$. Starting at the head of the main loop (Line 6¢@), the first word
is extracted from S$ and placed in W$. (Lines 61@, 63¢). Line 650 adds

the number of characters in the word to the current TAB position and, if
the word will not fit on the line, GOSUBs the scrolling routine. Lines

660 and 67¢ print out the letters in the word, one-by-one, adding sound

and delay if requested by main program.

DELeting line 66{ and replacing it with: "66§ POKE 5(,63: PRINT WRDS;:
POKE 5¢,255"™ will print one whole word at a time. (Good programming
style dictates that the system should be left in the most normal
condition possible when a user aborts a program. By turning off white
text mode as soon as possible, the user is unlikely to be caught in
reverse-mode after typing a CTRL-C .

Note on Line 54¢: when writing subroutine blocks that could be
initiallized more than once, use a flag that is turned on when your
variables are DIMensioned. This flag can then prevent their being DIMed
again. This will prevent any REDIM"ED ARRAY ERR messages.

14

Purpose: To print—out properly formatted text on a white background from
unformatted PRINT statements.

Setup: Initialize by a GOSUB 53¢ This will DIM the variables and run a
short routine immitating paper being scrolled into a typewriter.

To Type Words:
Input—-S8$ should contain desired word(s), phrase,
or sentence
GOSUB 60¢
Output—-—-all output is to screen

To Manually Scroll: (for paragraphing, etc.)
Input——none
GOSUB 57¢
Output——all output is to screen

User Selectable Flags:
Set SOUND equal to 1 for typewriter sound
Set DELAY equal to a number between § (no delay)
and 50 (long delay) for hesitation between
characters

Variables Affected: S$, SOUND, DELAY, K, S, SS, WRD$, TIME, CURRENTPOS,
SOURCESTART, SOURCEFINISH, DESTINACION

Calls: no routines outside Lines 300, 69¢ are CALLed, but AUTO-LOMEM:
(line 5¢) must be executed before any variables are initiallized
to allow use of Page 2. Tt is useful to retain Lines 155¢
to 1660 to keep the directioms. All other lines may be deleted
to isolate the package for use in your own programs.

Example: LIST and RUN Line 1640.

This package (with some of the REM statements stripped out) is very
small and extremely easy to use, with only one variable, two optional
flags, and three calls. It can save you hours of frustrating work; it
took the author less than 2¢ minutes to enter the complete text for the
(pre—written) story of The Infinite Number of Monkeys. Subsequent
editing was done with a minimum of bother.

To edit any PRINT statements on the Apple in either Integer BASIC or
Applesoft BASIC, first type ESC @ (press and release the ESC key, then
type @) to clear the screen, then type POKE 33, 33 .

Now LIST the line(s) you wish to edit. This reduced text window will
eliminate the extra spaces in the listed lines and thus, the need for
typing ESC A “s to skip over them. When you are through editing, type
TEXT to restore the normal text window.

15

PAGE LIST PROGRAM

LINES 7¢0@, 132¢

Because The Infinite Number of Monkeys was writtem as a tutorial, the
author has included this listing routine to make the whole program as
easy as possible to study. Since it is written in BASIC, it is fairly
slow. But it does its job, and includes one extremely interesting line,
"LIST X,Y" (Line 1¢3¢ —— try typing it in yourself). This line, and a
one—~line routine for entering such lines, will be discussed in detail in
Illegal Statement Writer, the last section of this discussion.

Theory of Operation

When the user types a list request, such as, " LIST 1¢4¢", the program
carries out the following operations:

1) Line 78f. Leading spaces are removed, leaving, "LIST 1{@40".

2) Lines 820, 83¢. The first four characters are matched
against the command table. If a valid command is found, the
command is removed from the string, leaving , " 1¢4¢".

3) Next, the string is processed by the VAL(V) FUNCTION (see
below), which returns with the integer number 104¢ contained
in V.

4) Finally, a loop X is started from 1040 to 32767 and the
lines are listed out. See the REM statements contained in
the LIST program for specifics.

Some of the newer programmers may feel the author went to a lot of
unnecessary work just so the user would have to type "LIST" instead of
simply entering the line number. More experienced programmers, of
course, have no doubt he went to a lot of unnecessary work. The
author”s rather hastily constructed excuse for this was that he had
always wanted to parse somebody’s syntax. He is being carefully
watched.

INTEGER BASIC VAL FUNCTION
Lines 14¢¢, 154¢

One of the marks of a professional programming job is that the program
doesn’t "blow—up" when the user makes a predictable error. For example,
when The Infinite Number of Monkeys is first RUN, it is not
inconceivable that a naive user could type "END" instead of "4". Of
course, the author has been very careful to explain what kind of input
the computer wishes, but it is still good programming practice to avoid
the avoidable. RUN The Infinite Number of Monkeys, and, at the menu,
type END instead of 4.

16

Two events took place. TFirst, the computer simply did not accept your
input, giving clear indication that you did not enter it correctly.
Second, in a brief flash, it was announced, "EXTRA IGNORED". That was
the VAL(V) FUNCTION talking. When you input any number in this program,
you are entering it into a string. That string is then processed by the
VAL (V) FUNCTION and, if a valid number between -32767 and 32767 is
found, that number is returned in an integer variable for use by the
program. This gives the programmer complete control over what is coming
in; the user cannot, short of intentional sabotage, crash the program.
It is a simple routine to use and is easy installed within your program.
The "EXTRA IGNORED" message alerts users either that they have entered a
number larger than 32767 and the extra digits have been rejected, or
that they have entered non—numeric information following the number.
This feature may be eliminated from the function if not needed. In
fact, it is not needed in this program, but was included to allow you
the option within your own programs.

Still at the main menu, try entering " 3ABC DE". The VAL function
ignores the leading spaces, and evaluates the initial 3 as your
response. The extra is ignored and execution of the command to go to
the list routine takes place. You may now LIST the VAL(V) function, if
you wish, and see how it is constructed. Line 141¢ will only DIM V$ if
it has not been previously DIMentioned, line 142¢ will cause a return if
V$ is null (empty). Therefore, to initialize this routine the
programmer executes a ""GOSUB 140¢". The next time a "GOSUB 14((¢" is
ordered, the subroutine will expect V$ to contain the number to be
processed.

