Cortland Programmer’s Workshop

Beta Draft

Writer: Paul R. Black
Apple Technical Publications

Version: 00.0 8/21/86

Engineering Part Number: 030-3130
Marketing Part Number: A2L.6000

Copyright © 1986 Apple Computer, Inc. All rights reserved.

& APPLE COMPUTER, INC.

This manual is copyrighted by Apple or by Apple’s suppliers, with all rights reserved. Under the
copyright laws, this manual may not be copied, in whole or in part, without the written consent of
Apple Computer, Inc. This exception does not allow copies to be made for others, whether or not
sold, but all of the material purchased may be sold, given, or lent to another person. Under the
law, copying includes translating into another language.

@ Apple Computer, Inc., 1986
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple and the Apple logo are registered trademarks of Apple Computer, Inc.
{additional credit lines as needed]

Simultaneously published in the United States and Canada.

Cortland Programmer's Workshop Table of Contents

Contents

Preface
Roadmap
How to Use This Book
What This Manual Contains
What to Read When
Visual Cues
Other Materials You’ll Need
Introductory Manuals
The Technical Introduction
The Programmer’s Introduction
Machine Reference Manuals
The Hardware Reference Manual
The Firmware Reference Manual
The Toolbox Manuals
The Programmer’s Workshop Manual
The Cortland Programming Language Manuals
The Operating System Manuals
All-Apple Manuals.

Part I: Getting Started

Chapter 1. About the Programmer's Workshop
Cortland Concepts
Program Descriptions
Shell
Editor
Assembler
C Compiler
Linker
Debugger
Udlity Programs
Systemn Loader
Memory Manager
Program Interactions

Chapter 2. How to Use the Shell and Editor
What You Need
Starting the Shell
Running CPW on Floppy Disks
Installing CPW on a Hard Disk
Entering and Executing Commands
Entering Command Names, and Command Scrolling
Multiple Commands
Wildcards
Parameter Prompts
Partial Pathnames
Device Numbers and Names
Help Files
Listing a Directory

Beta Draft TOC-i 8/20/86

Part II:

Beta Draft

Table of Contents

The Editor
Calling the Editor
Using the Editor

Using a Printer

Using Exec Files

Compiling (or Assembling) and Linking a Program
Using the Debugger

Using the Utilides

Launching Programs

Advanced Features

Chapter 3: Sample Program

Writing and Editing the Source Code

Creating Object Code: Compiling and Assembling
Creating Load Modules: Linking

Running Your Program

Chapter 4. Shell
Redirecting Input and Output
Standard Prefixes
Pipelines
Partial Assemblies or Compiles
Command Types and the Command Table
Command Descriptions
ALINK
ASM65816
ASML
ASMLG
ASSEMBLE
C
CATALOG
CHANGE
CMPL
CMPLG
COMMANDS
COMPILE
COMPRESS
COPY
CREATE
CRUNCH
DEBUG
DELETE
DISABLE
DUMPOBJ
EDIT
ENABLE
EXEC
EXECUTE
FILETYPE
HELP
INIT

TOC-ii

Cortland Programmer’s Workshop

Cortland Programmer’s Workshop Reference

8120186

Cortland Programmer's Workshop Table of Contents

LINK
LINKED
MACGEN
MAKELIB
MOVE

Exec Files
Passing Parameters Into Exec Files
Programming Exec Files

Variables

Logic Operators

Comments

Exec-File Commands
Break
Continue
Echo
Execute
Exit
Export
For—End
If—Else If—Else—FEnd
Loop—End
Set
Unset

Example

LOGIN Files

Chapter 5. Editor
Modes
Insert
Escape
Auto Indent
Select Text
Automatic Wrap
Macros
Command Descriptions
Beep the Speaker
Bottom of Screen
Bottom of Screen / Page Down
Change
Clear
Copy
Cursor Down
Cursor Left
Cursor Right
Cursor Up

Beta Draft TOC-iii 8120186

Table of Contents Cortland Programmer's Workshop

Cut
Define Macros
Delete
Delete Character
Delete Line
Delete to EOL
Delete Word
End of Line
Find
Help
Insert Line
Insert Space
Paste
Quit
Remove Blanks
Repeat Count
Return
Screen Moves
Scroll Down One Line
Scroll Down One Page
Scroll Up One Line
Scroll Up One Page
Search Down
Search Up
Search and Replace Down
Search and Replace Up
Set and Clear Tabs
Shift Left
Shift Right
Start of Line
Tab
Tab Left
Toggle Auto Indent Mode
Toggle Escape Mode
Toggle Insert Mode
Toggle Select Mode
Toggle Wrap Mode
Top of Screen
Top of Screen / Page Up
Undo Delete
Word Left
Word Right

Setting Editor Defaults

Chapter 6. Debugger
Getting Started
What You Need
Debugger Restrictions
Loading the Debugger
Loading Your Program
Debugger Display Screens
Selecting Displays
The Master Display
Register Subdisplay

Beta Draft TOC-iv 820186

Cortland Programmer's Workshop Table of Contents

Stack Subdisplay
Disassembly Subdisplay
RAM Subdisplay
Breakpoints Subdisplay
Memory Protection Subdisplay
Command Line
Setting Registers
Altering the Contents of Memory
Calculatons
Display Configuration
Saving a Display Configuration
Printing
Other Command-Line Commands
Memory Display
Direct Page Display
Help Page
User-Program Display
Running Your Program
Single-Step and Trace Modes
The Command Filter
Memory Protection
Breakpoints
- Using Monitor Routines

Chapter 7. Linker
Operation of The Linker
Object Files: Input to the Linker
Library Files
Partial Assemblies and Filename Conventions
Load Files: Output From the Linker
Diagnostic Output
Error Messages
Link Map and Source Listing
Symbol Table
Ending
Linking From a Command Line
Linking With a LinkEd Command File
LinkEd Command Descriptions
APPEND
COPY
EJECT
KEEP
LIBRARY
LINK
LIST
OBJ
OBJEND
ORG
PRINTER
SEGMENT
SELECT
SOURCE
SYMBOL
Examples

Beta Draft TOC-v 8120186

Table of Contents Cortland Programmer’s Workshop

Part III: Inside the Cortland Programmer’s Workshop

Chapter 8. Adding a Program to CPW
Compilers, Utilities, and Applications
CPW Utilides
Compilers and Assemblers
Source File Format
Identifying the Language Type
Entry and Exit
Command Precedence
Output Files
Partial Compiles
Help Files
Interpreters

Chapter 9. File Formats
Text File Format
Text File Specifications
Examples
Object Module Format
General Format for OMF Files
Segment Types and Attributes
Segment Header
Segment Body
Expressions
Example
Direct-Page/Stack Segments
Library Files
Load Files
Memory Image and Relocation Dictionary
Jump Table Segment
Unloaded State
Loaded State
Pathname Table
Initialization Segment
Run-Time Library Files
Shell Load Files

Chapter 10. Shell Calls

Beta Draft TOC-vi 8120186

Cortland Programmer’'s Workshop

Making a Shell Call
The Call Block
Shell-Call Macros
The Parameter Block
Types of Parameters

Setting up a Parameter Block in Memory

Register Values

Call Descriptions
Direction ($010F)
Error ($0105)
Execute ($010D)
Get_Lang ($0103)
Get_LInfo ($0101)
Init_Wildcard ($0109)
Is_Window ($0112)
Next_Wildcard ($010A)
Read ($010B)
Read_Indexed ($017?7)
Redirect ($0110)
Set ($0106)
Set_Lang ($0104)
Set_LInfo ($0102)
Stop ($0113)
Switch_Window ($010E)

Appendixes

Appendix A: Command Summary
Language Types :
Shell

Exec Files

Editor

Debugger

LinkEd

Appendix B: Error Messages
Linker

Recoverable Errors

Fatal Errors

Glossary

List of Figures

Preface
P-1. Roadmap to the technical manuals

Part I: Getting Started

Chapter 1.

Beta Draft

About the Programmer's Workshop

TOC-vii

Table of Contents

8120186

Table of Contents Cortland Programmer’'s Workshop

1.1. Creating an Executable Program on the Cortland
1.2. OMF File Segmentation

Chapter 2. How to Use the Shell and Editor
2.1. Directory Example

Chapter 3: Sample Program

3.1. Sample C Source Code

3.2. Sample 65816 Source Code

3.3. Sample Symbol Table for C Program

3.4. Sample Symbol Table for Assembly-Language Program
3.5. Sample Symbol Table and Link Map From Link

Part II: Cortland Programmer’s Workshop Reference

Chapter 4. Shell

4.1. Sample of a Command Table

4.2. Sample DUMPOBJ Segment Header

4.3. DuMPOBJ OMF-Format Segment Body

4.4. DUMPOBJ Disassembly-Format Segment Body
4.5, DUMPOBJ Hexadecimal-Format Segment Body

Chapter 5. Editor
5.1. Output of an Editor Macro

Chapter 6. Debugger
6.1. Sample Master Display
6.2. Sample Memory Display

Chapter 7. Linker
7.1. Sample Output of a LinkEd Command File

Part III: Inside the Cortland Programmer’s Workshop
Chapter 8. Adding a Program to CPW
Chapter 9. File Formats
9.1. OMF File
9.2, Segment Header
9.3. Library Dictionary Segment
Chapter 10. Shell Calls
Appendixes
Appendix A: Command Summary

Appendix B: Error Messages

Glossary

Beta Draft TOC-viii 8120180

Cortland Programmer's Workshop

List of Tables

Preface
P-1. The Cortland Technical Manuals

Part I: Getting Started
Chapter 1. About the Programmer's Workshop

Chapter 2. How to Use the Shell and Editor
2.1. Contents of a CPW Disk

Chapter 3: Sample Program
Part II: Cortland Programmer’s Workshop Reference
Chapter 4. Shell
4.1. Standard Prefixes
4.2. CPW Language Types
4.3. CPW Commands
4.4. ProDOS Filetypes
Chapter 5. Editor

Chapter 6. Debugger
6.1. Disassembly Operand Formats

Chapter 7. Linker
Part III: Inside the Cortland Programmer’s Workshop
Chapter 8. Adding a Program to CPW

Chapter 9. File Formats
9.1. Segment-Body Record Types

Chapter 10. Shell Calls
10-1. Shell Calls
Appendixes
Appendix A: Command Summary
Appendix B: Error Messages

Glossary

Beta Draft TOC-ix

Table of Contents

8120186

Table of Contents Cortland Programmer’s Workshop

Beta Draft TOC-x : 8120186

Cortland Programmer’'s Workshop Preface

Preface

The Cortland Programmer’s Workshop (CPW) consists of several programming
languages, plus sevcral programs that can be used by developers working with any of these
programming languages. This manual describes the components of CPW that can be used
with any of the programming languages: the shell, editor, linker, debugger, and utility
programs; the programming languages are described in separate manuals. This manual is
intended for experienced programmers and developers. It assumes that you are familiar
with the Cortland computer and the Cortland operating system. The following section,
“Roadmap,” shows the relationship between this book and other books in the Cortland
technical manuals suite. The section “Other Materials You’ll Need” in this preface
describes these books and makes recommendations as to which ones you’ll need in order to
develop programs for the Cortland computer.

Roadmap

The Cortland has many advanced features, making it more complex than earlier models of
the Apple II. To describe it fully, Apple has produced a suite of technical manuals.
Depending on the way you intend to use the Cortland, you may need to refer to a select few
of the manuals, or you may need to refer to most of them.

The manuals are listed in Table P-1. Figure P-1 is a diagram showing the relationships
among the different manuals. See the section “Other Materials You’ll Need” in this preface
for recommendations as to which of these books you’ll need when developing programs
for the Cortland computer.

Table P-1. The Cortland Technical Manuals

Beta Draft Preface-1 8/18/86

Preface Cortland Programmer’s Workshop

Title Subject

Technical Introduction to the Cortland What the Cortland is

Cortland Hardware Reference Machine internals—hardware

Cortland Firmware Reference Machine internals—firmware

Programmer’s Introduction to the Cortland Concepts and a sample program

Cortland Toolbox Reference: Part I How the tools work

Cortland Toolbox Reference: Part II More toolbox specifications

Cortland Programmer’s Workshop This book: the
development environment

Cortland Programmer’s Workshop Using the CPW Assembler

Assembler Reference*

Cortland Programmer’s Workshop Using the CPW C Compiler

C Reference*

ProDOS 8 Technical Reference ProDOS for Apple II programs

Cortland ProDOS 16 Reference ProDOS 16 and the System
Loader for Cortland

Human Interface Guidelines Guidelines for all Apple
computers

Apple Numerics Manual Numerics for all Apple
computers

*There is a Pocket Reference for each of these.

A new version of this figure is being prepared

Beta Draft Preface-2 8118186

Cortland Programmer’ s Workshop Preface

To stant finding
out about Technical ,
the Cortland... intraduction To start learning
10 the to program the
Corlland...
To learn how Cortland
the Cortland
works... | Programmer's
R Introduction
N, to the
| Cortland
Conl\ Hardware Cortland
Fi | Reference
Irms|
Referg ; To use the
___l : development
7 environment... To use the
- Toolbox...
To operate on
mespe Cortland R Cortland
fiidie Programmer's -] Tools
& Workshop Reference:
E Cortland Reference .
3 Operating Part |
y System s 8
Reference o Part |
' To use
Touse assembly
TouseC... Pascal... language...
3 N cortland
8 Cortland i Cortland N Worksho
b Workshop ... Workshop |.. o] P
E' c 1 Pascal 3 C\ssembly
Reference .| Relerence anguage

) B Reference
Pocket N Pocket Pocket
Reference Reference Refersnce

Figure P-1. Roadmap to the technical manuals

How to Use This Book

This section describes the contents of the Cortland Programmer’s Workshop manual, gives
guidelines as to which sections you should read for a specific purpose, and describes the
visual cues used in this book to alert you to important material or that a certain word has a
special significance other than regular text (for example, it might be a command).

What This Manual Contains

This book is divided into three parts, including 10 chapters, plus two appendixes, a
glossary, and an index. The contents of these components are as follows:

Part I Getting Started. The chapters in this part provide the minumum information you
need to get started using the Cortland Programmer’s Workshop.

Chapter 1: About the Cortland Programmer’s Workshop. This chapter provides a
general overview to CPW. It defines concepts that are essential to an

Beta Draft : Preface-3 8118156

Preface » | Cortland Programmer’s Workshop

understanding of the CPW environment, and gives brief descriptions of the
programs that comprise CPW.

Chapter 2: How to Use the Shell and Editor. This chapter provides an introduction to
the abilities of CPW, and describes how you use CPW to write, compile or
assemble, link, and run a program.

Chapter 3: Sample Program. This chapter provides a tutorial example that illustrates the
creation of a program in the CPW environment. You are provided with C
source code, plus source code of a subroutine in assembly language. The
example lets you follow along step by step through the process of writing,
assembling and compiling, linking, and running a simple multi-language
program in the CPW environment. -

Part II: Cortland Programmer’s Workshop Reference. This part provides reference
material on CPW commands, on the editor, debugger, and linker, and on the
utility programs that are supplied with the CPW system.

Chapter 4: Shell. This chapter includes complete descriptions of every CPW command,
along with descriptions of some CPW features too advanced to be covered in

Chapter 2.

Chapter 5: Editor. This chapter includes complete descriptions of every CPW Editor
feature and command.

Chapter 6: Debugger. This chapter constitutes an owner’s manual for the CPW
Debugger. It describes every debugger feature and command, and includes
instructions for loading the debugger and the program you want to debug into
memory.

Chapter 7: Linker. This chapter is a complete reference to the CPW Linker. It includes
descriptions of every linker feature and function, including a complete
description of linker command files (LinkEd files), which can be used to control
many features of the linker not otherwise available to users.

Part II: Inside the Cortland Programmer’s Workshop. This part of the manual contains
reference material of use only to those programmers who wish to add a utility
program or language compiler, assembler, or interpreter to CPW. It includes
descriptions of Cortland file formats and calls to internal CPW functions.

Chapter 8: Adding a Program to CPW. This chapter describes the requirements that a
utility or language compiler must satisfy to run under CPW.

Chapter 9: File Formats. This chapter describes the standard formats for text files and
object files for the Cortland computer.

Chapter 10: Shell Calls. This chapter describes several internal CPW functions that
utilities and compilers can (or must, in some cases) call when operating under
CPW. It describes the procedure for calling these functions from assembly
language.

Appendixes: The appendixes hold material for quick reference, or that you might want to
refer to but that is inappropriate in a regular chapter.

Beta Draft Preface4 8118186

Cortland Programmer’ s Workshop Preface

Appendix A: Command Summary. A complete list, with brief descriptions, of all the

shell, editor, and debugger commands, plus a list of all the language numbers
assigned so far for CPW languages.

Appendix B: Error Messages. A list with descriptions and remedial action for all of the

errors you can get while running the CPW Shell, Editor, Linker, or Debugger.