Purpose: This routine comverts the string V$ into an integer value V
Setup: Initialize by a "GOSUB 140¢" before using V$

To Use:
Input-—desired input is placed in V$
GOSUB 14¢¢
Output—-integer output is found in V upon return

Variables Affected: V$, V, VV, VVV, MINUSFLAG
Calls: no other routines are referenced by the VAL(V) function
Example: LIST and RUN line 139¢

The Infinite Number of Monkeys itself, from line 19¢@ to line 2800,
shall be left to the reader to explore. It is not particularly
distinguished -~ it was not meant to be. It is a sea of unformatted
text and GOSUB statements. There are a fair number of delay loops that
the author used in timing, or punctuating, the animated text; there is
the section from line 238¢ to 267¢ that contains the "monkey business™.

17

ILLEGAL STATEMENT WRITER

Line 1¢2¢ (Called by 1¢15, acts upon 103¢)

1¢2¢ LCl= PEEK (224):LC2= PEEK(
225)-(LC1>243): POKE 81+P0S+
LC1-256*%(LC2>127)+(LC2-255%
(LC2>127))*256,CMD: RETURN

A great feature of Apple Integer BASIC is its entry-time syntax
checking. You need not wait until RUN-time to find out the depths of
your folly; Apple will beep it to the world just as soon as you press
the RETURN key. While this is a generally commendable feature, it
does inhibit exploration of some potentially interesting lines by
steadfastly refusing to accept what seem to be perfectly reasonable
commands. Surely, there should be some room for legitimate differences
of opinion, Apple!

"BEEP! *** SYNTAX ERR."

Why are we not permitted to find out what happens when line 50 says, "5¢
NEW" and we RUN 5¢? Why can’t we DELete line 123 after it has already
been used? Why are we forbidden to LIST X?

"BEEP! #**%* SYNTAX ERR."

What we need is the Illegal Statement Writer. With this handy little
1-line subroutine, you can write anything you want! (Of course, poor
Apple may be a litte confused over such lines as, "1¢¢ A$=27/PRINT", but
you can write it.)

The Illegal Statement Writer was created to allow BASIC programmers to
POKE normally rejected commands, characters, and numbers into their
programs. Apple is quite capable of LISTing from a variable to a
variable ("1¢3¢ LIST X,Y") if one can just get the line into memory.
Apple is perfectly happy with line numbers higher than 32767 if one can
just get them entered. (Most of you will have seen line 65535 as the
last line of many programs.) One can even poke quotation marks (ASCII
162) inside a quote! This subroutine gives everyone the power that has
been reserved for the machine-language jockeys until now.

Theory of Operation

The following paragraph is a highly technical explanation of how the
subroutine works and need not be understood or even read to make full
and complete use of the subroutine. The analysis is presented for
advanced programmers who may find the previously undocumented pointers
identified herein useful in designing new subroutines in this family.
The author has written 5 different types of routines, including the CHR$
function in this program, all based on being able to pinpoint the actual
memory location of a BASIC program line during RUN-time. It is his
belief that there are many more to be discovered.

18

When Integer BASIC encounters a statement such as PRINT X , it reads
it, parses (interprets) it, and goes off to execute it. When it
departs, it stores its current program position in memory locations 224
and 225. Upon completing execution of the statement, it reads these
locations to know where to resume. This subroutine PEEKs these
locations to pinpoint its own actual location in memory, and with that
information, is able to POKE your chosen command (CMD) into a position
(POS) in the mext line. LCl (locationl) is given the low byte of the
address of the colon which immediately follows it, as this is where the
program return pointer is when 224 is PEEKed. (For an explanation of
high and low bytes, see Instructions For Use below.) LC2 is likewise
given the high order byte of the address of its following colon. If LC1
was greater than 243, LC2 will have "clocked over” by the time the
pointer reaches it, and thus a 1 is subtracted if LC1>243. We are left
then with the actual location of the first colon stored in LC1 and LC2.
82 bytes beyond this colon is the command LIST in line 1¢3¢. If we make
POS = 1 and POKE 81 + POS + <the location in memory> , <number of
desired token>, we can POKE any command token into whatever place we
want. (The balance of line 1020 that deals with adding and subtracting
255’s and 256”s turns any location numbers higher than 32767 into 2°s
complement form so users with more than 32K can use the routine.)

The only place this routine will not work properly is just above 32767;
if you have more than 32K of memory and encounter a *** >32767 ERR,
enter a REM statement with 1¢f spaces or so on a higher line number to
force the Illegal Statement Writer down in memory. The REM statement
may be removed after you are through POKEing your line.

Instructions For Use

First, type:

DEL ¢, 1014
DEL 1¢31, 32767

This will leave just three lines. The first line, 1¢15, controls the
subroutine, telling it what to POKE where. The second line is the
POKEr, the third, the POKEe.

% % % NOTE * % *
Line 102¢ is to be retained, unmodified, in each example below.

Retype line 1¥3¢ to read:
1¢3¢ PRINT X,Y

Then, RUN. It should read, 1¢3¢ LIST X,Y again. Apple Integer BASIC
and Applesoft are partially compiled languages. When you type a command
such as GOTO into a program, Apple substitutes the four characters
G-0-T-0 with a "token" (a number between § and 127 which represents a
command). In the case of GOTO, this token is the number 95. When you
LIST the program and Apple encounters a 95 it looks up this token in a
table, finds out it means GOTO, and then prints it out that way. This
compilation makes your program smaller and faster.

19

Tokens

DEL 1015 and enter the following:

1¢3¢ PRINT
1¢ POS=1: FOR CMD = ¢§ TO 127: GOSUB 1¢2¢: PRINT CMD,: LIST 1¢3¢ :NEXT
CMD: END

Then RUN. You have just LLISTed the complete token table. Most tokens
can be used legally in differed mode (written into a program); below is
the table of Integer BASIC tokens. (The HEX numbers are for the benefit
of the aforementioned machine-language jockeys and are to be ignored by
those of us of a more civilized ilk.)

omiEi Sk

Integer BASIC Token Table

NUMBER TOKEN COMMENTS
DEC HEX
@ $¢ HIMEM: Token irrelevent - used intermally as
begin-of-line.
1 $1 End-of-line token - each line ends with a 1
2 $2 Used internally in delete line processing
3 83 Colon for statement separation
4 S84 LOAD
5 $5 SAVE
6 $6 CON
7 $7 RUN RUN n, where n is a line number
8 $8 RUN RUN from first line of program
9 $9 DEL
1¢ SA 5 Comma used with DEL (DEL @, 1¢)
11 $B NEW
12 $C C1R
13 D AUTO
14 SE R Comma used with AUTO (AUTO 14, 2¢)
15 SF MAN
16 $1¢ HIMEM: The real thing
17 S$11 LOMEM:

The following are numeric operators

18 $12 + z
19 $13 -~ The associated parentheses are 56 and 114 1
26 $1a * Example: A = 14 * (27 + 15) ¥
21 815/

20

22
23
24
25
26
27
28
29
3¢
31
32
33
34
35
36
37
38
39
49
41
42

43
44
45

46
47
48

5¢
51
52
53
54
55
56

57
58
59
60
61
62

63

65

The following are numeric variable logical operators

$16
$17
$18
$19
$1A
$1B
$1C
$1D
$1E
S1F
$2¢
$21
$22
$23
$24
$25
$26
$27
$28
$29
$2A

$2B
$2¢
$2D

$2E
$2F
$3¢
$31
$32
$33
$34
$35
$36
$37
$38

$39
$3A
$3B
$3C
$3D
$3E
$3F

$41

MOD

THEN
THEN

LEN(
ASC(
SCRN (

String

Example: TIF X = 13 THEN END

Unused
Used in string DIMs: DIM AS$(n)

Followed by a line number: IF X = 3 THEN 1¢
Followed by a statement: IF X = 3 THEN A$ = "CAT"
Used with string inputs: INPUT "WHO", W$
Used with numeric inputs: INPUT "QUANTITY",Q
Beginning quote
Ending quote
Substring left parenthesis: PRINT AS$(12,14

used with 114 as right parenthesis

(see also 66)
Unused
Unused
Variable array left parenthesis: X(12)

used with 114 as right parenthesis

Uses 65 and 114 for parentheses
" 1

Unused

Used in variable DIMS: DIM A(1¢)

Unary signum: A = +5

Unary signum: B = -5

Numeric

Used with 114 in logic statements and numeric
operations:

IF C AND (A =14 0R B =12) THEN X = (27 + 3)/ 13

String logical operator: IF A$ = "CAT" THEN...

String logical operator

Uses 114 as right parenthesis
" "

" "

Comma used with scrn: PRINT SCRN(X, Y)

Used with 114 after PEEK, SGN, ABS, and PDL 64 $40

Unused

21

66

67
68
69

79

71
72

85
86

88
89
9

91
92
93
94
935
96
97

98
99

22

$42

$43
$44
$45

$46

$47
$48

$49

S4A
$4B
$4C
$4D
$4E
$4F
$5¢
$51
$52
$53

$54

(Special case string array right parenthesis. used
when string array is the destination

of the data. din the example, AS(1) = BS$(1) ,
the A$ left parenthesis will be 66 and B$”s

will be 42. used with 114 as right

parenthesis
R DIM <varname>, <string varname>
» DIM <varname>, <numeric varname>
H String PRINTs: PRINT <varname>;
<string varname>; "X"
H Numeric PRINTS: PRINT <varname>;
<numer ic varname>; 7
H End of PRINT statement: PRINT Aj;
N String PRINTS: PRINT <varname>,
<string varname>, "X"
» Numeric PRINTS: PRINT <varname>,
<numeric varname>, 7
5 End of PRINT statement: PRINT AS,
TEXT
GR
CALL
DIM String var. Parentheses 34 and 114, comma 67
DIM Numeric var. Parentheses 52 and 114, comma 68
TAB
END
INPUT String with no prompt: INPUT AS$
INPUT String or numeric with prompt:
INPUT "WHO", AS$ uses comma 38
INPUT "NUMBER", A uses comma 39
INPUT Numeric with no prompt: INPUT A

The following are for FOR/NEXT loops

$55
$56
$57
$58
$59
$5A

$5B
$5C
$5D
$5E
$5F
$6¢
$61

$62
$63

FOR

TO
STEP
NEXT

RETURN

GOSUB

REM

LET

GOTO

IF

PRINT String variable or literal: PRINT AS :
PRINT "HELLO"™

PRINT Numeric variable: PRINT A

PRINT Dummy PRINT: PRINT : PRINT

190 $64 POKE

161 865 , Comma used with POKE
1§62 $66 COLOR=

163 $67 PLOT

164 $68 , Comma used with PLOT

1¢5 $69 HLIN

166 $6A R Comma used with HLIN

167 $6B AT AT used with HLIN

148 s$6C VLIN

1349 $6D R Comma used with VLIN

11¢ $6E AT AT used with VLIN

111 $6F VIAB

112 $7¢ = String -- non-conditional: A$ = "HELLO"

113 $71 = Numeric —- non-conditional: A = 14

114 §$72) The only right parenthesis token -- won
most—popular—token award in Atlantic City

115 $73) Unused

116 $74 LIST LIST a range of numbers or specific number:

LIST 1¢ : LIST 12¢, 32767

117 $75 Comma used with LIST

>
118 $76 LIST LIST entire program
119 §$77 POP
12¢ $78 NODSP String variable
212 $79 NODSP Numeric variable
122 $7A NOTRACE
123 $7B DSP String variable
124 $7¢C DSP Numeric variable

125 $7D TRACE
126 $7E PR#
127 $7F m#

To use an illegal token inside a program, there must first be a legal
line in which to POKE the new token. Because we could not enter, "LIST
X,Y", we entered "PRINT X,Y" and then changed the two tokens. If you
wish to have, "1¢3(¢ DEL 1¢", then first enter "1(¢3¢ PRINT 1¢" or "1¢3¢
INPUT 1¢". Then POKE in the new token.

Variable Names and Spaces

Variable names are made up of an alpha character which may be followed

by a series of alpha or numeric characters. Anything other than
alphanumeric characters appearing outside of quotes and REM statements

are tokens.

Spaces between tokens, numbers, and variable names are deleted upon
entry and re-supplied during LISTing. In counting the number of bytes
in a line, all spaces outside of quotes and REM statements should be
overlooked. When a REM is LISTed, one space is inserted after the word

REM; therefore, the statement which lists as REM APPLE uses 6 bytes of

memory, not 7.

23

Characters

The numbers from 128 to 256 are ASCII characters in Integer BASIC. A
chart of these characters can be found in many computer manuals,
including the Applesoft Reference manual. TIf your chart lists
characters with numbers from @ to 127, just add 128 to compute their
"negative-ASCII" counterparts. (You might find it useful to write the

higher numbers into your Applesoft Reference manual.) Enter the
following lines:

1¢3¢ PRINT "A"
1¢ POS =3: FOR CMD=128 TO 255: GOSUB 1(¢2@: PRINT CMD,: LIST 1¢3¢: NEXT
CMD: END

Then RUN it. To POKE the ASCII numbers between the quotation marks, it
was first necessary to set POS. As PRINT is a command word, and
therefore a single token, or byte, and its position is 1, then the space
between the quotes is 3. By counting out from the beginming of the
line, you may POKE your command, character, or number anywhere within
the line.