What to Read When

To get the most out of the Cortland Programmer’s Workshop, you should use this manual
in as efficient manner as possible. Herewith are some suggestions on how to proceed.

1.

Whatever your background and experience, start with the “Other Materials You’ll
Need” section of this preface and Chapter 1. The Cortland is not quite like any other
computer, so even if you helped design the Apple Ile and Macintosh, you have to
become familiar with the peculiarities of the Cortland before you proceed.

. If you are familiar with the Macintosh, especially the Macintosh Programmer’s

Workshop, you will be tempted to jump right in. Be cautious: the CPW command
structure is a subset of the MPW commands, and some commands are entirely
different. The editor operates in a fashion very unlike MPW. In CPW, there is only
one set of commands to compile or assemble programs; for example, you can use the
command COMP ILE to compile a C program, assemble a 65816 assembly-language
program, or assemble and compile a program consisting of an assembly-language
file and an appended C source file. As a minimum, you should thumb through
Chapters 2 and 4 to get an idea of what commands and features are available.

. Read through the first few sections of Chapter 5, then thumb through the command-

reference section to get an idea of what the editor can do.

The Cortland Programmer’s Workshop’s ability to compile multilanguage programs
in one step is powerful and unique. If you intend to use more than one language in
CPW, look through Chapter 3; you might want to follow along and perform the
steps described to get some practice in using CPW.,

. By the time you get through step 4, you are pretty familiar with CPW. At this point

you should go ahead and start programming, referring back to the reference material
in Part IT as necessary.

If you are doing assembly-language programming, you will probably find the CPW
Debugger very useful. Read the first several sections of Chapter 6 and thumb
through the command descriptions to get started using the debugger.

. The first few sections of Chapter 7 will give you a deeper understanding of the CPW

Linker. If you want to understand what is going on during the link process, read
these sections. Don’t bother with the section on LinkEd, though, unless you really
need to do something during the link process that you can’t do with the ordinary link
commands. (An example would be to perform multiple searches of library files, or
to link certain segments and ignore others.)

. If you are doing complex system programming, or have a need to manipulate

program segments or library searches in a nonstandard way, read through the
sections on LinkEd in Chapter 7. For routine programming, you will never need

‘this material.

. If you are writing a program to run under CPW, read Part IIIl. You might find the

section on the Object Module Format interesting if you just want to find out more

Beta Draft Preface-5 8118186

Preface Cortland Programmer's Workshop

about how the Cortland works, but unless you are actually adding programs to
CPW, these three chapters are not required reading.

Visual Cues

Look for these visual cues throughout the manual:

By the Way: Notes like this contain sidelights or interesting pleces of
information.

Note: Notes like this contain information that you will probably find useful.

Important: Notes like this contain important information that you should read
before proceding.

Caution: A cautionary note directs your attention to something that could cause
problems with the software if you are not careful.

Warning: A warning directs your attention to something that could cause loss of
data or damage to the software.

Boldfaced terms are defined in the glossary.

A special typeface is used for characters that you type or that can appear on the screen, such
as commands, assembly-language instructions and directives, filenames, or system
prompts:

It looks like this,.

[talics are used in commands to indicate parameters must be replaced with a value; for
example, in the command

DELETE pathname

the word pathname refers to any valid ProDOS pathname; if the file you want to delete is
/CPW/MYPROGS/DONOTHING, then this command would be:

DELETE /CPW/MYPROGS/DONOTHING

Other Materials You’ll Need

The manuals and software you need in order to develop applications that run on the
Cortland depend on the type of programming you are doing. For starters, you must be
familiar with use of the Cortland computer, including the control panel. The following
manual that came with your computer describes routine operation of the computer:

o Cortland Owner's Guide

The following sections describe the manuals in the Cortland technical manuals suite, and
make recommendations about which manuals you may need, based on the type of
programming you are doing.

Beta Draft Preface-6 8/18/86

Cortland Programmer’s Workshop Preface

Introductory Manuals

These books are introductory manuals for developers, computer enthusiasts, and other
Cortland owners who need technical information. As introductory manuals, their purpose
is to help you understand the features of the Cortland, particularly the features that are
different form other Apple computers. Having read the introductory manuals, you should
refer to specific refemnce manuals for details about a particular aspect of the Cortland.

The Technical Introduction

The Technical Introduction to the Cortland is the first book in the suite of technical manuals
about the Cortland. It describes all aspects of the Cortland, including its features and
general design, the program environments, the Toolbox, and the development
environment.

Where the Cortland Owner’s Guide is an introduction from the pont of view of the user,
the Technical Introduction to the Cortland describes the Cortland from the point of view of
the program. In other words, it describes the things the programmer has to consider while
designing a program, such as the operating features the program uses and the environment
in which the program runs.

You should read this book no matter what kind of programming you intend to do, because
it will help you understand the powers and limitations of the machine. If you are going to
be doing assembly-language or system programming, this book is essential. To find out all
about any one aspect of the Cortland, you should read one of the following specific
technical manuals. '

The Programmer’s Introduction

When you start writing programs that use the Cortland user interface (with windows,
menus, and the mouse), the Programmer’s Introduction to the Cortland provides the
concepts and guidelines you need. Itis not a complete course in programming; rather, it is
a starting point for programmers writing application for the Cortland. It introduces the
routines in the Cortland Toolbox and the program environment they run under. It includes
a simple event-driven program (that is, a program that waits in a loop until it detects an
event such as a click of the mouse button) that demonstrates how a program uses the
Toolbox and the operating system.

If you are already familiar with writing event-driven programs on the Macintosh, you can
probably skim this manual—the programming example in this manual is repeated in each of
the language manuals (in the language appropriate to that manual). If you have never
written an event-driven program, or used the Macintosh toolsets, then this manual could
save you hours or days of struggling to get started.

Machine Reference Manuals
There are two reference manuals for the machine itself: the Cortland Hardware Reference
and the Cortland Firmware Reference . These books contain detailed specifications for

people who want to know exactly what’s inside the machine. You don’t need to read these
manuals to be able to develop applications for the Cortland, especially if you are using a

Beta Draft Preface-7 : 8118186

Preface Cortland Programmer’s Workshop

high-level programming language such as C. If you are doing System programming, or
writing programs that are designed to recognize whether they are running on the Cortland
or older Apple II computer, then these books are essential. In any case, these books will
give you a better understanding of the machine’s features. They will also provide the
reasons why some of those features work the way they do.

The Hardware Reference Manual

The Cortland Hardware Reference is required reading for hardware developers, and will
also be of interest to anyone who wants to know how the machine works. It includes the
mechanical and electrical specifications of all connectors, both external and internal, and
descriptions of the internal hardware.

The Firmware Reference Manual

The Cortland Firmware Reference describes the programs and subroutines that are stored in
the machine’s read-only memory (ROM), with two significant exceptions: Applesoft
BASIC and the Toolbox, which have their own manuals. The Cortland Firmware
Reference includes information about interrupt routines and low-level I/O subroutines for
the serial ports, the disk port, and for the DeskTop Bus, which controls the keyboard and
th mouse. The Cortland Firmware Reference also descirbes the Montior, a low-level
programming and debugging aid for assembly-language programs.

The Toolbox Manuals

Like the Macintosh, the Cortland has a set of built-in routines (called the Cortland Toolbox)
that can be called by applications to perform many commonly-needed functions. For
example, there are Cortland tools that you can use to draw things on the screen, and tools
that control desktop windows and menus. The toolbox serves two purposes: it makes
developing new applications easier, and it supports the desktop user interface. Tools can
be called from any of the Cortland Programmer’s Workshop languages.

The Cortland Toolbox Reference, Volume 1, introduces concepts and terminology and tells
how to use some of the tools. It also tells how to write and install your own tool set. The
Cortland Toolbox Reference, Volume 2, contains information about the rest of the tools.

You do not need to use the toolbox to write simple programs that do not use the mouse,
windows, menus, or other parts of the Cortland desktop user interface. For example, if all
the programming you intend to do is to write short routines in C to solve mathematical
problems, then you don’t need the toolbox at all. If you want to use the Cortland graphics
routines, however, or to develop an application that uses the Cortland desktop and mouse,
then you’ll find the Cortland Toolbox to be indispensable.

The Programmer’s Workshop Manual
The development environment on the Cortland is the Cortland Programmer’s Workshop
(CPW). CPW is a set of programs that enable developers to create and debug application

programs on the Cortland. The manual that describes CPW is the one you are reading, the
Cortland Programmer’s Workshop Reference. It includes information about the parts of

Beta Draft Preface-8 8118186

Cortland Programmer’s Workshop Preface

the workshop that all developers will use, regardless of which programming language they
use: the shell, the editor, the linker, the debugger, and the CPW utility programs. It also
provides the information you need in order to write a CPW utility or a language compiler or
assembler for CPW.

The Cortland Programming Language Manuals

The Cortland does not restrict developers to a single programming language. Apple is
currently providing a 65816 assembler and a C compiler. Other compilers can be used with
the workshop, provided that they observe the standards defined in Chapter 8 of this book.
You can write different parts of a program in different CPW languages, then link them into
a single load file using the Cortland Progammer’s Workshop.

There is a separate reference manual for each programming language on the Cortland. Each
manual includes the specifications of the language and of the Cortland libraries for the
language, and describes how to write a program in that language. The manuals for the
languages Apple provides are the Cortland Programmer’s Workshop Assembler Reference
and the Cortland Programmer’s Workshop C Reference. Each of these manuals includes a
sample program that performs the same functions as the program described in the
Programmer’s Introduction to the Cortland manual.

The Operating System Manuals

There are two operating systems that run on the Cortland: ProDOS 16 and ProDOS 8.
Each operating system is described in its own manual: ProDOS 16 Reference and ProDOS
8 Reference. ProDOS 16 uses the full power of the Cortland and is not compatible with
earlier models of Apple II. The ProDOS 16 Reference manual includes information about
the System Loader, which works closely with ProSOS 16 to load programs into memory.
If you are writing a program that does any file manipulation, or that writes to or reads from
disk, you must have the ProDOS 16 Reference manual. It is a rare applications
programmer who will not need this book at some time; for system programmer’s, it is
essential. :

ProDOS 8, previously just called ProDOS, is compatible with the models of Apple II that
use 8-bit CPUs. You need the ProDOS 8 Technical Reference only if you are writing
programs that will be able to run on §-bit Apple II’s.

All-Apple Manuals

In addition to the Cortland manuals mentioned above, there are two manuals that apply to
all Apple computers: Human [nterface Guidelines and Apple Numerics Manual. The
Human Interface Guidelines manual describes Apple’s standards for the human interface to
any program that runs on an Apple computer. If you are writing a commercial application
for the Cortland, you should be fully familiar with the contents of this manual. The people
who buy your program will expect it to work like the other programs on their computer;
they will be upset if it doesn’t.

The Apple Numerics Manual is the reference for the Standard Apple Numeric Environment

(SANE), a full implementation of the IEEE standard floating-point arithmetic. The
functions of the Cortland SANE tool set match those of the Macintosh SANE package and

Beta Draft Preface-9 8118186

Preface Cortland Programmer’s Workshop

of the 6502 Assembly Language SANE software. If your application requires accurate
arithmetic, you’ll probably want to use the SANE routines in the Cortland. The Cortland
Tools Reference, Volume II, tells how to use the SANE routines in your programs. The
Apple Numerics Manual is the comprehensive reference for the SANE numerics routines.
A description of the version of the SANE routines for the 65C816 is available through the
Apple Programmer’s and Developer’s Association (APDA), administered by the
A.P.P.L.E. cooperative in Renton, Washington.

Beta Draft Preface-10 : 8118186

Part I
Getting Started

NOTES

Cortland Programmer’s Workshop Chapter 1: About CPW

Chapter 1

About the Programmer’s Workshop

The Cortland Programmer’s Workshop (CPW) is a development environment for the
Cortland computer; it includes the following components:

 shell

¢ editor

¢ linker

o utility programs
e 65816 assembler
« C Compiler

+ debugger

In order to understand the operation of these programs, you should be familiar with three
other programs:

+ ProDOS 16
¢+ Cortland System Loader
+ Cortland Memory Manager

Note: Further support for developers is provided by the Cortland Tools. The
Cortland Tools consist of a variety of routines in ROM and RAM that can be called
from a program to perform such functions as I/O control, console control, graphics
generation, and mathematical computation. These tools can be used by programs
written in the CPW environment, but are not considered to be part of the Cortland
Programmer’s Workshop.

The Cortland Programmer’s Workshop, then, consists of several programs that can be
used by developers working with any of a variety of programming languages, plus several
programming languages. This manual describes the components of CPW that can be used
by any of the programming languages: the shell, editor, linker, debugger, and utility
programs; the programming languages are described in separate manuals

Cortland Concepts

This section defines the basic concepts and components of the Cortland system that you

must be familiar with to use this manual. The terms shown in boldface are also included in
the glossary at the end of the book.

The Cortland Programmer’s Workshop uses three fundamental types of files: source
files, object files, and load files. Source files consist of code and data following the
conventions of a particular programming language; source files (and text files) correspond
to the Cortland text file format defined in Chapter 9. Object files and load files conform
to the Cortland object module format (OMF) defined in Chapter 9.

Beta Draft : 1-1 8719180

Chapter 1: About CPW Cortland Programmer’s Workshop

To understand the natures of source, object, and load files, you must first be familiar with
the sequence by which you create an executable program from your source code. As
illustrated in Figure 1.1, each source file must be converted into the 65816 machine
language understood by the Cortland CPU. This conversion is done in several steps, as
follows:

1.

The source code is assembled or compiled. Depending on the programming
language used in the source file, the CPW Assembler, C Compiler, or some other
assembler or compiler processes the source file to create an object file. The object
file contains 65816 machine-language instructions, data, and symbolic
references to program routines. (A symbolic reference is the name or label of a
routine or block of data to which the program passes control during program
execution.) Before the program is actually executed by the Cortland, all symbolic
references must be resolved; that is, the location of the routine or data being
referred to must be determined. Object files, then, consist of machine-language
instructions plus unresolved symbolic references.

Your program can consist of several source files, and each source file can be in any
of the CPW programming languages. Each source file is converted into one or more
object files by the CPW assembler and compilers.

The object files are input to the CPW Linker, which combines all of the object files
into a single load file. The linker verifies that every routine referenced is included in
the load file; if there are any routines that the linker has not found when it has
finished processing all of the object files, then it searches through any available
library files for the missing routines. The linker removes the symbolic references
and replaces them with entries in special tables it creates called relocation
dictionaries. The load file, then, consists of blocks of machine-language code that
can be loaded directly in memory (called memory images), with spaces reserved
for the memory addresses of referenced routines, plus relocation dictionaries that
contain the information necessary to patch the addresses into the memory images
when the program is loaded into memory.

The load files do not contain the actual memory addresses of references because, in
general, Cortland programs are relocatable, that is, they can be loaded at any
address in memory. The linker, therefore, does not know the final address at which
any routine will be loaded.

. At program execution time, the load file is loaded into memory by the System

Loader. The loader calls the Cortland Memory Manager to request blocks of
memory for the load file, loads the memory images, and uses the relocation
dictionaries to patch the actual memory addresses into the machine-language code in
memory. The entire load file is not necessarily loaded into memory at one time; all
OMF files are divided into segments, which can be processed independently.
OMF-file segmentation is a fundamental Cortland concept, which we consider next.

The Memory Manager is the Cortland toolset that allocates blocks of memory as
needed, and keeps track of which blocks of memory are available. All applications
should request blocks of memory from the Memory Manager rather than loading data
directly into a preselected memory location. .

Beta Draft ~ 1-2 8119186

E)

Cortland Programmer’s Workshop Chapter 1: About CPW

OIIEOD,

Source File

Assembler ~ Assembler Assembler

or or or

Compiler Compiler Compiler
N \

Object File

A Object File]

NRAY, T
<%\ W

Linker
4)
Load File
N J
A
L.oader

y

Executable Code in Memory

Figure 1.1. Creating an Executable Program on the Cortland

Every OMF file consists of one or more segments, as illustrated in Figure 1.2. Each

segment consists of a segment header and the segment body. The segment header
includes the following information:

+ The size of the segment.
+ The type of segmen:. (We’ll ger to segment types shortly.)

» The lengths of the lubel- and number fields in the segment body.

Beta Draft 1-3 8/19/86

Chapter 1: About CPW Cortland Programmer’s Workshop

+ The version number of the OMF with which this segment is compatible.

+ The address in memory at which this segment is to be loaded. Normally, this field is
0, indicating that the segment is relocatable.

o The name of the segment. For object segments, this may be the name of the
subroutine contained in the segment, or a name you specify, depending on the
programming language you used to write the source code.

» The name of the load segment that will contain the code generated by the CPW Linker
for this segment (see the following discussion).

 Several other fields that need not concern us here (see the section “Segment Header”
in Chapter 9 for a full description).