Numbers

Numbers, like tokens, are converted upon entry. Unlike tokens,
converted numbers always occupy 3 bytes. (The numbers we are
considering are not numeric characters that make up part of a variable
name, such as ALPHA3, but rather integers, as in X = 32 or ALPHA (3).)

The first byte of a line number contains the number of bytes in the
line; the first byte of a number within a line contains as a flag the
ASCIT value of the first digit in the number. This tells the language
that the following two bytes are a number. (The flag can be the ASCII
value of any digit —— 176 does nicely — it is being used as a flag,
not a value.) The actual number itself is made up of two bytes, the
first being the low-order byte, the second, the high-order byte. When
you enter a line number such as 1¢3¢ into Apple, the language first
computes 1@3¢ MOD 256 and puts that number in the first byte and then
computes 1¢3¢ / 256 and puts that number in the second byte. With two
bytes, each capable of storing numbers from @ to 255, the square of 256,
or 65536 numbers may be expressed. (This 65K range is from -32767 to
+32767, or from $ to 65535 depending on its interpretation.)

Therefore, whenever you wish to POKE a number into a position past
integers in the line, POS must be increased by exactly 3 for each
integer to be leap-frogged, be that integer @ or 32767. Try the
following new lines, retaining line 1020:

193¢ X=14: PRINT "SAY @APPLEQ@" :END
1¢ POS = 13:CMD = 162:GOSUB 1¢/2¢f:LIST 1¢3¢:END

24

Then RUN it. You“ll note, we’ve a quote within a quote. Your job is to
put a quote at the end of the line, where the second @ is located. (The
@ has been used arbitrarily; it could be any character.) Keep in mind
that position 1 is where X is, that the reserved word (command) PRINT
and the reserved word : (statement separator) are each one byte, and
that the number 14 is three bytes. Any spaces outside of the quotes do
not count. The only thing you must change is POS, the ASCII for a

quotation mark, 162 stays the same. After you have both quotes, RUN
1¢39.

Finally, let’s change line 1¢3¢ to 65535. The low and high bytes of
65535 are both 255. The line number bytes are the two immediately
preceeding POSition 1 in our line, thus they are -1 (the low-order) and
¢ (the high-order). To change our line, type this new line 1¢:

1¢ POS=-1: CMD=255: GOSUB 1¢2¢: POS=(:GOSUB 1¢J2¢:LIST:END
Changing the line back to 1030 will be left to you; the information on
computing the byte values may be found in the second paragraph of this

section on numbers. Just do exactly what the computer normally does.

Self-Writing Programs

It is possible to write a program which can write itself, using this
line, by dropping HIMEM: down, POKING in syntactically correct lines off

the top end of the program, and POKING a new HIMEM: into place when done
using the following line:

<linenumber> HMM= 82 + POS + LC1 + LC2*256 : POKE 76, HMM MOD 256: POKE
77, BMM / 256

HIMEM: is always 1l past the end of the program; thus we add 82, not 8l.
The above line assumes that you will not write above 32767 in memory; be
sure to bring HIMEM: sufficiently below this figure before beginning.
One use of this method would be to write a program that would convert
machine language into POKE statements inside your BASIC program; another
would be a DATA program that would write: <linenumber> <your input
data> : RETURN. (This one would undoubtably lead to another round of
HANGMAN games.) Your imagination can supply you with many other uses.

25

Try this simple sample primitive program, after setting HIMEM: to
(arbitrarily, but safely) 8192 and DELeting all but line 1¢2¢. (You
need not enter the REM statements.)

1¢ DIM Y(13):REM OUR LINE WILL BE 13 BYTES LONG

20 Y(1)=@:Y(2)=80:Y(3)=97: ¥ (4)=40:Y(5)=193:Y(6)=208:Y (7)=208:
Y(8)=204:REM TOKEN AND ASCII CODE FOR EACH BYTE IN LINE

3¢ Y(9)=197:Y(1¢)=41:Y(11)=3:Y(12)=81:Y(13)=1:Y(F)=14:REM THE
FIRST BYTE IN THE LINE MUST ALWAYS CONTAIN THE LENGTH OF
THE LINE

4¢ FOR POS = -2 TO 11:REM FIRST BYTE IN LINE IS AT POSITION -2

5¢ CMD = Y(POS +2):REM TO READ Y FROM @ TO 13, WE MUST ADD 2
TO POS

60 GOSUB 1¢2¢:REM POKE THE BYTE IN PLACE

7¢0 NEXT POS: POS = POS-1 :REM LOOP UNTIL DONE

87 REM WHEN EXITING THE LOOP, POS WILL HAVE BEEN INCREMENTED
TO 12, ONE GREATER THAN END-OF-LINE, SO SUBTRACT 1 TO MAKE
IT ACCURATE

9¢ ™MM=82 + POS + LCl + LC2*256 : POKE 76 ,HMM MOD 256:
POKE 77,HMM/256

100 LIST :GOTO 2048¢

Summary

It is hoped that the Illegal Statement Writer and the above discourse
will lead you to a fuller understanding of Integer BASIC and computer
language processes in general. While many illegal statements are fun to
play with, "tricky" programming, such as having lines DELete themselves
during run—-time should be avoided in serious programming whenever
possible. There are also many tasks that can be accomplished without
using the command word itself (See AUTO-LOMEM:), allowing editing after
entry. But when you need the Writer for something special, it“ 1l be
there, and you’ll never have to take #*#%* SYNTAX ERR as the final word
again. (BEEP!)

26

SPACE WAR

Submitted by: D. Redington
Program Language: Integer BASIC

The dreaded Space War has begun. Our space fleet needs your strength
and skill to defeat the Imperial Forces. If you choose to joim us in
our fight to preserve the freedom of space, you will be given a fighter
ship. Your mission will be to destroy any enemy fighter ships that come
in your range.

To play Space War, first LOAD the tape marked SPACE WAR . Then type
RON . The program will ask for your name and then assign your rank.
When you begin the game, your starting rank will be Space Pilot Trainee.
A target screen appears on your screen when the battle begins. You must
maneuver your ship with the game controls until the enemy is in your
sights. The buttons on the two game controls operate your weapons. One
game control fires lasers and the other fires torpedos. The torpedo
uses two units of energy per shot. The laser uses only one unit of
energy per shot, but requires a more exact aim. The enemy fighters are
clever, and it may be difficult to destroy them, but don’t be
discouraged. You will be amply rewarded for fighting well. If your
performance in battle warrants it, your rank will be increased. With
some practice, you may even make General.

When you have finished playing, type CALL -34¢ if you wish to look at
other programs. The Space War program, like the Color Sketch program,
stores information in areas of the Apple’s memory where the Apple
doesn’t expect them. CALL -34(restores memory to the configuration the
Apple expects.

Have a good game, and good luck!

27

APPLE TREK 112 15 1 1 1 17 1

Submitted By: Wendell Sander
Program Language: Integer BASIC

Stardate 3424.¢

The Free Galactic Federation has been invaded by battle cruisers of the 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8
Klarnon Empire. Several Federation star—-systems are under attack. As
an experienced officer, you have just been given command of the starship ! 61 6=2 6=3 6-4 6=5 6~6 6-7 6-8
Endeavor. Your three—year mission, should you choose to accept it, is
to search the Galaxy and destroy all Klarnon battle cruisers. If you 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8

succeed, the federation will survive. If not,ecec...

Your Apple II computer serves as a command console. IT informins you of
operating conditions, movements and actions of enemy vessels, and

. Figure 1
carries out your orders. &

Chart of Quadrants in the Galaxy or Sectors in a Quadrant

The Endeavor is a complex vessel. You should take a few practice runs

to learn how to operate it before you actually embark on your mission.
Remember, the fate of the galaxy is in your hands.

As discovered by the twenty-fourth century cosmologist Liebowitz, the
Galaxy is a closed space, which is represented by the chart of
quadrants. The Galaxy has no bounds: each edge of the chart is
physically adjacent to the opposite edge of the chart so that quadrant
7-1 is bounded on one side by quadrant 7-2 and on the other side by
quadrant 7-8. Likewise, quadrant l~1 is bounded by quadrant 2-1 and
8-1. This concept is illustrated in Figure 2 below. In the
"Four-Corners" region of the Galaxy, both axes "wrap around" at one
point. (Mathematicians may find it helpful to model the Galaxy as a
torus.)

LOAD the tape labeled APPLE-TREK in the usual manner, and then type
RON . The program will announce itself and the game setup will be
revealed to you. Before making any decisions concerning the game setup,
you should read further.

The Galaxy
7-7 7-8 7-1 71-2
The Galaxy in which the action takes place is subdivided into 64
quadrants of space, each of which contains 64 sectors. One sector 8-7 8-8 8-1 8-2
is the smallest measured unit of space and may be occupied by any of the
following: a star, a Klarnon, a starbase, or the Endeavor. Each
quadrant is charted as an 8 by 8 array of sectors. Each sector within
the quadrant is identified by coordinates as shown in Figure 1.
Similarly, the Galaxy is charted as an 8 by 8 array of quadrants. Each
quadrant within the galaxy is identified by coordinates as shown in
Figure 1. The first coordinate of each pair gives the location along
the Galactic North-South axis; the second, along the Galactic East-West
axise.

1-7 1-8 1-1 1-2
2-7 2-8 2-1 2=2
Figure 2

v Map of "Four—Corners" Region of the Galaxy,
Showing Adjacent Quadrants

28

The Starship Endeavor

The Endeavor is a powerful craft with somewhat more firepower and energy
capacity than the Battle Cruisers of the Klarnon Fleet. However, the
Endeavor is usually heavily outnumbered and is easily destroyed unless
good maneuvering and firing strategies are employed.

Energy

At the beginning of your mission, the Endeavor will be stocked with
18,000 units of energy. Of these 10,000 units, 250§ units will be
allocated to available energy stores, 250¢ units to shield energy, and
5¢@% units to photon torpedoes (1§ torpedoes of 5@ units each). 10,@¢y
units is the ship’s maximum energy capacity.

Each of the three forms of energy the Endeavor uses has a specific
application. The available energy is used for phasers, for propulsion,
and for the ship’s subsystems, one of which is the indispensible Apple
81 computer. The shield energy works to absorb ememy phaser and photon
torpedo attacks. Without it the ship would be lost. The photon
torpedoes, of course, are used to attack the enemy.

Each type of energy is adapted only to certain applications, but,
fortunately energy of one form can be converted to energy of another.
The shield energy is depleted with each enemy attack that scores a
"hit." If the shield energy is allowed to get too low, the Endeavor may
sustain damage to its subsystems.

Fortunately you, as captain, can transfere energy between the available
energy stores and the shield energy. However such transfers take time
and must be planned with caution.

Similarly photon torpedoes can be LOADed (formed from available energy)
or UNLOADed (converted to available energy) depending on your energy
needs. Both these transformations consume energy, however.

Energy Sources

When the Endeavor”s energy level gets low, you will wish to restock.
The ship’s energy is restocked in two different ways.

One way is through the store of on-board dilithium crystals which
generate energy continuosly at a rate of 5@ units per @.1 stardate. The
energy limit of 10,000 units cannot be exceeded, however, and any excess
will dissipate before it can be used.

The other way to restock the Endeavor”s energy is to stop at a
restocking base. These bases are located at various points in the
galaxy. A rendezvous with a restocking base brings the Endeavor back to
maximum energy and repairs any subsystems that may be damaged, but also
depletes all the base’s energy. Each restocking base can be used only

Ooncee.

30

Firepower

The Endeavor has two main forms of weaponry: photon torpedoes and
phasers. Both these weapons are very powerful and each of them has a
different application.

The Endeavor usually carries 1§ photon torpedoes of 5(¢ energy units
each. Photon torpedoes can be used to attack any point within a
quadrant and can be fired in a straight line at any angle. If the
photon torpedo hits a Klarnon ship or a star before reaching the edge of
the quadrant, it will inflict 500 energy units of damage. This will
reduce the energy of a Klarmon by 5¢¢ units or destroy a star.

Phasers are a focused energy weapon and are not blocked by stars or
Klarnons. The phaser energy fired is divided equally among the targets
selected and is reduced by the distance of the target. Phaser energy is
drawn from the Endeavor’s available energy supply. The number of phaser
energy units fired is chosen by you. A phaser striking a Klarnon ship
reduces the Klarnon energy supply by the amount of energy that hits the
ship.