Object File Load File
objseg1 loadseg 1
loadseg?2
objseg?2
objseg3
objseg2
loadseg1
loadseg2
objseg3 objseg1
loadseg1 objsegd
obisogd /
I loadseg2
W : load’sega
objseg4 objseg4
loadseg3 $
Segment
~ = =Header = = =
== =Body ==~

Figure 1.2. OMF File Segmentation

A load segment has only one name, the ‘name of the segment’ (the ‘name of the load
segment’ field in the segment header is not used in a load segment); for object segments,
however, these names are distinct. The object-segment name is used by the linker in
resolving references; also, you specify the names of object segments when performing
partial assemblies or compiles (described in the section “Partial Assemblies or Compiles” in
Chapter 4) or when using LinkEd to extract specific segments for linking (see the section
“Linking with a LinkEd Command File” in Chapter 7). Each segment in a program must
have a unique object-segment name.

Beta Draft 14 8/19/86

Cortland Programmer’s Workshop Chapter 1: About CPW

Each object segment is also assigned a load-segment name. Some programming
languages, such as CPW Assembly Language and CPW C, let you assign your own load-
segment name to an object segment; some compilers assign a load-segment name to the
object segment for you. Any number of object segments can have the same load-segment
name. The linker (unless instructed otherwise by LinkEd commands) places all object
segments that share the same load-segment name into the same load segment.

For example, suppose your object file contains the following segments:

0. Object Segment Name: Peter
Load Segment Name: White

1. Object Segment Name: Paul
Load Segment Name: Black

(3%

Object Segment Name: Mary
Load Segment Name: White

When the linker processes this file, object-segment names Peter, Paul, and Mary are treated
as references that must be resolved. Object segments Peter and Mary are placed in the same
load segment, named White, and object segment Paul is placed in a separate load segment,
named Black.

On the Cortland computer, no single block of code can occupy more than 64 Kbytes of
contiguous memory. To load a larger program than that, you must split it up into two or
more load segments. When much of memory is already in use, it may be possible to load a
program that 1s divided into several small load segments even if the same program divided
into one or two load segments wouldn’t fit. The Cortland Memory Manager takes care of
assigning each segment to a block of memory; the System Loader keeps track of where in
memory the segment has been loaded, and patches intersegment calls in each segment as it
is loaded.

The object module format defines several segment types. A few are special-purpose
segments used by the linker or the loader for processing files. The segment types with
which you should be familiar in order to get the most out of this manual are as follows:

Object Segment: A segment in an object file.

Load Segment: A segment in a load file. Load segments contain memory images that
the System Loader can load directly into memory, followed by a relocation dictionary
that provides relocation information to the System LLoader. Load segments can be static
or dynamic.

Code Segment: An object segment that contains program code as opposed to data or
variable definitions.

Data Segment: An object segment that contains program data.

Absolute Segment: A segment that can be loaded only at one specific location in
memory. Programs written for older Apple II computers were often absolute; Cortland
program ssegments should rarely if ever be absolute.

Relocatable Segment: A segment that can be loaded at any location in memory. A
relocatable segment can be static or dynamic (see the next two definitions). A load

Beta Draft 15 8119186

Chapter 1. About CPW Cortland Programmer’s Workshop

segment contains a relocation dictionary that is used to recalculate the values of
location-dependent addresses and operands when the segment is loaded into memory.

Relocatable Code contains no references to absolute addresses, and so can be loaded at
any location in memory. Code written to be run under ProDOS 16 on the Cortland
computer must be relocatable to take advantage of the ability of the Memory Manager
and System Loader to optimize the use of Cortland memory.

Static Segment: A static segment is loaded at program boot time, and is not unloaded or
moved during execution. The first segment of any program that is loaded is static; any
other segments may be static, but (especially for large programs) the system will run
more efficiently if they are dynamic.

Dynamic Segment: A segment that can be loaded and unloaded during execution as
needed. Dynamic segments can be used to fulfill the same function as overlays; that is,
a dynamic segment that is not needed at a given time can be removed from memory to
provide room in which to load another dynamic segment. As implemented on the
Cortland computer, however, dynamic segments are much more versatile than overlays:
whereas overlays must always be loaded into the same location of memory, and that
block of memory cannot be used by more than one program, dynamic segments
(which, to be used effectively, should also be relocatable), can be loaded at any location
in memory when needed.

The Cortland Memory Manager determines which dynamic segments to unload to make
room for a new dynamic segment, and at what location in memory to load the new
segment, A dynamic segment, therefore, uses only as much memory as that segment
requires to run (for overlays, you must reserve a block of memory large enough for the
largest overlay file used by the program), and frees the memory for any use when it is
removed.

To specify that a load segment is dynamic, you must use a LinkEd command, as
described in the section “Linking with a LinkEd Command File” in Chapter 7.

Library Dictionary Segment: A library file contains several segments, each of which
can be used in any number of programs. The linker can search a library file for
segments that have been referenced in the program source file. A library dictionary
segment is the first segment of a library file; it contains the names and locations of all
the other segments in the file. The linker uses the library dictionary segment to find the
segments it needs.

Jump Table Segment: A segment in a load file, created by the linker, that provides the
information the loader needs to locate dynamic segments as they are needed during
program execution. The loader creates a linked list in memory, called the jump table,
that indicates the location of all jump table segments in a program.

The 65C816 processor can run in emulation mode or native mode. In emulation
mode, it behaves exactly like a 6502 processor, and can run code written for the 6502
without modification. The Cortland computer fully supports emulation mode by including
ROM code and a memory structure that allows you to run programs written for 8-bit Apple
computers, such as the Apple Ile and Apple IIc. When running in emulation mode,
however, you can use only the first 128 Kilobytes of Cortland memory, and cannot take
advantage of the System Loader or Memory Manager. Native and emulation modes are
discussed in the Technical Introduction to the Cortland, and described in detail in the
Cortland Hardware Reference manual.

Beta Draft 16 8119186

Cortland Programmer’ s Workshop Chapter 1: About CPW

Note: The ProDOS 8 loadable file format (called the Binary File Format),
consisting of one absolute memory image along with its destination address, cannot
be loaded by the Cortland System Loader. You must use ProDOS 8 to load such a
file.

Program Descriptions

This section describes each of the programs included in the Cortland Programmer’s
Workshop, plus the System Loader and Memory Manager.

Shell

The shell program provides the interface that allows you to execute the desired CPW
command or program. It allows you to perform a variety of housekeeping functions, such
as copying and deleting files, or listing a directory. The shell supports input and output
redirection, and pipelining of Programmer’s-Workshop programs.

The shell also acts as an interface and extension to ProDOS 16, providing several functions
(called shell calls) that can be called by programs running under the shell. shell calls can
be used by utility programs, compilers, linkers, or assemblers to perform such functions as
passing parameters and operations flags between the shell and Programmer’s-Workshop
programs. The format for making these calls is exactly like making a ProDOS 16 call.

Editor

The CPW Editor is the user interface to the shell. This full-screen text editor is designed
for use with CPW assemblers and compilers. The editor’s keyboard commands can be
customized to the preferences of the user.

To use the CPW Editor, you use the shell EDIT command. If you are editing a pre-
existing file, the editor is automatically set to the language of that file. If you are opening a
new file, the editor is set to the last language used, or the last language selected with a shell
command.

Assembler

This full-featured assembler allows users to write 65816 assembly-language programs for
the Cortland computer, with full support for the Cortland object-module format, segmented
object files, and library files. The Cortland Programmer’sWorkshop Assembler includes
macros to facilitate assembly-language programming, and allows users to write their own
macros and library files.

The CPW Assembler is specifically designed for writing relocatable code, since the CPW

Linker, System Loader, and Memory Manager are all designed to work most efficiently
with relocatable code.

Beta Draft 1-7 8/19/86

Chapter 1: About CPW Cortland Programmer’s Workshop

The CPW Shell commands for assembling a 65816 assembly-language program are
described in Chapters 2 and 4 of this manual; CPW Assembly Language is described in the
Cortland Programmer’ sWorkshop Assembler Reference manual.

C Compiler

The Cortland Programmer’s Workshop C compiler is ¥*#*?2??%*%_ The CPW Shell
commands for compiling a C program are described in Chapters 2 and 4 of this manual;
CPW C and C compiler options are described in the Cortland Programmer’sWorkshop C
Reference manual.

Linker

The CPW Linker takes object files and file segments created by the CPW Assembler or any
of the CPW compilers, and generates load files. The linker resolves external references
and creates relocation dictionaries, which allow the System Loader to relocate code at load
time. Normally, the linker is called by a shell command that provides a limited number of
linker options.

In addition to the shell commands that call the linker, all functions of the CPW Linker can
be controlled by using a language-like set of commands called LinkEd. LinkEd commands
allow you to do such things as append or insert LinkEd source files in other LinkEd files,
place specific object segments in specific load segments, create dynamic or static load
segments, set load addresses for nonrelocatable code, search libraries, and control the
output printed by the linker. The LinkEd commands can be appended to the last file of the
source code, or can be compiled and executed separately by using the ASSEMBLE,

COMP ILE, or AL INK commands of the Cortland shell. LinkEd is provided for
programmers who require maximum flexibility from the system; for most purposes, the
ordinary link commands are completely adequate.

Since all Cortland Programmer’s Workshop assemblers and compilers create object code
that conforms to the same format, the CPW Linker can link together object files written in
any combination of the development-environment languages.

Debugger

To facilitate the debugging of assembly-language programs, a debugger is provided that
works with 65816 machine code. The CPW Debugger allows you to trace or step through
a program one instruction at a time, or to execute the program at full speed; in either case,
you can insert breakpoints at which the debugger halts execution so that you can inspect the
contents of the registers, memory, direct page, and stack. It can display a variety of types
of information on the screen, including a disassembly of the code being traced, the contents
of memory, the normal display of the program being tested, the contents of the program’s
direct page, the contents of Cortland registers, and the contents of the program’s stack.

The debugger displays in 80-column mode only, but it allows you to switch between your
test program’s screen display and the debugger’s displays. If you switch to the debugger’s
display, the debugger remembers which display mode the test program was in, and
changes back to that mode when you switch back to the program’s display.

Beta Draft 18 8119186

Cortland Programmer’ s Workshop Chapter 1: About CPW

Utility Programs

The Cortland Programmer’s Workshop includes several programs, called CPW Utilities,
that perform functions not built in to the shell. Utilities include:

¢ DUMPOBJ: lists an object-module-format file to standard output (usually the screen)
¢ INIT: initializes a disk

¢ MACGEN: generates a macro file

o MAKELIB: creates a library file from object files

Most utilities, referred to as external commands , are executed like built-in shell commands
and are described in Chapter 4. A few utility programs may require more complex
command sequences; if you add such a program to your system, refer to the documentation
that came with it for instructions.

System Loader

The System Loader is a Cortland toolset that reads the files generated by the CPW Linker,
relocates them (if necessary), and loads them into memory. The loader calls the Memory
Manager as necessary to allocate blocks of memory for segments it wants to load.

Each load segment consists of two parts: a set of records that contain all of the code and
data in the segment that is not location dependent (with spaces reserved for location-
dependent addresses), and a relocation dictionary that provides the information necessary to
patch addresses into the first part of the segment at load time. When the segment is loaded
into memory, the first part is loaded very quickly; then the relocation dictionary is
processed. This structure permits extremely fast loading of relocatable segments.

Memory Manager

This Cortland program allocates and frees blocks of memory as they are needed. It does
the bookkeeping to keep track of what memory is used and which program owns each
block of memory. The loader calls the Memory Manager to reserve or release memory
when loading segments; your application should also call the Memory Manager whenever it
needs a block of memory. Use of the Memory Manager together with relocatable code and
the System Loader allows the Cortland to use memory in an extremely efficient manner, so
that your program can be run under a shell program such as CPW, along with memory-
resident utilities, character-font data files, and so on, without conflicts and without running
out of available memory.

Program Interactions

This section illustrates the interactions among the various programs in the Cortland
Programmer’s Workshop by presenting a typical sequence of procedures and events. For
this purpose, we assume that you are developing an application written mostly in C, with
some routines written in 65816 assembly language. In this section, only the sequence of
operations is listed; see Chapter 3 for step-by-step tutorial instructions to perform the

Beta Draft 1-9 8/19/86

Chapter 1: About CPW Cortland Programmer’s Workshop

sequence described here. See the Cortland ProDOS 16 Reference manual for a complete
description of the program load process.

1.

Using a CPW Shell command, set the current language for CPW to C. (Every
CPW file has a CPW language type; if you open a new file, it is given the current
CPW language type.)

2. Call the CPW Editor and open a new file.

5a.

5b.

. Use the editor to write the C-language routines. You can divide the program among

as many files as you wish. You do not have to return to the shell between files; you
can save one file and open another within the editor. Until you use a shell command
to change it, or open a non-assembly-language file, the current language remains C.

Quit the editor, change the current language to ASM6581 6, call the editor, and open
a new file. You can divide the 65816 assembly-language routines among as many
files and as many segments per file as you wish. In CPW Assembly Language, you
can specify which object segments go in which load segments. Make the assembly-
language routines relocatable; that is, use no absolute addresses—use labels and
relative addressing only.

Until you use a shell command to change it, or open a non-assembly-language file,
the current language remains ASM65816.

Quit the editor, and use the CPW Linker to link the object files into a load file.
Normally, you can use the linker’s default execution options to link the program.
When you do not specify otherwise, the linker places all object segments with the
same load-segment name into a single load segment.

To compile and link the entire program in one operation, do the following:

a. Using the editor, tie all of your source files together by placing an APPEND

directive (in CPW Assembly Language) or a #append function (in C) at the end
of each file but the last.

b. From the shell, execute the compile-and-link command (CMPL). The object files
output from the C compiler and those output from the CPW Assembler are all in
the same format, and so are indistinguishable to the linker,

The shell checks the language type of the first file, and calls the C compiler. When
the compiler gets to a 65816 file, it returns control to the shell, which calls the CPW
Assembler. When the assembler is finished, it returns control to the shell again,
which calls the linker. The linker combines the object files, resolves references,
writes the load file, and returns control to the shell.

If you want to change load-segment assignments, or if you want to use dynamic
load segments, you must use a LinkEd file. Write the LinkEd file like a language

source file: first set the system language to LINKED, then use the editor to write the
file.

To compile and link the entire program in one operation, do the following:

a. Using the editor, tie all of your source files together by placing an APPEND

directive (in CPW Assembly Language) or a #append function (in C) at the end
of each file.

b. Put an APPEND directive that references the LinkEd file at the end of the last file
in the program.

c. In the shell, execute the COMP ILE command.

Beta Draft 1-10 8/19/86

Cortland Programmer’s Workshop Chapter 1: About CPW

The shell checks the language type of the first file, and calls the C compiler. When
the compiler gets to a 65816 file, it returns control to the shell, which calls the CPW
Assembler. When the assembler gets to the LinkEd file, it returns control to the shell
again, which calls the linker. The linker, controlled by the commands in the LinkEd
file, does the following:

combine the object files

resolve references

assign object segments to load segments
. label certain load segments as dynamic

search libraries

and write the load file.

When it is finished, the linker returns control to the shell.

6. Run the program by typing in the name of the load file and pressing the Return key."
(You can also automatically execute a program after linking by using the CMPLG
command.) When a program is rin on the Cortland, the following events occur:

a. The System Loader loads the first segment into memory (calling the Memory
Manager to request the block of memory it needs). This segment is static; that is;
it remains in memory during the execution of the program. The loader uses the
relocation dictionary of the segment to relocate the code to its present location in
memory.

© ® © ® © °

b. The loader loads all other static segments into memory, relocating them as
necessary.

c. The loader passes control of the system to the program, and the program begins
to execute.

d. When a reference to a subroutine in a dynamic segment is encountered, control is
returned to the System Loader through the jump table. If the segment is already
in memory, the loader transfers control to the segment. If not, the loader uses
the jump table to locate the load file, segment, and offset of the subroutine, loads
the segment into memory, and transfers control to the segment. The System
Loader creates and maintains a table (the memory segment table) to keep
track of all the segments in memory.

When there is insufficient room in memory to load a segment, the Memory
Manager calls the System Loader to unload a dynamic segment from memory.
The System Loader keeps track of which segments are active (that is, which
segments must be returned to by subroutines that have not completed executing),
and does not allow those segments to be unloaded by the Memory Manager.

7. If the program does not run correctly, you can use the CPW Debugger to step
through or trace the code, to insert breakpoints, to disassemble the machine code,
and to examine the contents of registers and memory locations. You can modify the
code in memory and rerun the program until the bug is fixed.

8. Correct the source code and reassemble (or recompile) the program. You can do a
partial assembly or compile to reassemble or recompile only the routine containing
the bug.

9. Relink the program and rerun it. If you have used partial assembiles or partial

compiles, the linker selects only the most recent version of each segment to put in the
load file.

Beta Draft 1-11 8/19/86

Chapter 1: About CPW Cortland Programmer’s Workshbp

10. When the program is completely debugged, you can use the CRUNCH command to
compress the files created by partial assemblies into a single object file. Then link -
the program one last time. Using CRUNCH is optional; if you have performed
several partial assemblies, compressing the object files speeds up the link process.