There is one form of weaponry that should only be used as a last resort.
At the beginning of your mission, you will be asked for a SELF-DESTRUCT
password. If you give the SELF-DESTRUCT command in conjunction with the
SELF-DESTRUCT password the Endeavor will be destroyed with all hands
lost. If sufficient energy is available, all enemy vessels in the
quadrant will also be destroyed. This command has dire comnsequences,
but it may be necessary in order to save the Federationm.

Propulsion

The Endeavor has two forms of propulsion available: Warp Drive and
Ion Drive. Warp Drive is used exclusively for movement from quadrant
to quadrant. Ion drive is for short distance moves and can be used
either for movement within one quadrant or for movement from omne
quadrant into an adjacent quadrant.

Under Ion Drive, the Endeavor moves 1 sector unit of distance per @.1
stardate. The direction of movement is determined by the COURSE, from @
to 359 degrees. The distance is determined by the DURATION, from 1 to 9
sector units. The captain can set a course that will take the ship
across the boundary of a quadrant and into the next one: energy and
time will be consumed at the same rate as if all motion were in one
quadrant. For this reason, it is usually quicker to move to an adjacent
quadrant by ion drive, especially if the ship is near the boundary. The
energy consumed by an ion drive move is 2¢ units plus 2¢ units per
sector unit moved. The time consumed is @.fl stardates per sector unit.

31

When using Warp Drive, the direction of motion is determined by the
COURSE, from 1 to 359 degrees. The distance is determined by the WARP
FACTOR, from 1 to 6 quadrant units. For the shortest possible move

between two adjacent quadrants, moving along an axis at a COURSE of §,
9%, 18¢, or 270, the WARP FACTOR is l. For a longer move along an axis,
the WARP FACTOR is the number of quadrants moved. Angular moves require
larger WARP FACTORS, as the Endeavor is moving along both axes at once:
A diagonal move, on a course of 45, 135, 225, or 315, requires a WARP
FACTOR of 1.4 times the number of quadrants moved, rounded to the
nearest unit. The maximum value for the WARP FACTOR is 6, which moves
the Endeavor 4 units north-south and 4 units east-west. An object
within 3 sector units of the Endeavor in the direction of warp drive
movement will block the movement. The energy required for a warp drive
movement is 12 times the cube of the WARP FACTOR and is much larger for
a large WARP FACTOR than a small WARP FACTOR. The time consumed by a
warp move of any distance is (.1 stardate.

The Apple 81 Computer

The Endeavor is equipped with an Apple 81 computer which is at your
disposal. The computer gives the Endeavor a major advantage over its
Klarnon opponents. It is virtually impossible to defeat a squadron of
Klarnons without the help of the computer.

The computer permits the Endeavor to lock photon torpedoes or phasers on

selected Klarnon targets, to move while firing, and to compute angles
for movement and for manual photon torpedo fire.

Klarnon Battle Cruisers

The Klarnon Battle Cruisers are less powerful and less sophisticated
than the Endeavor, but usually appear in squadromns of several ships at a
time. Therefore the overall Klarnon firepower in a battle will usually
exceed the firepower of the Endeavor. The captain of the Endeavor must
use skill and cunning to overcome the Klarnons’ advantage.

At the beginning of battle each Klarnon ship is equiped with 8¢¢ units
of energy and 3 photon torpedoes. The Klarnon energy may be used for
phaser fire, for movement, or for absorbing fire from the Endeavor.
When a Klarnon ship’s energy is reduced to zero, it has been destroyed.

The Klarmons have both phasers and photon torpedoes. These weapons work
much like those of the Endeavor, but Klarmons have the disadvantage of
not being able to LOCK, LOAD, or UNLOAD photon torpedoes.

Klarnon ships can move one sector unit of distance at a time during
battle. If the Endeavor retreats from a quadrant before all Klarnons in
it are destroyed, the Klarnoms will probably be fully restored if and
when the Endeavor returns. Klarnons will never enter a quadrant that is

occupied by a starbase, however. The base could easily thwart a Klarmon
attack.

32

Control Console Display

At this point you should return your attention to your Apple. If this
is your first mission, accept the setup conditions given, by typing N
for NO. When asked, type the Self-Destruct Password you choose and then

press RETURN . In a few seconds the Endeavor’s Control Console display

will appear on the screen. When the display is complete, the Apple will
signal you with a beep.

Through the Endeavor’s Control Console you can communicate with your
entire ship and obtain information on the condition of both your ship

and the galaxy. The following photograph is an example of a
typical Console display at the beginning of a mission.

Galactic Record

NAND?

BN

Status Display

1
L
0
N
S =
URSE HOT SET.

Quadrant Display

At the beginning of the game, the top portion of the screen is occupied
by the Galactic Record. The Galactic Record is an 8 x 8 array
representing the 64 quadrants that make up the Galaxy. This record
provides readings that tell you the number of Klarnon ships, Federation
bases, and stars that occupy each quadrant that has been observed by the
Endeavor so far. Observed quadrants include all quadrants the Endeavor
has occupied and, if the long range sensor sub-system is operational,
all 8 quadrants adjacent to these. The quadrant you are currently
occupying is shown in inverse mode (black print on a white background).

The 3 possible readings are shown in the following manner:

Number of bases
Number of Klarmons Number of stars

:3 5:

Because Klarnon ships never enter a quadrant that is occupied by a
Federation base, at most 2 digits will be given for each quadrant. A
blank space is equivalent to a reading of @ . TFor example, there are
no Federation bases in the quadrant shown in the example above.

33

Here are some more examples of quadrant readings:
:3 5: 3 Klarnons, no bases, 5 stars
: 13: 1 base, 3 stars
: 4 4 stars

The Galactic Record will also be displayed whenever the NAVIGATION

command is issued. As long as it is not destroyed in combat, the
Galactic Record will be maintained.

Quadrant Display

The white square in the lower left corner of the screen is the Quadrant
Display. This display is a blowup of the white square in the Galactic
Record. It shows the locations of all spacecraft and other objects in
the quadrant the Endeavor is currently occupying. Figure 4 below is an
example of a typical Quadrant Display. North-South coordinates are on
the right border and East-West coordinates are on the lower border.
(Any time you are asked to input coordinates, remember that the first
digit becomes the North-South coordinate and the second becomes the
East-West coordinate.) The galactic coordinates of the quadrant are
given at the top of the Quadrant Display.

In order to use the Quadrant Display, you must know the code for reading
it. The code is very simple. The Endeavor is represented by E , a
Klarnon ship by K , a star by * , and a base by B . During battle, a
photon torpedo is represented by # and a Klarnon ship firing phasers

is represented by X in normal video mode (white print on a black
background).

QUADRANT 5-1

*
1 2 3 4 5 6 7

AN
00N U BN

Figure 4
Quadrant Display

34

Status Display

The current status of the Endeavor is shown in the lower right portion
of the screen. The Status Display onm your screen probably looks
something like the one in Figure 5 below.

SECTOR 5-6
YEARS 3.0
STARDATE 3424.0
CONDITION GREEN
SHIELDS 5@%
SHIELD ENERGY 25¢¢
AVAIL ENERGY 2500
PH TORPS 19
KLARNONS 31
BASES 4

COURSE NOT SET.

Figure 5
Status Display

The first line of the display gives the coordinates for the SECTOR
occupied by the Endeavor. The second line indicates the YEARS remaining

in the Endeavor’s mission, and the third line indicates the current
STARDATE.

The Endeavor”’s CONDITION is GREEN if it has enough energy to ensure

safety and if there are no Klarnons in the current quadrant. If energy
is dangerously low, CONDITION YELLOW will flash, and if there are

Klarnons in the quadrant (which is the same as saying that the Endeavor
is under attack) CONDITION RED will flash. Despite appearances,
CONDITION YELLOW can be more threatening than CONDITION RED.

SHIELDS indicates the percentage of the Endeavor’s total emergy
(excluding photon torpedoes) allocated to its shields. SHIELD ENFRGY
indicates the energy the Endeavor can safely absorb from Klarnon
attacks. If SHIELD ENERGY falls below 1¢f units, the Endeavor may be
damaged. If it falls below zero, the Endeavor will definitely suffer
damage. AVAIL ENERGY shows the energy the Endeavor can use for phaser
fire, propulsion, and operation of the ship’s subsystems.

PH TORPS shows the number of unused photon torpedoes. At the beginning
of your mission, the Endeavor will have 1. KLARNONS shows the number

of Klarnons still to be destroyed in this mission, and BASES shows the

number of unused replenishment bases. Each base can be used only once

during each mission.

The last line reads COURSE NOT SET . When you are firing under the
control of the Endeavor”s Apple 81 computer, you can set a strategic
destination to move toward as you are firing. COURSE will then show the
coordinates of the sector the Endeavor will move toward while firing.

35

Conversational Display

Your commands and their consequences are indicated directly above the
Quadrant Display in the section of the screen set aside for the
Conversational Display. Immediately above the Quadrant Display you
should see COMMAND? . This means that the Endeavor is ready for your
command. During battle and in some other instances, the Conversational
Display gets too large for the space allotted for it. When this happens
the Conversational Display will use the space now occupied by the
Galactic Record.

Command Display

To see the Command Display, wait for the COMMAND? prompt and then
press any letter key on the Apple keyboard. The list of available
commands will be displayed in the lower right of the screen in place of
the Status Display. The display appears as follows:

NAVIGATION
SHIELD ENERGY
DAMAGE RPT
PHASERS

PH TORPS

LOAD PH TORPS
COMPUTER
PROBE
SELF-DESTRUCT

oSN~ WN K

Figure 6
Command Display

To select onme of the 9 commands, enter the number to the left of the
command. Your Apple will ask you for any additional information
required to execute the command.

Following is a discussion of the commands available.

1 NAVIGATION

The NAVIGATION command is used to move the Endeavor to a different
sector within a quadrant or to a different quadrant in the Galaxy.
After pressing 1 in respomse to COMMAND? , the Galactic Record will
be displayed in the upper portion of the screen.

If the warp drive is not damaged, the question
WARP OR ION DRIVE (W OR I)?

will appear. If you type W , then the question
WARP (1-7)7?
will appear. Type a number from 1 to 7 to choose the WARP FACTOR.

36

If you type I in response to

WARP OR ION DRIVE (W OR I)?

the question

DURATION (1-9)?

will appear. Type a number from 1 to 7 to choose the DURATION.

If the WARP DRIVE is damaged, the question

WARP OR ION (WOR I)?

will be replaced by the message

ION DRIVE ONLY DURATION (1-9)?

If any letter key is typed, the NAVIGATION function is aborted and
COMMAND? appears above the Quadrant Display again.

After the WARP or DURATION has been given then the questiom
COURSE (@-359)?
will appear. The direction chart is given below:

North
¢
]
315 45
West 27¢ 9¢ East
225 135
18¢
South
Figure 7

Direction Chart

To choose a course, type any number between @ and 359, followed by a
RETURN . If you type a letter key, the NAVIGATION command will be

aborted and COMMAND? will reappear

2 SHIELD ENERGY

The SHIELDS parameter allocates the desired percentage of total energy
to the shields, and the remainder to the Endeavor system functions.
This value is set at 5@% at the beginning of your mission and may be
changed with this command. Transfering energy takes time, however, so
vou have to plan ahead before you use the SHIELD ENERGY command.

37

3 DAMAGE REPORT

A display indicating the current status of all the Endeavor’s systems is
displayed at the top of the screen in place of the Galactic Record
whenever the DAMAGE REPORT command is executed. If the subsystem is
operational then the display will indicate OK . If the subsystem is
damaged the display will indicate the estimated time to repair that
unit. If dilithium crystals are destroyed, the display will indicate
that too. A typical damage report is illustrated below.

WARP DRIVE OK
SR SENSORS OK
LR SENSORS OK
PHASERS OK
PH TORPS DAMAGED (.24 YEARS TO REPAIR
COMPUTER OK
PROBE OK
Figure 8

Damage Report
(One year is the same as one stardate.)

4 PHASERS

The PHASERS command will initiate the phaser firing sequence. If
phasers are not LOCKed on a target,

PHASERS READY: ENERGY TO FIRE?

will appear on the screen. Type the number of energy units you wish to
fire and press RETURN . The phaser fire will be divided evenly between
all Klarnon ships in the quadrant unless the number given is larger than
the amount of energy the Endeavor has available. 1In that case the
computer will politely decline to fire, as the Endeavor would be blown
up in the process.. (If the computer is damaged....) When you type a
valid number, the phasers will fire.

If phasers are LOCKed onto a target or targets, you will be asked

AUTO OR MANUAL (A OR M)?

Type A or M , and

PHASERS READY: ENERGY TO FIRE?

will appear on the screen. The ILOCKed phasers will fire only at those
targets that have been LOCKed into. Answer with the amount of energy
you wish to expend, and the battle will commence.