Beta Draft 112 8/19/86

Cortland Programmer’s Workshop Chapter 2. Using the Shell and Editor

Chapter 2

How to Use the Shell and Editor

The Cortland Programmer’s Workshop Shell is the interface between CPW and the
Cortland operating system. The CPW Editor is your interface with CPW. The shell
provides a command interpreter to perform such functions as copying, moving, and
deleting files, and running programs. The shell also provides an editor that you can use to
write source code. You can assemble, compile, link, and run your programs with shell
commands. In the Cortland Programmer’s Workshop, a single set of commands operates
identically for all assemblers and compilers; you do not need to learn a new set of
commands or operating sequence for each language you add to the system.

This chapter introduces you to the use of the shell and editor. The most commonly-used
commands and features are described, starting with the most fundamental and proceding to
the more advanced. The most advanced and rarely-used features of CPW are deferred to
the reference section of this manual.

What You Need

In order to use the Cortland Programmer’s Workshop, you must have the following
hardware and software. A list of Cortland manuals that you will find useful is given in the
Preface.

A Cortland computer, or an Apple Ile computer with an installed Cortland-conversion
kit.

* An installed Cortland memory-expansion board with 256K bytes of RAM, for a total
of 512K bytes of RAM.

« A 3.5 inch disk disk containing the files shown in Table 2.1.
* Two UniDisk 3.5 disk drives, or one UniDisk 3.5 disk drive and a hard disk.

+ Disks containing any other CPW languages you intend to use with this system. The
files on these disks must be installed on the Cortland disk as described in the manuals
that came with them.

Note: If you haven’t yet read the preface (who reads prefaces?), go back and read
itnow. In addition to providing a list of the manuals you’ll need to develop
programs for the Cortland, it explains the layout of this book, the interrelationships
of the books in the Cortland reference-manual suite, and the notation and syntax
used to describe commands in this book.

The CPW disk contains the files shown in Table 2.1. ***Please update as
necessary. What are the final names for these files? Is this subject to
change rapidly enough that we should not put it in the manual? Put it in an
appendix?*** Use the index of this manual to get more information on any of these

Beta Draft 2-1 8/19/186

Chapter 2: Using the Shell and Editor Cortland Programmer’s Workshop

files. To examine the contents of your CPW disk, boot the disk, type CATALOG, and
press Return. To examine the contents of a subdirectory, include the pathname of the
subdirectory; for example, to obtain a listing of the files in the subdirectory
/CPW/UTILITIES/HELP/, use the following command:

CATALOG /CPW/UTILITIES/HELP

Table 2.1. Contents of a CPW Disk

Beta Draft 22 8119186

Cortland Programmer’ s Workshop Chapter 2: Using the Shell and Editor

SYSTEM.SETUP/

/CPW/ CPW subdirectory.
PRODOS ProDOS system startup.
CPW.SYS16 The CPW Shell program.
SYSTEM/ Operating system and CPW system subdirectory.
P16 ProDOS 16 operating system kermnel.
LOADER1 The System Loader.
LOADER2 The System Loader.
EDITOR CPW Editor.
SYSCMND List of CPW command names and command numbers. You can
edit this file to add or delete commands.
LOGIN CPW command file executed on startup (optional).
SYSEMAC Editor macro file.
SYSTABS Editor defaults file. You can edit this file to set editor defaults
for any CPW language.***?is this on the disk?***
LIBS/ A subdirectory containing standard ProDOS 16 system libraries.
##%2is this on the disk?#%*#*
TOOLS/ A subdirectory containing all the RAM-based Cortland toolsets.
FONTS/ A subdirectory containing the fonts needed by CPW,
DESK.ACCS/ Cortland desk accessories.

A subdirectory containing system programs to be executed at

- system boot time. ***what's in here for CPW?72%%%*

TOOL.SETUP A subdirectory containing ROM patches and the program that
installs them.
LANGUAGES/ CPW Languages subdirectory. All compilers must be installed
in this subdirectory.
ASM65816 CPW Assembler,
LINKED CPW Linker.
UTILITIES/ CPW utilities subdirectory.
DEBUG CPW Debugger.
DUMPOBJ External command; CPW object-file dump routine.
INIT External command.
MACGEN External command.
MAKELIB External command.
SWITCH External command.***?is this on the disk?***
HELP/ Help-file subdirectory. This directory contains one help file for
each CPW command.
LIBRARIES/ Linker libraries. The linker can search these libraries during a
link,
AB16.MSCN Miscellaneous math libraries.
B816.1I0 I/O libraries.
C816.INT2 2-byte math libraries.
D816 .INT4 4-byte math libraries.
E816.INT8 8-byte math libraries.
H816.MSC Miscellaneous libraries.
MACROS/ CPW Assembler macros subdirectory.
M65816.1I0 I/O macros.

M65816.INT2MATH
M65816.LONGMATH
M65816.MSC

2-byte math macros.
4- and 8-byte math macros.
Miscellaneous macros,

Starting the Shell

The Cortland Programmer’s Workshop disk is self-booting. To start up the CPW system,
you need only insert the disk in the disk drive, and turn on the computer. You can also
boot the system when the computer is already on by putting the CPW disk in the disk drive
and pressing Apple-Control-Reset.

Beta Draft 8/19/86

Chapter 2: Using the Shell and Editor Cortland Programmer’s Workshop

Important: Do not run CPW from the original product disk. To make a working
copy of your CPW disk, use the following procedure.

1.

[S8

Write-protect the original CPW disk, insert it in the disk drive, and turn on the
computer. CPW should load from the disk. If you have a hard disk, turn it on and
let it warm up. If you have two 3.5-inch disk drives, insert a blank disk in the
second drive.

Type SHOW UNITS Return. A list of the disk drives attached to your system,
together with the names of the volumes in those drives, appears on the screen. Make
a note of the device numbers of each of your drives.

Type INIT device /CPW2 Return, where device is the device number of the disk
drive containing the disk you want to initialize. For example, if you have two 3.5-
inch disk drives, this command should be INIT .D2/CPW2. (We are temporarily
naming the new disk /CPW2 to avoid any confusion with the original disk. The last
step of the copy process will be to rename the disk /CPW.)

. The prompt Insert disk and hit any key to continue appearson

the screen. If you have only one disk drive, remove the CPW disk and insert the
blank disk. If you have two disk drives, the blank disk is already in the second
drive; press any key to initialize the disk.

When the initialization is complete, you can copy CPW. If you have two 3.5-inch
disk drives, you can copy CPW directly from one drive to the other. If you have
one 3.5-inch disk drive and a hard disk, it is easiest to copy CPW first onto the hard
disk, then onto the new disk. If you have only one 3.5-inch disk drive, you will
have to swap disks when you are prompted to do so.

Note: It takes as long as 15 minutes or more to copy the CPW disk when you
have to swap disks, and you have to sit there inserting and removing disks the
whole time. Go get the beverage of your choice and put some music on the
radio before you start.

To copy the disk onto another floppy disk, place the CPW disk in the first (or only)
disk drive, and enter the following command:

COPY /CPW/= /CPW2/=

To copy the disk using a hard disk as an intermediary, use the following commands
(substitute the volume name of your hard disk wherever hardisk appears):

CREATE /hardisk /CPW
COPY /CPW/= /hardisk /CPW
COPY /hardisk /CPW/= /CPW2

. Remove the original CPW disk from the drive (if it’s still in a drive), insert the new

disk in the drive, and enter the following command:
RENAME /CPW2 /CPW
You now have a working copy of your CPW disk. Put the original in a safe place.

Each time you start CPW, it looks for file named LOGIN in the /CPW/SYSTEM/ prefix.
The LOGIN file should have a language type of EXEC; you can include any valid CPW
command in this file. If it finds such a file, CPW executes it before doing anything else.
You need not have a LOGIN file in your system; if there is no LOGIN file, CPW uses
default settings for system parameters. You can use a LOGIN file to set system defaults
such as setting a printer slot, to change default prefix assignments, to read a command table

Beta Draft 24 8119186

Cortland Programmer’ s Workshop Chapter 2: Using the Shell and Editor

containing command-name aliases, or even to execute a utility program. The next section
gives instructions for creating a LOGIN files for using a hard disk, the section “Using a
Printer” in this chapter tells you how to create a LOGIN file for initializing a printer. CPW
commands and Exec files are described in Chapter 4.

Running CPW on Floppy Disks

You can run CPW on a single 800K 3.5-inch disk. The files included on the CPW disk
take up most of the disk space, however, so you will probably find it more satisfactory to
have a second 3.5-inch disk drive attached to your Cortland. You can set the system to use
the volume name of the disk in the second disk drive as the default prefix to pathnames
used in commands; to do this, use the PREFIX command. (The prefix that is assumed
when none is specified is called the current prefix.) For example, if your programs are

on a disk called /MYPROGS in the second disk drive, type the following command and
press Return:

PREFIX /MYPROGS

Once you have set the current prefix to that of your program disk, you need not include the
prefix in pathnames.when executing commands. For example, if the current prefix is
/MYPROGS/, you could use the following command to obtain a directory listing of the
subdirectory /MYPROGS/CSOURCE/:

CATALOG CSOURCE

Note: Do not include a slash (/) before the pathname when you omit the current
prefix from a pathname, or CPW will look for a volume by that name. For
example, if you typed CATALOG /CSOURCE in the preceding example, you would
get the message Volume not found.

Keep the CPW disk in the first disk drive while you are running CPW, so the system can
have access to the utility programs and help files on that disk.

If you have only one disk drive, you can load CPW, then remove the CPW disk and insert
your program disk in its place. Execute the PREFIX command as described above. You
are prompted to place the CPW disk online when it is needed. If the CPW disk is in the
drive when you execute a command that requires your program disk, the message Volume

not found appears on the screen. Place your program disk in the disk drive, and
reexecute the command.

Installing CPW on a Hard Disk

To transfer CPW to a hard disk, first make a working copy of CPW on a floppy disk and
copy CPW onto your hard disk as described in the beginning of the “Running the Shell”
section. Then use the following procedure to create a LOGIN file on your working copy of
CPW that will set up the system to run from the hard disk each time you load CPW.

Substitute the volume name of your hard disk wherever the word hardisk appears in this
procedure.

1. Boot CPW from the CPW working disk.

Beta Draft 235 ' 8119186

Chapter 2: Using the Shell and Editor Cortland Programmer’s Workshop

(V]

. Type the following commands (press the Return key after each command):
EXEC
EDIT SYSTEM/LOGIN

3. You are now in the editor. Type the following lines, ending each line with a Return.
You can use the arrow keys to move around in the file, and the Delete key to correct

mistakes.
PREFIX O /hardisk /CPW
PREFIX 4 /hardisk /CPW/SYSTEM
PREFIX 5 /hardisk /CPW/LANGUAGES
PREFIX 6 /hardisk /CPW/UTILITIES
PREFIX 2 /hardisk /CPW/LIBRARIES

PREFIX 3 /hardisk

4. Press Apple-Q. When the editor’s Quit menu appears, press S to save the file, then
E to return to the shell.

5. To test the setup, reboot CPW. You should be able to remove the CPW working
disk and run CPW from the hard disk after booting from the floppy disk.

Entering and Executing Commands

There are two main methods of entering commands in CPW:

1. Type in any CPW command, and press the Return key while in the CPW Shell
command interpreter (that is, any time you are not in the CPW Editor or running
another program).

[V

. Create a file of CPW commands with the language type EXEC. When you enter the
name of an Exec file as a command, CPW executes the commands in the file as if
they were typed from the keyboard.

Entering Command Names, and Command Scrolling

CPW requires every command to be entered in full, exactly as it appears in the command
table (except that the command interpreter is not case sensitive). (The command table is a
file containing every command name recognized by CPW; the shell consults the command
table each time you enter a command. The command table is described in the section
“Command Types and the Command Table” in Chapter 4.) It is not necessary for you to
type in the entire command, however. Type in the first letter, or first few letters of the
command, then press the Right-Arrow key. The shell consults the command table, and
prints out the full command name of the first command it finds that matches the letters you
typed. For example, if you type

CO

and press the Right-Arrow key, then the shell finds the first command-name in the
command table that begins with CO, and prints the full command name:

COMMANDS

Beta Draft 26 : 8/19/86

R

Cortland Programmer’ s Workshop Chapter 2. Using the Shell and Editor

You can press the Up-Arrow and Down-Arrow keys to scroll through the last 20
commands that you have entered. For example, if you execute the CATALOG command,
then execute the COPY command, and then press the Up-Arrow key, the CATALOG
command reappears on the command line. Press the Down-Arrow to return the COPY
command to the command line.

Note: The CPW Shell command interpreter is not case sensitive; that is, you can
enter commands and filenames in any combination of uppercase and lowercase
letters. Command examples are shown in uppercase letters in this book because
they are listed that way in the command table and help files.

You can add command aliases to the command table, if you like. For example, to make the
shell recognize the command CMP as an alias for COMP ILE, add CMP to the command table
with the same command number as COMP ILE. See the section “Command Types and the
Command Table” in Chapter 4 for instructions on modifying the command table.

Multiple Commands

You can enter several commands on one line; to do so, separate the commands with a
semicolon (;). For example, to change the name of the file WHITE to BLACK, then open
the file for editing, type in the following command line, and press the Return key:

RENAME WHITE BLACK ; EDIT BLACK

You can use this technique in Exec files as well.

Wildcards

Many of the CPW commands require you to enter a filename. In many cases, you can
substitite a special character, called a wildcard, for one or more of the characters in the
filename. CPW recognizes two wildcard characters: the equal sign (=), and the question
mark (?). These characters are used in an identical fashion to substitute for filenames or
parts of filenames; the difference between them is that, if you use the question mark, then
each time CPW finds a match for the character, it pauses and asks for confirmation before
carrying out the command.

For example, suppose you want to write-protect every file in a directory called
/CPW/MYFILES. The command DISABLE W parhname write-protects pathname; where
pathname represents the prefix and filename of the file you want to write protect. To write-
protect these files, use the following command:

DISABLE W /CPW/MYFILES/=
If you were deleting files rather than write-protecting them, on the other hand, it might be a
good idea to double-check each match before letting CPW delete it. To delete files in the
directory /CPW/MYFILES/ that have the extension . BKUP, with CPW asking for
confirmation before deleting each file, use the following command:

DELETE /CPW/MYFILES/?.BKUP

Beta Draft 2-7 8119186

Chapter 2: Using the Shell and Editor Cortland Programmer’'s Workshop

Each time CPW finds a filename in the directory /CPW/MYFILES that ends in . BKUP, it
stops and writes the name of the file to the screen. A cursor appears after the filename. To
¢o ahead and delete the file, press ¥ (for yes). To leave the file alone and find the next

match press N (for no). To leave the operation alone and terminate the command, press Q
(for quit).

You can specify as many or as few characters with a wildcard as you wish. For example,
the filename specification MY=ILE would match the names MYFILE, MYBILE and
MYOWNF ILE. You can use more than one wildcard character in a single filename. For
example, =YF?LE would match MYFILE, MARYF ILE, and MYFOOLE. You can use both
equal signs and question marks in a filename specification, but as long as at least one
question mark is present, CPW stops and waits for confirmation for every match.

You cannot use wildcards for directory pathnames or for the directory portion of a filename
(that is, the prefix). You cannot use wildcards in filenames in certain commands. For
example, you cannot use wildcards in the ASSEMBLE command or in the second filename
of a RENAME command. Some commands accept wildcards, but use only the first filename
matched; for example if you use a wildcard for the first filename of a RENAME command,
only the first file matched is renamed. If you use a question mark (?) in such a case,
however, and respond N to the first file matched, then the next match is offered, and so

forth until you accept one. The following sequence illustrates this feature. Words shown
in boldface are the ones you type in:

RENAME /CPW/MY?ILE /CPW/YOURFILE
/CPW/MYFILE N
/CPW/MYBILE b4

In this example, the file MYFILE is left unchanged, and the filename MYBILE is changed
to YOURF ILE,.

Parameter Prompts

If you enter a CPW command that requires one or more parameters (such as a filename),
and do not include a required parameter, then CPW prompts you for it. You are not
prompted for optional parameters. For example, the following exchange shows what

happens when you enter the RENAME command without parameters. Words shown in
boldface are the ones you type in:

RENAME
File Name: /CPW/MYFILE
File Name: /CPW/MYFILE.OLD

Since the RENAME command requires two filenames as parameters, you are prompted for
each in turn. If a wildcard would have been allowed in the command line, you can use one
in response to the prompt.

Since you are not prompted for optional parameters, there are some operations you can not
carry out by simply responding to prompts. For example, if you do not include any
parameters after the COPY command, you are prompted for the filename of the file to copy.
However, since the target pathname is not a required parameter, you are not prompted for
it. If you do not include the target pathname on the command line (or on the same line as
the source filename in response to the File Name prompt), then the current prefix is

Beta Draft 28 8/19/86

.
S

Cortland Programmer’s Workshop Chapter 2: Using the Shell and Editor

always used as the target directory (and the filename is not changed). The following
example shows what happens when you include only the parameters for which you are
prompted when using the COP Y command:

CoPY
File Name: MYFILE
File Exists. Replace it?

Since you used the current prefix for MYFILE, and the current prefix is also assumed for
the target directory (since no target directory was spec1ﬁed) CPW asks if you want to
replace an existing file.

You can include both the source file and the target directory in response to the prompt, as in
the following example:

corY ,
File Name: MYFILE /MYPROGS/CSOURCE

In this case, the file named MYFILE in the current prefix is copied to the directory
/MYPROGS/CSOURCE/.

Partial Pathnames

When you execute a CPW command that requires a pathname, you can enter the full
pathname, or you can enter a partial pathname, consisting of the filename and optionally
one or more subdirectory names. If the pathname in the command does not begin with a
slash (/), CPW assumes that a partial pathname is being used, and places the current prefix
in front of the pathname in the command. When you first boot CPW, the current prefix is
the boot volume; you can change the current prefix at any time with the PREF IX command.

For example, when you boot CPW from the 3.5-inch disk that came with the system, the
current prefix is set to /CPW/. In this case, the following two commands are equivalent:

CATALOG /CPW
CATALOG

When you follow the directions in the section “Installing CPW on a Hard Disk” in this
chapter, the default current directory is /hardisk/CPW/. If the name of the hard disk is

HARDISK, then the current directory is / HARDISK/CPW/ and the following two
commands are equivalent:

PREFIX /HARDISK/CPW/MYPROGS
PREFIX MYPROGS

Note: Do not include a slash (/) before the pathname when you omit the current
prefix from a pathname, or CPW will look for a volume by that name. For

example, if you typed PREFIX /MYPROGS in the preceding example, you would
get the message Volume not found.

CPW uses other standard prefixes to find the CPW system files it needs, so CPW
commands and utilities continue to work correctly when you change the current prefix. For

Beta Draft 2-9 8/19/86

Chapter 2: Using the Shell and Editor Cortland Programmer’s Workshop

example, when you execute the MAKELIB command on a standard CPW floppy disk,
CPW loads the file /CPW/UTILITIES/MAKELIB, no matter what the current prefix is
set to. The prefixes that CPW searches for CPW system files can also be changed with the
PREFIX command, as discussed in the sections “Standard Prefixes” and “PREFIX” in
Chapter 4.

Device Numbers and Names

The Cortland Programmer’s Workshop Shell assigns a device number to each I/O device
currently online. Use the SHOW UNITS command to obtain a list of the device numbers
and the ProDOS volumes currently in those devices. The unit names . CONSOLE

and . PRINTER can also be used as device names. For example, suppose you have two
UniDisk 3.5’s, one Disk II drive, a hard disk, and a RAM disk on line. The SHOW

UNITS command gives the following response (words shown in boldface are the ones you
type in):***Is this correct? Close? Vaguely related to the truth?***

SHOW UNITS
Units Currently On Line:

Device Name

D1 /CPW

.D2 /MYFILES
.D3 /BLANKO4
.D5 /HARDISK
.D6 /RAMS
.PRINTER

.CONSOLE

Note that device number .D4 is not listed, since ProDOS 16 expects disk drives to come in
pairs. ¥**is that true?*** You can substitute a device number or device'name
anywhere you would have used a volume name. For example, to get a directory listing of
the LIBRARIES/ subdirectory, you could use the following command:

CATALOG .D1/LIBRARIES
The device name . CONSOLE represents the keyboard for input and the screen for output.

The .CONSOLE and .PRINTER device names are primarily used in redirection of input
and output. See the section “Redirecting Input and Output” in Chapter 4 for details.

Help Files

CPW includes a help file for each CPW command. To obtain a listing of the CPW

commands, use the HELP command. To display a help file on any command, use the
following command:

HELP command

Beta Draft 2-10 8119186

Cortland Programmer’s Workshop Chapter 2: Using the Shell and Editor

where command is the name of the command for which you need help. The help file for
each command includes the command syntax, a brief command description, and a list of the
required and optional parameters for the command.

The CPW help files are all contained in the HELP / subdirectory in the
/CPW/UTILITIES/ subdirectory. They are standard ASCII text files, so you can edit
them if you wish. If you create an alias for a command, you might want to copy the help
file for the command to a file with the alias command name. For example, if you create the
alias CMP for the COMPILE command, use the following command to make a help file for
CMP:

COPY /CPW/UTILITIES/HELP/COMPILE /CPW/UTLITIES/HELP/CMP
After you execute this command, there are two copies of the same help file in the HELP /

subdirectory, one named COMP ILE, and one named CMP. You can then edit the CMP file
to change the command name in the file from COMPILE to CMP.

Listing a Directory

To obtain a directory listing, use the CATALOG command. For example, to get a listing of
the contents of the /CPW/ directory, enter:

CATALOG /CPW

The directory li'sting for your program subdirectory might look something like Figure 2.1.

/C2W/MYPROGS/=

Name Type Blocks Modified Created Access Subtyre
MYSYSTEM Sie 30 9 NOV 86 09:14 18 SEP 86 13:12 DNB R

ABSPROG EXE 8 12 APR 86 11:02 4 MAR 86 03:01 NBWR A=5200C
ABS.SOURCE SRC 9 13 APR 86 18:18 4 MAR 86 03:19 DNBWR ASM65816
C.30URCE SRC 5 26 MAR 86 07:43 29 FEB 86 12:34 DNBWR C
CCOMMAND.FILE SRC 1 9 APR 86 19:22 31 MAR 86 04 22 DNBWR EXE
ABS,ORJECT OBJ 8 12 NOV 86 15:02 4 MAR 86 14:17 NBWR

TEXTFILE TXT 1 24 DEC 85 24:59 24 DEC 85 11:14 DNBWR

Blocks Free: 1538 Blocks Used: 62 Total Blocks: 1600

Figure 2.1. Directory Example

The fields in the directory listing are defined as follows:

Beta Draft 2-11 8/19/86

Chapter 2: Using the Shell and Editor Cortland Programmer’s Workshop

Name The name of the file. Names are not case sensitive.

Type The ProDOS 16 filetype. ProDOS 16 filetypes are described in the Cortland
ProDOS 16 Reference manual. The filetypes most commonly used in CP
are as follows: ‘

SRC CPW source file

OBJ CPW object file

LIB Library file

S16 Load file that runs independently of any shell program
EXE Load file that runs under a shell program

STR Startup load file

TXT ASCI text file

Blocks The number of blocks on the disk occupied by this file. A block is 512
bytes.

Modified The last date and time at which this file was modified.
Created The date and time at which this file was first created.

Access Each of the letters in this list represents one of the ProDOS 16 access
privileges, as follows:

D “Delete” privileges. If you disable this attribute, the file cannot be
deleted.

N “Rename” privileges. If you disable this attribute, the file cannot be
renamed.

B “Backup required” flag. If you disable this attribute, the file will not
be flagged as having been changed since the last time it was backed

up.

W “Write” privileges. If you disable this attribute, the file cannot be
written to.

R “Read” privileges. If you disable this attribute, the file cannot be
read.

Use the ENABLE and DISABLE commands to set and clear these attributes.

Subtype For an absolute load file, this field shows the memory address at which the
file is loaded when you run it. For a CPW source file, this field shows the
CPW language type.

You can use the CATALOG command to get a complete listing of any subdirectory, to get
catalog information on an individual file, or, with wildcards, to list a specific subset of files
on a subdirectory. You can use device numbers to list the directory on a volume even if
you don’t know the name of the volume.

For example, to list all of the files in the current directory that begin with MY and end in
. PAS, use the following command:

. CATALOG MY=.PAS

To list the files in the second disk drive attached to your system, use the following
command:

Beta Draft 2-12 819186

Cortland Programmer’s Workshop Chapter 2: Using the Shell and Editor

CATALOG .D2

To get information about a file named MYF ILE in the subdirectory /CPW/MYPROGS, use
the following command: -

CATALOG /CPW/MYPROGS/MYFILE

The Editor

The Cortland Programmer’s Workshop Editor is a full-screen text editor, with considerable
text-manipulation facilities. You can perform the following functions while in the editor:

+ Delete text

» Copy text

e Move text

+ Search for a text string _

» Search for a text string and automatically replace it with another string
+ Jump from one position in the file to another

s Scroll the screen down or up '

¢ Set and clear tab stops

» Restore accidentally-deleted text

+ Define and use macros of editor keyboard commands
+ Execute shell commands

You control the editor with keyboard commands. All of the editor’s features are described
in detail in Chapter 5. This section provides a brief introduction to the use of the editor.

Calling the Editor
To call the editor, use the following command:

EDIT pathname
where pathname is the full or partial pathname of the file you wish to edit. The file you
specify in the EDIT command is opened; if the file does not already exist on the disk, then
a new file with that name is opened. '
Every CPW file has a CPW language type; if you open a new file, it is given the current
CPW language type. If you open a preexisting file, CPW’s current language changes to
match the language type of that file. You can also change the current language by entering
as a command the name of the language you wish to use. You can change the CPW
language type of any existing CPW source file with the CHANGE command, described in
Chapter 4.

Files can have the following language types:

Beta Draft 2-13 819186

Chapter 2: Using the Shell and Editor Cortland Programmer’s Workshop

e EXEC: A CPW command file
o TEXT: An ASCI text file (ProDOS 16 filetype $B1)
¢ PRODOS: An ASCII text file (ProDOS 16 filetype $04)
+ ASM65816: CPW 65816 Assembly-Language source code
+ C: CPW C source code
¢ LINKED: CPW Linker command file
 others—each language compiler, assembler, interpreter, text formatter, or linker you
add to CPW has a language name that can be assigned to a file
Use the following procedure for opening and saving a new file named MYFILE.

1. Enter as a command the language type you want to use for the file. For example, if
you want to create a C source file, type

C RETURNI
2. Type EDIT MYFILE [RETURNI The editor opens a new file, named MYFILE,

3. Press ICTRLI-Q or G-Q. The Qult menu appears on the screen. Use the S selection
to save the file,

Using the Editor

The CPW Editor allows you to enter and modify source files for all CPW programming
languages, and to write text files with the CPW TEXT language type or with the

ProDOS 16 standard text-file type. The editor provides a full range of editing functions,
described in detail in Chapter 5 (and summarized in Appendix A). In this section, enough
commands are described to get you started using the editor.

The editor recognizes the Cortland extended ASCII character set. To get an extended
character (high bit on), press the OPTION key and the character key at the same time.

When you press the |[ESC! key, the editor enters a special mode called escape mode. Escape
mode has the following features:

+ Every letter key executes a command. If no other command is defined for a key,
pressing the key terminates escape mode and returns you to text-entry mode. You
cannot enter text while in escape mode.

* You can cause a command to be repeated automatically up to 32767 times while in
escape mode by typing the number of repetitions after you press [ESC| and before you
execute the command. For example, to scroll down 10 lines, type [ESCl 10 C. Ifit
is impossible for the editor to repeat the command as many times as you specify, it
repeats it the maximum number of times possible.

To exit escape mode, press [ESC| again,

To get started using the editor, use the following commands.

Help G-?: Use this command to see the help files for editor commands.

Beta Draft 2-14 8119186

Cortland Programmer’s Workshop Chapter 2: Using the Shell and Editor

Cursor Movement T | « —: Use the arrow keys to move the cursor around on the

Top of Screen
/Page Up

Bottom of Screen
/Page Down

Toggle Insert
Mode

Tab

Set and Clear
Tabs

Scroll Down
One Line

Scroll Up
One Line

Delete Character
Left

Delete

Undo Delete

Copy

Beta Draft

screen.

&-T: The cursor is moved to the top of the screen. If it is already at the
top of the screen, the entire screen is scrolled up one page (that is, one
screen’s height).

&-4: The cursor is moved to the bottom of the screen. If it is already at
the bottom of the screen, the entire screen is scrolled down one page.

G-E: If insert mode is active, the editor is changed to overstrike mode.
If overstrike mode is active, the editor is changed to insert mode. In
insert mode, each character you type is inserted in the line of text at the
cursor position; any characters to the right of the cursor are pushed to
the right to make room. In overstrike mode, each new character
replaces the character the cursor is on.

TAB: Press this key to move the cursor to the next tab stop. If you
enter text after pressing TAB, or if you are in insert mode, then spaces
are inserted in the line up to the tab stop. No tab character (ASCII code
$09) is inserted in the file.

CONTROL-G-I: If there is no tab stop at the cursor position, one is
added. If there is a tab stop at the cursor position, it is removed. The
default locations of tab stops depend on the CPW language type; see the
section “Setting Editor Defaults” in Chapter 5.

ESC C: Use this command to scroll the screen down one line (that is, to
move all the rext on the screen up one line). This is an escape-mode
command; you must press Esc again after executing the command to
return to editing mode.

ESCE: Use this command to scroll the screen up one line. This is an
escape-mode command.

DELETE: Press this key to delete the character to the left of the
cursor.

G-DELETE: After pressing this key combination, use any of the cursor
movement or screen-scroll commands to mark a block of text (all other
commands are ignored), then press [RETURNI. The selected text is
deleted from the file. (To cancel the Delete operation without deleting
the text from the file, press [ESCI instead of RETURN.)

G-Z: This command restores at the cursor position the last text deleted
from the file. If the cursor has not been moved, the file is restored to its
state before the delete. The Undo buffer acts as a stack, so multiple
Undo’s are possible.

3-C: After pressing this key combination, use cursor-movement or
screen-scroll commands to mark a block of text (all other commands are
ignored), then press IRETURNI. The selected text is written to the file
SYSTEMP in the work prefix (normally CPW/). (To cancel the Copy
operation without writing the block to SYSTEMP, press [ESCl instead of
IRETURNI.) Use the Paste command to place the copied material at
another position in the file.

2-15 8/19/186

Chapter 2: Using the Shell and Editor Cortland Programmer’s Workshop

Cut

Paste

Search Down

Search Up

Search and
Replace Down

Beta Draft

3-X: After pressing this key combination, use cursor-movement or
screen-scroll commands to mark a block of text (all other commands are
ignored), then press [RETURNI. The selected text is written to the file
SYSTEMP in the work prefix, and deleted from the file. (To cancel the
Cut operation without cutting the block from the file, press [ESC| instead
of RETURNI.) Use the Paste command to place the cut text at another
location in the file.

G-V: The contents of the SYSTEMP file are copied to the current cursor
position.

G-L: This command allows you to search through a file for a character
or string of characters. When you execute this command, the prompt
Search string appears at the bottom of the screen. Type in the
string for which you wish to search, and press Return (press Esc to
cancel the operation). Searches are not case sensitive, and include all
occurrences of the string, whether it is imbedded in a longer string or
not. For example, if you search for the string NOT, any of the
following strings could be found:

not
Note
prothonotary

When you press Return, the editor looks from the cursor position
toward the end of the file for the search string. If the string is found,
the screen is moved so that the next occurrence of the string is on the top
line. The cursor is placed on the first character of the target string. The
search stops at the end of the file; to search between the current cursor
location and the beginning of the file, use the Search Up command.

If the string is not found, the following message appears on the screen:
String Not Found

@3-K: This command operates exactly like Search Down, except that the
editor looks for the search string starting at the cursor and proceeding
toward the beginning of the file. The search stops at the beginning of
the file,

3-J:This command allows you to search through a file for a character or
string of characters, and to replace the search string with a replacement
string. When you execute this command, the prompt Search

string appears at the bottom of the screen. Type in the string for
which you wish to search, and press Return. Searches are not case
sensitive, and include all occurrences of the string, whether it is
imbedded in a longer string or not.

When you enter the search string and press Return, the prompt
Replace string appears at the bottom of the screen (press Esc
instead of Return to cancel the operation). Enter the string with which
you want to replace the search string, and press Return. The prompt
Auto or Manual (A M Q)7 appears.

Type A and press Return to cause all occurrences of the search string
from the cursor position to the end of the file to be replaced

2-16 8/19/86

Cortland Programmer’s Workshop Chapter 2. Using the Shell and Editor

Search and
Replace Up

Quit

automatically. The cursor returns to the starting point when the
replacement is done.

If you type M and press Return, then when the search string is found, it
is highlighted on the top line of the screen and the prompt

Replace (Y N Q) ? appears at the bottom of the screen. Type Y
Return to replace the string and search for the next occurrence; N Return
to leave this occurrence of the string unchanged and search for the next
occurrence; or Q Return to leave the string unchanged and terminate the
search and replace operation. When the operation is finished, the cursor
returns to its starting point.

Type Q Return in response to the Auto or Manual prompt to
terminate the search and replace operation and return to the file you are
editing.