If no Klarnons are in the quadrant, the phasers will not-fire.

If a course has been set and you choose AUTOmatic fire, the Endeavor
will move while firing. This feature is handy for avoiding enemy photon
torpedoes. The Klarnons have no such automatic fire.

5 PH TORPS
The PH TORPS command will initiate the photon torpedo firing sequence.
If the photon torpedoes are not LOCKed, you will see
PH TORPS NOT LOCKED

TRAJECTORY ?
After you reply, with a number from ¢ to 359, one photon torpedo will be
fired in that direction.

38

If photon torpedoes are LOCKed, you have the option of automatic fire.
The display will look like

PH TORPS LOCKED ON
1-6 2-7 3-4 4~6 6-6
AUTO OR MANUAL (A OR M)?

If you reply M , you must fire manually by giving the desired
trajectory when asked. If you reply A , all preset torpedoes will be
fired at their targets (unless there are more targets present than
photon torpedoes, in which case the computer will complain). If a
course has been set, the Endeavor will move while firing.

6 TLOAD PH TORPS

This command causes available energy to be transformed into photon
torpedoes, or vice versa. This conversion uses 1§§ energy units for
each photon torpedo loaded or unloaded. It is possible by blow up the
Endeavor by trying to LOAD more photon torpedoes than you have energy

‘for, so use caution when using this command. To LOAD, type +l (to

LOAD 1 torpedo) to +6 (to LOAD 6 torpedoes). To UNLOAD, type -1 to
-6 . To abort the command, type @ .

7 COMPUTER
Command 7 sets the Apple 81 on-board computer in operation. See the
section on Apple 81 computer instructions for details.

8 PROBE

The PROBE command sends a probe out into the quadrant currently occupied
by the Endeavor. This probe reports the status of all Klarnon ships in
the quadrant: energy levels, photon torpedoes left, and whether
targeted by the Endeavor’s automatic weapon systems. The probe’s
information is displayed at the top of the screen where the Galactic
Record was when you began. A typical probe display is illustrated
below.

COORD ENERGY PH TORPS LOCK
3-1 54% 2 PHASERS
6-3 219 3
8-5 629 2 PH TORPS

Figure 9

Probe Display

9 SELF-DESTRUCT

Command 9 starts the self-destruct sequence: 1if it is followed by the
correct password, the Endeavor will be destroyed with all hands lost.
If sufficient energy is available, all enemy vessels in the quadrant
will also be destroyed.

39

Apple 81 On-Board Computer Instructions

The Apple 81 computer enables the Endeavor to make navigational
calculations, and controls the ship’s weapon systems for maximum
effectiveness in combat. It enables the ship to take evasive action
while firing, thus making it a match for a squadron of Klarnon vessels.
When the computer has been invoked by typing 7 in response to
COMMAND? , you will see

APPLE-81 HERE

WHAT IS YOUR INSTRUCTION?

To execute one of the computer instructions, type a number from 1 to 6.
Typing a letter key will display the list of instructions. The computer
instructions are described below.

1 *COMPUTE QUADRANT

This instruction plots the shortest path to any desired quadrant. When
you see COORDINATE ?~ , type the coordinates of the destination, and
the COURSE and WARP needed to reach that location will be displayed.

2 *LOCK PHASERS

This instruction LOCKS the phasers onto the Klarnons you choose to
attack. The Klarnon ships will be tracked by the phasers if the enemy
takes evasive action. You will be asked for the # OF TARGETS, and then
for the COORDINATEs of each target. Incorrect data will give you a
<DATA ERROR> message. The phasers will be locked onto all targets

whose coordinates are entered. If no valid coordinates are entered, the
instruction will be aborted.

3 *LOCK PH TORPS
This instruction causes the photon torpedoes to LOCK onto the Klarnons
you have chosen. These ships will be tracked if they take evasive

action. This instruction works just like the *LOCK PHASERS instruction.

4 *LOCK COURSE

Instruction number 4 LOCKs the COURSE that will be followed during
automatic fire in combat. You will be asked to enter each COORDINATE of
the chosen destination. The COURSE will be displayed at the bottom of
the status display. During each round of combat, the Endeavor will move
one sector unit toward the destination.

5 *COMPUTE TRAJECTORY

When you give this instruction, the Apple 81 will ask you for the
COORDINATEs for a particular target and then give you its TRAJECTORY and
RANGE. 1If you type the COORDINATEs of a destination, the TRAJECTORY and
RANGE displayed will be the COURSE and DURATION for Ion Drive motion.

6 *RETURN
This instruction puts you back in the command module.

40

COMMAND SUMMARY

NAVIGATION

SET SHIELD ENERGY

DAMAGE REPORT

PHASERS

PHOTON TORPEDOS

LOAD PHOTON
TORPEDOS

COMPUTER

PROBE

SELF-DESTRUCT

Moves starship with warp or ion drive

Warp (W) drive moves 1-6 quadrants
WARP FACTOR?- (1-6 quadrants)
COURSE?- (1-359 degrees)

Ion (I) drive moves 1-9 sectors
COURSE?- (1-359 degrees)
DURATION?- (1-9 sectors)

Sets percentage (#-1¢@) of energy
allocated to deflector shields

Displays status of subsystems

Starts phaser firing sequence
AUTOMATIC OR MANUAL?- (A or M)
ENERGY TO FIRE?- (J-Avail energy)

Starts photon torpedo firing sequence
AUTOMATIC OR MANUAL?- (A or M)
TRAJECTORY?- (@#-359, manual only)

Loads or unloads photon torpedoes
Load: (+1 to +6)
Unload: (-1 to -6)

Turns on Apple 81 computer

Sends out probe of current sector

Starts self-destruct sequence
‘ENTER SELF~DESTRUCT PASSWORD-

44

42

APPLE 81 ON-BOARD COMPUTER SUMMARY

CCMPUTE QUADRANT

LOCK PHASERS

LOCK PHOTON
TORPEDOS

LOCK COURSE

COMPUTE TRAJECTORY

RETURN

Calculates course and warp factor to
desired quadrant

Set phasers to track targets
OF TARGETS?- (1-Klarnons)
COORDINATE ?- 1-1 to 8-8

Set photon torpedoes to track targets
OF TARGETS?- (1-Klarnons)
COORDINATE ?-

Set evasion course for automatic fire

Calculates trajectory and range
(course and duration) to desired

sector

Return to command module

	Bookmark 1
	Bookmark 2