When you enter a replacement string and type A Return or M Return, the
editor looks from the cursor position toward the end of the file for the
search string. The search stops at the end of the file; to search between
the current cursor location and the beginning of the file, use the Search
and Replace Up command. If the string is not found, the following
message appears on the screen:

String Not Found

G-H: This command operates exactly like Search and Replace
Down, except that the editor looks for the search string starting at the
cursor and proceeding toward the beginning of the file. The search
stops at the beginning of the file.

3-Q: This command calls the Quit menu, which allows you to save the
file, save the file to a new name, open a new file, or quit the editor and
return to the shell. See Chapter 5 for a complete description of all the
options.

~ As you become familiar with CPW, you can study Chapter 5 to learn the full capabilities of

the editor, and the fastest way to obtain results. Advanced features described in Chapter 5
include the following:

+ Editor macros: A macro allows you to substitute a single keystroke for up to 128
predefined keystrokes. A macro can contain text, editor commands, and (by
including the Enter key) shell commands.

+ Eding modes : The operation of the editor depends on several modes that can be
toggled between different states; each CPW language has a default setting for each
mode. You can toggle the modes while in the editor, and can change the default
setting for any language (see the section “Setting Editor Defaults” in Chapter 5).

» Additional commands: In addition to the commands mentoned here, there are several
more commands for moving around in the file and manipulating text.

Using a Printer

You can send to a printer any CPW output that would normally go to the screen. You can
use this facility together with the TYPE command to print out a text file, as follows:

Beta Draft

2-17 8119186

Chapter 2: Using the Shell and Editor Cortland Programmer’s Workshop

TYPE pathname >.PRINTER

Here pathname is the full or partial pathname, including the filename, of the file you want
to type. There must be at least one space between parhname and the output redirection
operator (>).

By default, CPW attempts to print from a printer connected to slot 1, sends no initialization
string to the printer, sends a form-feed command to the printer after every 66 lines, does
not add a line feed after a carriage return, and does not count the characters in each
line.***what are the defaults, like, really?*** You can use the following
commands to override these defaults:

SET PRINTERSLOT slotnum
SET PRINTERINIT string

SET PRINTERLINES linenum
SET PRINTERLINEFEED value
UNSET PRINTERLINEFEED
SET PRINTERCOLUMNS colnum

Where:

slotnum The number of the slot containing your printer-driver PC board; an ASCII

number from 0—7. The default value for slotnum is 1, the built-in printer
port on the Cortland.

string The initialization string to be sent to your printer each ime you send text to
the printer. Use this string to set the printer options you want to use, such
as character pitch, print quality, line spacing, or boldfacing. Precede a
character with a caret (*) to indicate a control character. A space is
interpreted as a space character, $20.

Caution: the shell does no error checking on the initialization string;
if you specify an illegal control character, the shell subtracts $40 from
the character and sends it to the printer anyway. For example, if you

specify " g, the shell sends $27 to the printer.

The following command sends the string “Control-L Esc a 2” to the
printer (for an Apple ImageWriter II printer, this string feeds the paper to
the next top-of-form position and sets the printer to near-letter-quality
mode):

SET PRINTERINIT "L~"[a2

See the manual that came with your printer for the options available and the
codes necessary to set them.

linenum An ASCII number indicating the number of lines to be sent to the printer
before a form-feed character ($0C) is sent. This command sets the page-
length. If linenum = 0, then no form-feed characters are sent.

Bera Draft 2-18 8/19/186

Cortland Programmer’s Workshop Chapter 2. Using the Shell and Editor

value If you set value to any value (TRUE would be appropriate), then the printer
driver automatically adds a line feed after every carriage return. To cancel
this effect, use the UNSET PRINTERLINEFEED command. If no line
feed is added when one is needed, the printer overprints every line of text
without advancing the paper. If a line feed is added when one is not
needed, the lines are double spaced.

colnum An ASCI number indicating the number of characters on a line. The printer
driver assumes a new line has begun each time col/num-+1 characters have
been printed since the last carriage return. The printer driver uses this
parameter to count lines on a page in the case that your printer automatically
inserts a carriage return-line feed to wrap lines that are too long. If your
printer stops printing at the end of the line, or returns to the start of the line
and overprints the line, then set colnum to 0 and the printer driver will count
a new line only when a carriage return is sent.

You can include these commands in a LOGIN file so they are executed each time you load
CPW. If you have created a LOGIN file to run CPW from a hard disk, place the printer-

setup commands at the end of that LOGIN file. If you are running CPW from a flopppy
disk, use the following procedure to create a LOGIN file:

1. Boot CPW from the CPW working disk.

2. Type the following commands (press the Return key after each command):
EXEC
EDIT SYSTEM/LOGIN

3. You are now in the editor. Type the printer-setup commands, one per line, ending
each line with a Return. You can use the arrow keys to move around in the file, and
the Delete key to correct mistakes.

4. After the printer-setup commands, type the following command:
EXPORT variablelist
where variablelist is the list of printer variables you just set. For example, if you
used the SET PRINTERSLOT and SET PRINTERINIT commands, you must
follow them with the command

EXPORT PRINTERSLOT PRINTERINIT ***IS THAT RIGHT??#*%**

5. Press Apple-Q. When the editor’s Quit menu appears, press S to save the file, then
E to return to the shell.

6. To test the setup, reboot CPW. Turn on your printer, and type the following
command:

TYPE SYSTEM/LOGIN >.PRINTER
The contents of the LOGIN file should be sent to your printer.
To redirect to the printer the output of any command, use the output redirection operator, >, ..
anywhere on the command line. For example, to send a listing of the directory
/CPW/MYPROGS/ to the printer, use the following command:
CATALOG /CPW/MYPROGS >.PRINTER

See the section “Redirecting Input and Output” in Chapter 4 for more information on
sending output to the printer.

Beta Draft 2-19 8/19/86

Chapter 2: Using the Shell and Editor Cortland Programmer’'s Workshop

Using Exec Files
The shell can accept commands from a command file, called an Exec file. To create an
Exec file, use the following procedure.

1. Change the cunrent language to EXEC by typing EXEC, and pressing the Return
key.

2

Type EDIT filename, where filename is the name you want to use for the Exec file.

3. Type the commands in the file. You can put one command on each line, or you can
put several commands on each line, separated by semicolons (;).

4. Press G-Q to quit the editor. Save the file when prompted to do so.

Exec files can include conditional-execution commands (IF statements, for example); you
can also pass parameters into Exec files. An Exec file can call other Exec files, and can be
set to terminate automatically if a routine it calls returns an error. Exec files and
conditional-execution commands are described in the section “Exec Files” in Chapter 4.

To execute an Exec file, type the pathname of the file as if it were a CPW command. If you
need to pass parameters into the Exec file, list them after the filename, separated by spaces.
(Note that the pathname is not case sensitive, but parameter values are case sensitive.) For
example, if the Exec file had the pathname /MYPROGS/EXEC.FILES/ANIMALS and
required two animal names as parameters, you could enter the following command to run it:

/MYPROGS/EXEC.FILES/ANIMALS dog alligator
CPW executes each command in the file as if it were typed from the keyboard.

Exec-file variables, such as parameters passed into the file or those defined with SET
commands, are normally local to that Exec file. To use the variables in an Exec file called
by that file, you must include the variable name in an EXPORT command. To use the
variables in the Exec file that calls the file in which the variables are defined, you must
execute the called Exec file with an EXECUTE command. The EXECUTE command can
also be used from a command line to make the variables available to all Exec files. The

EXPORT and EXECUTE commands are described in detail in the section “Exec Files” in
Chapter 4.

Compiling (or Assembling) and Linking a Program

The Cortland Programmer’s Workshop uses a single format for object files, and a single
set of commands for compiling or assembling programs written in any CPW source
language. Therefore, you can write different modules or routines of your program in
different CPW languages, and compile, link, and run the program all in one step. For the
vast majority of programs written in the CPW environment, the compiler and linker
defaults are quite adequate; the following is a typical sequence for writing, compiling, and
linking a program. A tutorial example of this procedure is given in Chapter 3. See the
discussion of the ASML command in Chapter 4, the section “Partial Assemblies or
Compiles” in Chapter 4, and the section “Linking with a LinkEd Command File” in

Chapter 7 for more versatile (and complicated) ways to control assemblies, compiles, and
links. '

Beta Draft 2-20 8119186

Cortland Programmer’ s Workshop

Chapter 2: Using the Shell and Editor

Note: To enhance rhetorical simplicity, the words compiler and compile are used
in this section to include assembler and assemble.

1.

Set the system language to the language type of the source code you intend to write,
open a file for editing, and write the source code for the first module of your
program. Save the file to disk.

Execute the shell COMPILE (or ASSEMBLE) command.

Important: If you do not specify a KEEP filename in either the source file or
the COMP ILE command, then no object file is saved to disk.

a. If the CPW compiler finds a fatal error (one that prevents the compile from
continuing), it writes out an error message to standard output (normally the
screen) and waits for you to press any key. When you press a key, the compiler
passes control to the CPW Editor, which loads the source file that the compiler
was working on, placing the line that caused the error at the top of the screen.

b. If the compiler finds a nonfatal error, it finishes processing the program, writes
out the error messages, and returns control to the shell.

. If your first attempt was not successful, correct the source code and try again; repeat

this process until the module compiles (or assembles) successfully. Remember to
save the source file each time you make changes; the disk file is updated only when
you save it.

When the compiler processes the file, it takes the first segment that will be executed
when the program is run, and places it in an object file with the KEEP filename you
specified, and the extension .ROOT. All other segments (if any) are placed in a
second object file with the same KEEP filename and the extension .A.

You now have three files on disk: the source code and two object-code files (one
with the extension . ROOT and one with the extension . A). For example, if the
source file is named MYFILE and the filename you specified in the KEEP parameter
is KEEPFILEL, then you have the following files on disk:

* MYFILE the source file
e KEEPFILE1l.ROOT the object file containing the first segment to be executed

* KEEPFILEl.A the object file containing the remaining segments of the
program

Write the next module. This module need not be in the same programming language
as the first module. Give this module a different source filename than the first
module, and a different KEEP filename,

. Execute the shell COMPILE command. Debug the module and recompile as

necessary until successful.

Repeat steps 4 and 5 for each module of the program, until you are sure that each
module compiles successfully.

. Execute the LINK command, specifying the filenames of all of the object files in the

program. Include a KEEP filename in the LINK command.

Important: If you do not specify a KEEP filename in the LINK command,
- then no load file is saved to disk.

Beta Draft 2-21 8/19/86

Chapter 2: Using the Shell and Editor Cortland Programmer’s Workshop

The CPW Linker combines all object segments that have the same load segment
name into the same load segment, and places the entire program into a single load file
with the KEEP filename you specified. (If you are confused by all this talk about
object segments and load segments, go back and reread the section “Cortland
Concepts” in Chapter 1.)

In this example, you now have the following files on disk:
* MYFILE the source file
e KEEPFILE1.ROOT the object file containing the first segment to be executed

e KEEPFILEl.A the object file containing the remaining segments of the
first module of the program

e KEEPFILE2.ROOT the object file containing the first segment of the second

module of the program

* KEEPFILE2.A the object file containing the remaining segments of the
second module of the program

° ... object files containing segments of the other modules

e KEEPFILE the load file

If you prefer, you can write the entire program, including modules in several languages,
and compile and link them all at once. Each module except the last should end in an
APPEND directive (or the equivalent). Use the CMPL command to compile and link the
program. Every time a CPW compiler executes an APPEND directive, it checks the CPW
language type of the file being appended. If the language doesn’t match that of the
compiler, then the compiler returns control to the shell, which calls the appropriate compiler
to continue processing the program. If the compile is successful, the CPW Linker is called
automatically. The linker processes the file, writes out any errors, and (if the link was
successful), writes the load file to disk.

By the way: The compiler may check the language type of a file when executing
a COPY directive, but does not return control to the shell; instead, the compiler
returns an error if any file being copied into the program does not match the
language of the compiler.

Using the Debugger

Once you have created an executable load file, you can use the CPW Debugger as an aid in
debugging it. The debugger can execute a load file in memory one instruction at a time,
showing you the contents of Cortland registers, stack, direct page, and memory at any

step. You can execute each instruction individually, or have the debugger automatically
execute each in turn until it reaches a breakpoint that you have set (or until the program hits
a BRK instruction or crashes). If you have timing-critical code, you can execute specified
subroutines or the entire program at the full speed of the Cortland CPU. You can change
the contents of registers or memory locations at any time, and resume execution of the
program. You can display any of the debugger’s diagnostic displays, or the normal display
of your program, and you can switch back and forth between displays at any time.

The debugger shows an assembly-language disassembly of the machine code in memory as
it steps through your program; it shows absolute addresses in the disassembly. The

Beta Draft 2-22 8/19/86

Cortland Programmer’s Workshop Chapter 2: Using the Shell and Editor

debugger cannot translate machine code into any higher-level language, or keep track of
symbols. You will probably find the debugger of most use, therefore, in debugging
assembly-language programs, because it is relatively easy to relate your assembly-language
code to the disassembly. For higher-level languages, the debugger might give you some
insight into what is going wrong with the execution of the program, but it is up to you to
figure out the source-code.command or statement responsible.

The CPW Debugger is described in detail in Chapter 6.

Using the Utilities

The Cortland Programmer’s Workshop Shell includes most of the functions that you need
to write, compile, link, run, and debug programs. A few functions, however, are
implemented as separate routines designed to be run under the shell; these are referred to as
CPW utility programs, or utilities. Most CPW utilities, such as INIT (which formats
disks), require no more input than any other shell command; in this manual these functions
are referred to as external commands. You use them just like other CPW commands,
but they must be present in the CPW/UTILITIES/ subdirectory. A few utilities may
perform more complex functions, and require some interactive input. If you add such a
utility program to your system, refér to the documentation and help file that came with the
program for instructions in its use.

Launching Programs

Under ProDOS 16 on the Cortland Computer there are two principal types of executable
load files: systern load files (filetype $B3), and shell load files (filetype $B5). After you

have written a program, you can use the FILETYPE command (described in Chapter 4) to
assign a filetype to it.

+ Programs of filetype $B3 take over complete control of the computer; they do not
operate under a shell program. CPW itself is an example of such a program. To call
a program of filetype $B3, the calling program executes a ProDOS 16 QUIT call,
shutting itself down and clearing the screen. When the called program finishes and
executes a QUIT call, ProDOS 16 normally relaunches the calling program. (For a
more complete description of the QUIT call, see the Cortland ProDOS 16 Reference
manual.) A type $B3 file must make Cortland tool calls to set up the environment it
needs in which to run, including the graphics or text screen it needs, and the input it
accepts.

+ Programs of filetype $BS run under a shell program (such as the CPW Shell); they do
not remove the shell from memory. The shell uses System Loader calls to load the
program, and transfers control to it in full native mode via a JSL instruction; when the
program terminates, it returns control to the shell via a ProDOS QUIT call. For more
information on writing a program to run under a shell, see the sections “CPW
Utilities” in Chapter 8 and “Shell Load Files” in Chapter 9. A shell load file uses the
environment set up for it by the shell under which it runs; if a shell load file is
launched by ProDOS 16, then ProDOS 16 sets up the standard 80-column screen and
keyboard input for it.

To launch a program of either filetype from the CPW shell, enter the prefix and filename of
the file as a command. For example, if you want to run a program called STAR . WARP,

Beta Draft 2-23 8119186

Chapter 2: Using the Shell and Editor ‘ Cortland Programmer’ s Workshop

which is in the subdirectory /MYPROGS/GAMES/, type the following line and press
Return:

/MYPROGS/GAMES/STAR.WARP

ProDOS 8 BIN files are not executed by the CPW Shell.

Advanced Features

This chapter has covered the simpler and more basic procedures you need in order to write,
compile or assemble, link, debug, and run a program using the Cortland Programmer’s
Workshop. CPW has many additional capabilities not covered in this chapter. The
following list gives some indication of other functions and where to find them in this
manual. See the Preface for a description of this book, chapter by chapter. Use the table
of contents and the index to find the specific topics in which you are interested.

You can pipline commands; that is, you can automatically use the output of one
command as the input of another. See “Piplining” in Chapter 4.

You can redirect to a disk file the output that would normally go to the screen. You
can redirect input that would normally come from the keyboard to be from a disk file.
See “Redirecting Input and Output” in Chapter 4.

You can link two or more object files that have different root filenames into the same
load file. See the discussion of the LINK command in Chapter 4.

You can use CPW Assembly-Language directives to control which object segments
go into which load-file segments. See the section “Load Segments” in Chapter 7, and
the Cortland Programmer’ sWorkshop Assembler Reference manual.

You can list the segments, segment-header contents, and segment contents of any file

on disk in object file format. See the discussion of the DUMBOBJ command in
Chapter 4.

You can control the CPW Linker from a file of linker commands, called a LinkEd file.
LinkEd files provide much more versatile control of the linker than do the shell
LINK, CMPL, and CMPLG commands. The LinkEd command language includes
the following capabilities (see the section “Linking With a LinkEd Command File” in
Chapter 7).

' — append one LinkEd source file to another

— copy one LinkEd source file into another
— cause the printer to‘skip to a new page

— open a file for output

— search a library

— link any number of program files

— control the listing of segment names

—~ start segments at specified locations

— set the program counter

- control the printed output

Beta Draft 2-24 8/19/86

Cortland Programmer’s Workshop Chapter 2: Using the Shell and Editor

— start a load segment

— place specific object segments in a load segment
— choose specific segments to link

— control output of the symbol table

* You can specify which subdirectories are searched for specific routines; for example,
you can change the subdirectory searched for utility programs from
/CPW/UTILITIES/ to /PRODOS/WORKSHOP/EXT.COM/. See the section
“Standard Prefixes” and the discussion of the PREF IX command in Chapter 4.

* You can use shell commands to initialize disks, alphabetize or otherwise reorder
directories, move, copy, and rename files, and create subdirectories. See the section
“Command Descriptions” in Chapter 4.

* You can read in a new command table at any time to define new command names or
aliases, or add new external commands to the system. See the section “Command
types and the command table” and the discussion of the COMMANDS command in
Chapter 4.

¢+ You can create your own link-time library files. See the discussion of the MAKELIB
command in Chapter 4.

Beta Draft 225 8119186

Copyright © 1986 Apple Computer, Inc. All rights reserved.

Cortland Programmer’s Workshop Chapter 3: Sample Program

Chapter 3

Sample Program

This provides a tutorial example that illustrates the creation of a program in the CPW
environment. It includes a main routine in C, and a subroutine in assembly language. You
are shown how to use the CPW Editor to create source files in bothe languages, and how to
compile, assembl, link, and run the program. Each language manual includes an example
in the language of that manual alone, but only this chapter gives an example that uses more
than one language. Of course, if you have only the CPW Assembler, then you won’t be
able to use this example; but then you don’t need to know how to do a multi-language
program either.

***Whenever I get some source code for this program, I'll try out these
procedures and see if they work as advertized. Meanwhile, please read
through them to see if I did anything wrong, left anything out, or put
anything in that shouldn’t be there.***

Writing and Editing the Source Code

Use the following steps to write the source code for the C routine shown in Figure 3.1:

1. Boot CPW, and type the following command to set the system default language type
(the current language) to C. (To execute a CPW command, press the Return
key.)

C
. Call the editor to open file called SAMPLEC with this command:
EDIT SAMPLEC

Type in the program in Figure 3.1. Use the cursor keys to move around in the file.
The Delete key deletes the character to the left of the cursor. The Tab key moves the
cursor for indenting subroutines. Other basic editor commands are given in the
section “The Editor” in Chapter 2.

2

I

4. Press Control-Q or &-Q to quit the editor. Press S to save the file to disk, then press
E to exit the editor and return to the shell.

5. Type the following command to set the current language to 65816 assembler.
ASM65816

6. Call the editor to open file called SAMPLEA with this command:
EDIT SAMPLEA

7. Type in the program in Figure 3.2. The Tab key is now set for assembly-language
syntax.,

8. Press Control-Q or 3-Q to quit the editor. Press S to save the file to disk, then press
E to exit the editor and return to the shell.

Bera Draft 3-1 8119186

Chapter 3: Sample Program Cortland Programmer’s Workshop

These examples should be fairly short, but as interesting as possible. The program should
do something you can test, like taking an input text file and changing all the text to
uppercase. It should probably be a $BS5 file, and should follow the rules for $BS files,
including checking the CPW Shell identifier, the command line, and its userID. It must |
have several segments.

Figure 3.1. Sample C Source Code

Figure 3.2. Sample 65816 Source Code

Creating Object Code: Compiling and Assembling
To compile and assemble your programs, use the following commands:

COMPILE +L +S SAMPLEC KEEP=SAMPLEOBJC

ASSEMBLE +L +S SAMPLEA KEEP=SAMPLEOBJA

The +L and +S options provide a listing of the source code and a symbol table,
respectively. The source code should look like Figures 3.1 and 3.2. The symbol tables

Beta Draft 32 8/19/86

Cortland Programmer’s Workshop Chapter 3: Sample Program

should look like Figures 3.3 and 3.4. ***Does C provide source-code listings
and symbol tables? Do I need any other options for the C routine?***

The following files should be on your disk after using these commands:

SAMPLEC

SAMPLEA
SAMPLEOBJC .ROOT
SAMPLEOBJC.A
SAMPLEOBJA .ROOT
SAMPLEOBJA.A

The C source code

The 65816 source code

The first object segment created by the C cormpiler

The rest of the object segments created by the C compiler
The first object segment created by the assembler

The rest of the object segments created by the assembler

Alternately, you can compile and link both files in one operation. To do this, you must add
a line to the file SAMPLEC as follows:

1. Reopen the file in the editor with the following command:

EDIT SAMPLEC

2. Press G-9 to jump to the end of the file. Add the following line to the file:

fappend SAMPLEA

3. Press G-Q to quit the editor, S to save the file, and E to exit the editor:

4. Now when you use the following command, the shell calls the C compiler to
compile the C routine, then calls the CPW Assembler to assemble the 65816 routine:

COMPILE +L +S SAMPLEC KEEP=SAMPLEOBJ

The output should be the same as before (with the addtion of the one extra line in the
Croutine). The following files should be on your disk after using this command:

SAMPLEC
SAMPLEA
SAMPLEOBJ .ROCT
SAMPLEOBJ.A
SAMPLEOBJ.B

Beta Draft

The C source code

The 65816 source code

The first object segment created by the C compiler

The rest of the object segments created by the C compiler
The object segments created by the assembler

3.3 8/19/86

Chapter 3: Sample Program Cortland Programmer’s Workshop

Figure 3.3. Sample Symbol Table for C Program

Figure 3.4. Sample Symbol Table for Assembly-Language Program

Creating Load Modules: Linking

Here are three ways to link the object files you have just created:

1. If youdid nor add the #append command to the end of the C routine, use the
following command to link the object files into a single executable load file:

LINK +L +S (SAMPLEOBJC SAMPLEOBJA) KEEP=SAMPLE

Beta Draft 34 8119186

Cortland Programmer’s Workshop Chapter 3: Sample Program

The +1 and +S options cause the linker to print out a link map and symbol table for
the link, as shown in Figure 3.5. The load file is named SAMPLE.

The following files should be on your disk after using this command:

SAMPLEC The C source code

SAMPLEA The 65816 source code ‘
SAMPLEOBJC.ROOT The first object segment created by the C compiler
SAMPLEOBJC.A The rest of the object segments created by the C compiler
SAMPLEOBJA.ROOT The first object segment created by the assembler
SAMPLEOBJA.A The rest of the object segments created by the assembler
SAMPLE The load file

2. If you did add the $append command to the end of the C routine, use the following
command to link the object files into a single executable load file:

LINK +L +S SAMPLEOBJ KEEP=SAMPLE
The following files should be on your disk after using this command:

SAMPLEC The C source code

SAMPLEA The 65816 source code

SAMPLEOBJ.ROOT The first object segment created by the C compiler
SAMPLEOBJ.A The rest of the object segments created by the C compiler
SAMPLEOBJ.B The object segments created by the assembler

SAMPLE The load file

3. To compile, assemble, and link the two routines all in one step, add the #append
command to the end of the C routine and use the following command:

CMPL +L +S SAMPLEC KEEP=SAMPLE
The following files should be on your disk after using this command:

SAMPLEC The C source code

SAMPLEA The 65816 source code

SAMPLE . ROOT The first object segment created by the C compiler
SAMPLE . A The rest of the object segments created by the C compiler
SAMPLE .B The object segments created by the assembler

SAMPLE The load file

Beta Draft 3-5 8/19/186

Chapter 3: Sample Program Cortland Programmer’s Workshop

Figure 3.5. Sample Symbol Table and Link Map From Link

Running Your Program
To run the program you just created, use the following command:
SAMPLE ***Does it need any parameters? Does it prompt for any?***

To compile, assemble, and link the two routines all in one step, add the #append
command to the end of the C routine and use the following command:

CMPLG +L +S SAMPLEC KEEP=SAMPLE

Beta Draft 306 8/19/86

Part 11

Cortland Programmer’s Workshop Reference

Cortland Programmer’s Workshop A Chapter 4. Shell

Chapter 4

Shell

The Cortland Programmer’s Workshop Shell provides the interface between the user and
the Cortland Programmer’s Workshop, and between CPW and the Cortland operating
system. The shell provides the following features:

©

L4

®

®

°

A command interpreter for interactive keyboard input of commands.
Facilities for copying, renaming, deleting, and moving files.

A full-featured text editor.

Executable command files (Exec files) for automatic execution of shell commands.
Redirection of input and output.

Pipelining of programs.

The addition, deletion, and renaming of commands.

The creation of aliases for commands.

A command to assign subdirectories to the ProDOS 16 standard prefixes.
Commands for assembling, compiling, linking, and running programs.
A debugger that you can use to step through and debug code in memory.
The ability to execute other Cortland programs.

This chapter provides a reference to the CPW Shell; it describes the shell commands and
Exec files. It explains how to redirect input and output, set standard prefixes, and pipeline
commands. The editor, linker, and debugger are described in separate chapters. See
Chapter 2 for general instructions on starting and running the shell and editor, and using
other CPW features. See Chapters 9 and 11 for the information you need in order to add a
program to the Cortland Programmer’s Workshop.

Redirecting Input and Output

Standard input is usually through the keyboard, though it can also be from an Exec file or
the output of a program; standard output is usually to the screen though it can be to a printer
or another program or disk file. You can redirect standard input and output for any
command by using the following conventions on the command line:

<inputdevice Redirect input to be from inputdevice.

>outputdevice Redirect output to go to outputdevice.

Beta Draft 4-1 820186

Chapter 4. Shell ‘ Cortland Programmer's Workshop
>>outputdevice Redirect output to be appended to the current contents of
outputdevice.

The input device can be the keyboard or any text or source file. To redirect input to be
from the keyboard, use the device name .CONSOLE.

The output device can be the screen, the printer, or any file. If the file named does not
exist, CPW opens a file with that name. To redirect output to the screen, use the device
name .CONSOLE; to redirect output to the printer, use .PRINTER.

Warning: Be sure the printer is on line before directing output to it. With some ‘

hardware (such as parallel printer cards) the system hangs if the printer is not on
line.

If you use output redirection to open a new file on disk, then the current system language is
used as the CPW language type of that file. Use the SHOW LANGUAGE command to find
out what the current system language is. To change the current system language, type the
name of the language you wish to use, and press Return. Use the SHOW LANGUAGES
(note the difference: LANGUAGES rather than LANGUAGE) command to see which
language types are defined in the command table. CPW language types are described in the
section “Command Types and the Command Table” in this chapter.

Important: If a disk file is used for input or output, the disk must remain online
until the command finishes executing.

Both input and output redirection can be used on the same command line. The input and
output redirection instructions can appear in any position on the command line.

Important: The input or output redirection symbol must be preceded by a space,
even if it’s the first character in the command line.

For example, to redirect output from an assembly of the program MYPROG to the printer,
you could use any of the following commands:

ASSEMBLE MYPROG >.PRINTER
ASSEMBLE >,.PRINTER MYPROG
>.PRINTER ASSEMBLE MYPROG

To redirect output from the CATALOG command to be appended to the data already in a
disk file named CATSN.DOGS, use one of the following commands:

CATALOG >>CATSN.DOGS
>>CATSN.DOGS CATALOG

To redirect input in response to the AINPUT directives in a source to be from the file
ANSWERS rather than the keyboard, you could use one of the following commands:

<ANSWER.FILE ASSEMBLE MYPROG

ASSEMBLE <ANSWERS MYPROG

Beta Draft 42 812086

Cortland Programmer’s Workshop ‘ Chapter 4: Shell

ASSEMBLE MYPROG <ANSWERS

Input and output redirection can be used in Exec files. See the section “Exec Files” in this
chapter for a description of Exec files.

Important: The output of programs that do not use standard output cannot be
redirected.

Error messages also normally go to standard output, usually the screen, and can be
redirected independently of other output. To redirect error output, use the following
conventions on the command line:

>goutputdevice Redirect error output to go to outputdevice.

>>&outputdevice Redirect error output to be appended to the current contents of
outputdevice.

Error-output devices follow the same conventions as those described above for standard
output.

Error-input and -output redirection can be used in Exec files. See the section “Exec Files”
in this chapter for a description of Exec files.

Standard Prefixes

CPW searches for files in certain preset subdirectories. Five such subdirectories are used,
and are assigned to five of the ten standard prefixes supported by ProDOS 16. You can
assign any subdirectory to the eight ProDOS 16 prefixes by using the CPW-Shell PREF I
command. The standard prefixes are used as shown in Table 4.1.

Table 4.1. Standard Prefixes

Prefix Number Use Default

0 ProDQOS 16 system boot.prefix/

1 program execution boot.prefix/***2 2% x %
2 CPW library boot.prefix/LIBRARIES/
3 CPW work boot.prefix/

4 CPW system boot.prefix/SYSTEM/

5 CPW language boot.prefix/ LANGUAGES/
6 CPW utility boot.prefix/UTILITIES/
7 undefined

8 undefined

9 undefined

The boot prefix is the one from which the Cortland is started; the program execution prefix
is the one from which CPW is loaded. If you have CPW on a 3.5 inch disk, the boot
prefix and program execution prefixes are normally /CPW/. If you boot your Cortland
from a 3.5-inch CPW disk, but run CPW on a hard disk, the boot prefix would still be
/CPW/ but the program execution prefix might be /HARDISK/CPW/. The ProDOS 16
system prefix (also called the “current prefix”) is the one that is assumed when you use a

Beta Draft 4-3 8120186

Chapter 4: Shell Cortland Programmer’s Workshop

partial pathname in a shell command. The default for this prefix is the program execution
prefix. If you are using a diskette, the default ProDOS 16 system prefix is usually the
volume name of the disk; if you are using a hard disk, you should set this prefix to the
name of the CPW subdirectory. The following files and subdirectories are found in the
CPW Disk or subdirectory. A full list of files on the CPW disk is shown in Table 2.1.

¢ PRODOS

o CPW.SYS16
¢ SYSCMND

* SYSTEM/

¢ LANGUAGES/
e UTILITIES/
¢ LIBRARIES/
¢ MACROS/

CPW looks in the CPW system prefix for the following files:
¢ EDITOR
¢ SYSTABS
e SYSEMAC
¢ SYSCMND
¢ LOGIN

Note: The LOGIN file is an Exec file that is executed automatically at load time if it
is present. See the section “Exec Files” in this chapter for instructions on creating a
LOGIN file.

The language prefix contains the CPW Linker command language (LinkEd), the CPW
Assembler, and ar y other assemblers, compilers, and text formatters that you have installed
in your copy of CPW.

The utility prefix contains all of the CPW utility programs except for the editor, assembler,
and compilers. It includes the debugger and the programs that execute external commands,
such as CRUNCH, INIT, and MAKELIB. The utility prefix also contains the HELP /
subdirectory, which contains the text files used by the HELP command. Command types
are described in the the section “Command Types and the Command Table” in this chapter.

The files in the CPW library prefix are automatically scanned by the linker to resolve any
references not found in the object files being linked. (You can also use the LinkEd
LIBRARY command to scan library files in other prefixes as described in Chapter 7.)
CPW comes with several library files that support the CPW Assembler macros; you can
also create your own library files. For more information on creating and using CPW
Assembler library files, see the discussion of the MAKELIB command in this chapter, and
the Cortland Programmer’s Workshop Assembler manual.

The work prefix is used by CPW programs for temporary files. For example, the MACGEN
command writes macros to a temporary file on the work prefix called SYSMAC as an

Bera Draft 44 8120186

Cortland Programmer’s Workshop - Chapter 4. Shell

intermediate step in creating a macro library. The editor uses the work prefix to create the
SYSTEMP file, which it uses for the Copy, Cut, and Paste commands. Several CPW
commands work faster if you set the work prefix to a RAM disk. If you have sufficient
memory in your system to do so (256K bytes should be sufficient), use the Cortland
control panel to set up a RAM disk, then use the PREF IX command to change the work
prefix. If the RAM disk is named /RAMS, for example, use the following command:

PREFIX 3 /RAMS

Pipelines

CPW lets you automatically execute two or more programs in sequence, directing the
output of one program to the input of the next. The output of each program but the last is
written to a temporary file in the work subdirectory named SYSPIPEn, where nis a
number assigned by CPW. The first temporary file opened is assigned an n of 0; if a
second SYSPIPEn file is opened while SYSPIPEO is still open, then it is named
SYSPIPEL, and so forth.

To pipeline, or sequentially execute programs PROGO, PROG1, and PROGZ2, use the
following command:

PROGO | PROG1 | PROG2

The output of PROGO is written to SYSPIPEOQ; the input for PROG1 is taken from
SYSPIPEO, and the output is written to SYSPIPE1. The input for PROG2 is taken from
SYSPIPE1, and the output is written to standard output.

SYSPIPER files are text files (ProDOS 16 file type $04), and can be opened by the editor.
For example, if you had a utility program called UPPER that took characters from standard

input, converts them to uppercase, and writes them to standard output, you could use the

following command line to write the contents of the text file MYF ILE to the screen as all
uppercase characters:

TYPE MYFILE|UPPER

To send the output to the file MYUPFILE rather than the screen, use the following
command line:

TYPE MYFILE |UPPER >MYUPFILE
The SYSPIPER files are not deleted by CPW after the pipeline operation is complete; thus,

you can use the editor to examine the intermediate steps of a pipeline as an aid to finding

errors. The next time a piplene is executed, however, any existing SYSPIPEn files are
overwritten.

Beta Draft 4-5 8120186

Chapter 4: Shell Cortland Programmer’s Workshop

Partial Assemblies or Compiles

If you are writing a large program, you may find that the debugging process is being
slowed considerably by the amount of time it takes to compile the program. You can often
speed up this process considerably by taking advantage of CPW’s ability to perform partial
compiles or assemblies. In a partial compile or assembly, you specify which object
segments are to be compiled; the new versions of the segments are placed in a file with the

same root filename as the rest of the program, but with the next higher alphabetic
extension.

The root filename of a file is the filename minus any filename extensions; for
example, the files MYFILE .ROOT, MYFILE.A, and MYFILE.B all have the same
root filename : “MYFILE”.

To do a partial compile or assembly, you must use one of the following shell commands:
* ASSEMBLE

¢ ASML

* ASMLG

* COMPILE
¢ CMPL

* CMPLG

* RUN

These commands are all very similar; the ASML and CMPL automatically link the program
after compiling or assembling it; ASMLG, CMPLG, and RUN automatically run the program
after linking it. The COMP ILE command is actually an alias for the ASSEMBLE command,
as is CMPL for ASML and CMP LG (and RUN) for ASMLG. All of these commands are

described in this chapter; see the description of the ASML command for discussions of all
the command parameters.

Each of these commands has an optional parameter called NAMES, which you follow with a
list of the names of segments you want to compile or assemble. When the shell finds a
NAMES parameter, it performs a partial compile or assembly. Keep the following points in
mind when using the NAMES parameter:

» The name to list is the object segment name, not the /oad segment name. In a CPW
Assembly-Language source file, the label of a START, PRIVATE, or DATA directive
is the object segment name; the operand of the directive is the load segment name.
Any number of object segments can have the same load segment name; load segment
names are used by the linker, and have no effect on an assembly.

 In high-level languages (such as CPW C) there is normally a one-to-one
correspondence between subroutines and object segments: each subroutine becomes
a separate object segment, and the object-segment name is the same as the subroutine
name. See the reference manual for the CPW language you are using for any
exceptions to this rule.

+ Object-segment names are case sensitive. If the language you are using is not case
sensitive, it converts all names to uppercase in the object file, regardless of how they

Beta Draft 46 8120186

Cortland Programmer’s Workshop Chapter 4: Shell

appear in the source file. When using the NAMES parameter for case insensitive
languages, then, you must list all object-segment names in uppercase. For case
sensitive languages, on the other hand, you must list all object-segment names exactly
as they appear in the source code. CPW C is case sensitive. CPW Assembly

Language is case insensitive unless you have used the CASE ON or OBJCASE ON
directives in the source file.

* You can include in one NAMES parameter list the names of all the segments you want
to use, whether the segments are all in one file, or you are compiling several files at
once (by appending one source file to another with APPEND directives).

» Be sure to include a KEEP directive in the file, or a KEEP parameter in the command
line, with the same root filename for the object file as you used for the original
compile or assembly.

An example of a sequence of partial assemblies is given at the end of this section.

When you assemble or compile a program, you must use a KEEP directive (or equivalent)
in the source code, or the KEEP parameter in the command line, to specify a filename for
the output (if you don’t, the program is compiled, but the output is not saved). If you are
assembling or compiling the entire program, and the program consists of more than one
segment, then the first segment to be executed (when the program is run) is placed (by the
compiler) in a file with the filename extension .ROOT, and the remaining segments are
placed in a file with the extension . A, If the filename you specify is MYPROG, for
example, then the file containing the first segment to be executed is named MYPROG . ROOT
and the file containing the remaining segments is named MYPROG . A.

There are two circumstances under which a file with a higher alphabetic suffix (. B, . C,
and so on) is created:

1. If you include a NAMES parameter on the command line to request a partial assembly
or compile, then only the segments named are compiled, and they are placed in a file
with the next available alphabetic extension. For example, if the files

MYPROG .ROOT and MYPROG . A are already on the disk, a partial assembly creates
the file MYPROG. B.

2. If the compile involves more than one language, then the first compiler or assembler

usually creates the .ROOT and . A files, the second compiler creates the . B file, and
SO on.

Note: You can use the CRUNCH command described in this chapter to combine all
the alphabetic-extension files into one . A file.

When the linker links the program, it uses the following procedure:

1. It starts with the . ROOT file, and links that segment.

2. Itlooks for a . A file. If it finds one, the linker looks for a . B file, and so on.
3. It links the file with the highest alphabetic suffix it has found.
4

. It works its way back through the alphabet to the . A file, ignoring any segments

with object-segment names identical to those it has already found, and linking the
rest.

Beta Draft 4-7 : 8120186

Chapter 4: Shell Cortland Programmer’s Workshop

You can also control which segments are linked and in what sequence by using a LinkEd
command file; see the section “Linking With a LinkEd Command File” in Chapter 7 for
details.

Important: During a partial compile, the compiler first looks for a . ROOT file,
then a . Afile, then a . B file, and so on. The search is terminated as soon as one

+ file in the sequence is not found, and the next file created is given the next higher
alphabetic suffix. Therefore, if the files MYFILE .A, MYFILE.B, and
MYFILE.D are in the subdirectory, but MYFILE. C is not, the assembler or
compiler never finds MYFILE .D. The next file created by a partial assembly or
compile, then, would be MYFILE.C. You must be careful not to let such a case
occur, because (in this example) the linker would start the next link with the file
MYFILE.D.

As an example of a partial compile and assembly, assume you have written a program in
two source files. The first file, named MYPROG, is in 65816 assembly language. It
includes the main part of the program, and has four object segments named MAIN, SEG1,
SEG2, and DATA. The second file, named MYPROGC, is in C. It includes a couple of
mathematical subroutines that you didn’t want to write in assembly language. The
subroutines are named Lagrange and Fourier. At the end of the assembly-language
routine is an APPEND directive that appends MYPROGC. MYPROG begins with a KEEP
directive that names the output file as TRANSFORM. To assemble MYPROG and compile
MYPROGC, enter the following command:

ASSEMBLE MYPROG

The CPW Shell processes the program as follows:
1. The shell checks the language type of MYPROG, and calls the CPW Assembler.

2. The assembler starts to assemble MYPROG; it opens TRANSFORM. ROOT and puts
the first segment (MAIN) in that file.

3. The assembler closes TRANSFORM. ROOT, opens TRANSFORM ., A, and puts the rest
of the segments in there.

4. When it gets to the APPEND directive, it opens MYPROGC and checks its CPW
language type. Finding that it’s not an assembly-language file, the assembler closes
MYPROGC and TRANSFORM. A, and returns control to the shell.

5. The shell calls the C compiler, which compiles MYPROGC, placing both subroutines
in TRANSFORM. B.

The following files are now present on disk:

¢+ MYPROG Assembly-language source file

¢ MYPROGC C source file

¢« TRANSFORM.ROOT Object file containing the segment MAIN

¢ TRANSFORM.A Object file containing SEG1, SEG2, and DATA

¢+ TRANSFORM.B Object file containidg segments Lagrange and Fourier

Beta Draft 4-8 8120186

Cortland Programmer’s Workshop Chapter 4. Shell

After working on the program for a while, you have changed segments SEG2, DATA, and
subroutine Lagrange. Rather than reprocess the entire program, you perform a partial
assembly by using the following command:

ASSEMBLE MYPROG NAMES=(SEG2 DATA Lagrange)

Note that the segment names for assembly-language segments are entered in uppercase,
since the assembler is not case sensitive (unless you use the CASE ON or OBJCASE ON
directives), while the segment names for the C routine must be entered exactly as they
appear in the source code. The assembler finds the segments SEG2 and DATA in MYPROG,
assembles them, and places them in the file TRANSFORM. C. Then the shell calls the C
compiler, which extracts subroutine Lagrange and places it in the file TRANSFORM. D.

Finally, you make one more change to Lagrange. To recompile that routine only you
need not process MYPROG at all; use the following command:

COMPILE MYPROGC KEEP=TRANSFORM NAMES=(Lagrange)

This time you used the COMP ILE command rather than the ASSEMBLE command because
it satisfied your sense of aesthetics to use-a compile command with a compiler. Actually,
the COMPILE and ASSEMBLE commands are aliases—they call the same CPW Shell .
routine. Note that you have to use the KEEP parameter in the command line, since the file
MYPROGC contains no KEEP command.

This last partial compile creates the file TRANSFORM . E.
Finally, to link the program, you use the following command:

LINK TRANSFORM

The linker does the following:
1. It finds the file TRANSFORM.ROOT, and links the segment MAIN.

2. It finds the file TRANSFORM. A, then searches for TRANSFORM. B, and so on until
it finds TRANSFORM. E. It links Lagrange from TRANSFORM.E.

3. Itfinds Lagrange in TRANSFORM. D, realizes it has already linked it, and ignores
it.

It links SEG2 and DATA in TRANSFORM. C.

It links Fourier in TRANSFORM. B, ignoring the older version of Lagrange it
finds there.

6. Itlinks SEG1 in TRANSFORM. A, ignoring SEG2 and DATA.

Command Types and the Command Table

The Cortland Programmer’s Workshop includes a large number of commands that perform
functions from listing a disk directory to compiling a program. There are three types of
commands in CPW: internal, external, and language.

Beta Draft 4-9 8120186

Chapter 4. Shell Cortland Programmer’s Workshop

* An internal command is one included in the CPW Shell; internal commands are
resident in memory whenever you are in the Cortland Programmer’s Workshop.

« An exrernal command is a separate CPW utility program; these programs are in the

utility prefix (normally /CPW/UTILITIES/), and are loaded from disk when you
execute the commands.

* A language command is the name of a language recognized by CPW. When you
execute a language command, that language becomes the current default. Any new
file opened for editing with the EDIT command uses the default language. If you
open an existing file for editing, the default language changes automatically to match
that file. The language of any source or text file can be changed with the CHANGE
command. Use the SHOW LANGUAGES command (note the plural) for a list of the

language commands available, and the SHOW LANGUAGE (singular) command for
the current default.

Note: The existance of a language command on your system does not necessarily
indicate that you have the compiler for that language on your disk. Check the

contents of the LANGUAGES/ subdirectory to see which compilers are installed in
your copy of CPW.

The CPW language type of a file is stored in the ProDOS 16 directory entry for the file, but
is separate from the ProDOS 16 file type. The CPW language types include all assemblers
and compilers recognized by CPW, plus ASCII text files (language-type PRODOS), LinkEd
command files (LINKED), and shell command files (EXEC). Compilers and assemblers
plus LINKED are included in the CPW/LANGUAGES/ subdirectory on disk; the code to
support EXEC, COMMAND, and PRODOS text files is included in the shell and editor. All
CPW compiler and assembler source files, LINKED, EXEC, and COMMAND files are
ProDOS 16 file type $B0; and PRODOS text files are ProDOS 16 file type $04.

Table 4.2 shows some of the language types that CPW recognizes; of these, PRODOS,
TEXT, ASM65816, LINKED, and EXEC are included when you purchase CPW. For a
complete list of language numbers that have been assigned for CPW, see Appendix A. The
assignment of a language number does not necessarily imply that that language is currently
available; to find out which CPW-compatible language compilers are currently available,
see your authorized Apple dealer:

Table 4.2. CPW Language Types

Language Number Use

ASM6502 2 6502 assembler source

ASM65816 3 65816 assembler source

BASIC 4 CPW BASIC source

C 10 CPW C source

EXEC 6 Command file

LINKED 13 CPW Linker command language

PRODOS 0 ProDOS 16 text file (ProDOS 16 filetype $04)
TEXT i CPW text file

All CPW source files have a ProDOS 16 filetype of $B0; the CPW language type is not
recognized by ProDOS 16. CPW TEXT files are standard-ASCII files with ProDOS 16

Beta Draft 4-10 8120186

Cortland Programmer’s Workshop Chapter 4. Shell

filetype $B0 and a CPW language type of TEXT. ProDOS 16 files are standard-ASCII
files with ProDOS 16 filetype $04; these files are recognized by ProDOS 16 as text files.
See the Cortland ProDOS 16 Technical Reference for a discussion of ProDOS 16 filetypes.

Commands can be added, deleted, and renamed by editing the command table. The
command table is read at load time from a file called SYSCMND in the system prefix. You
can also read a custom command table at any time by using the COMMANDS command.
You can alter the contents of the command table to add command names to the shell, to
create aliases for commands, or to delete commands. To change the contents of the
command table, open the command-table file with the EDIT command.

Each command in the command table is on a separate line; each line contains three fields,

separated by spaces or tabs, as illustrated in Figure 4.1. The fields specify the commands
as follows:

1. The first field is the command name, which must follow the rules for a legal ProDOS
16 filename. Command names are not'case sensitive.

2 The second field indicates the command type. Enter a C for an internal command, a
U (for utiliry) for an external command, or an L for a language. If you precede the
command type with an asterisk (*), then the shell assumes that the program can be
restarted, and does not remove it from memory as long as that memory is not needed
for other purposes. Then if that command is executed again, the program need not
be reloaded from disk. (This feature is useful only for utilities (U) and compilers
(L); if you precede a C with an asterisk, the shell ignores the asterisk.)

Caution: For a program to be restartable, it must reinitialize all variables and
arrays each time it starts. If you put an asterisk in the command table in front
of the command type of a utility or language that cannot be restarted, an error
will occur the first time the shell tries to restart that program.

3. The third field specifies the command number or language number. For internal
commands, you must use an existing command number. For languages, you must
use one of the recognized language numbers listed in Appendix A. For external
commands, the third field is blank.

Warning: Using a number other than an existing one for an internal shell

command will almost certainly cause the system to crash when you try to execute
the command.

The third field can be followed by a space or tab and a comment. Blank lines are ignored,;

you can also create a comment line by starting it with an asterisk (*), an exclamation point
(1), or a semicolon (;). ‘

Beta Draft 4-11 8120186

Chapter 4. Shell

ALINK
ASM65816
ASML
ASMLG
ASSEMBLE
COMMAND
COMMANDS
COMPILE
COMPRESS
COPY
DUMPOBJ
ECHO

N NoNONC NS N NG NGO NON LN Q]

WhPr P whhPFEWwWww
w D

oW
[NV

29

Figure 4.1. Sample of a Command Table

Cortland Programmer’s Workshop

In Figure 4.1, you can see that ALINK, ASSEMBLE, and COMP ILE all have the same
command number; they are aliases. ASM65816, on the other hand, is a language
command; language number 3 is not related to command number 3.

The commands delivered with CPW are shown in Table 4.3.

Beta Draft

4-12

8120186

Cortland Programmer’s Workshop

Table 4.3. CPW Commands

Command

ALINK
ASM65816
ASML
ASMLG
ASSEMBLE
BREAK
c
CAT
CATALOG
CHANGE
CMPL
.CMPLG
COMMANDS
COMPILE
COMPRESS
CONTINUE
COPY
CREATE
CRUNCH

DEBUG
DELETE
DISABLE
DUMPOBJ
ECHO
EDIT
ELSE
ENABLE
END
EXEC
EXECUTE
EXIT
EXPORT
FILETYPE
FOR
HELP

Ir
INIT
LINK
LINKED

LOOP
MACGEN
MAKELIB
MOVE
PREFIX
PRODOS
QUIT
RENAME
RUN
SET
SHOW

SWITCH

Beta Draft

Use

Compile a linker command file

Change default language to 65816 assembly language
Assemble and link the program

Assemble, link, and go (run the program)
Assemble the program

Exec-file command

Change default language to CPW C

List the disk directory

List the disk directory

Change the language type of an existing source file
Compile and link the program '

Compile, link, and go (run the program)

Read the command table

Compile the program

Compress and/or alphabetize the disk directory
Exec-file command

Copy a file, directory, or volume

Create a new subdirectory

Combine object modules formed by partial compiles
or assemblies into a single file

Execute the CPW Debugger program

Delete a file

Disable file attributes

List the contents of an OMF file to standard output
Exec-file command

Edit an existing file, or open a new file

Exec-file command

Enable file attributes

Exec-file command

Change default language to EXEC command language
Execute an Exec file at present command level
Exec-file command

Export a shell variable

Change filetype to type specified

Exec-file command

Provide on-screen help for commands, or list all
available commands

Exec-file command

Initialize a disk

Link an object module

Change default language to the LinkEd command
language

Exec-file command

Generate a macro library for a specific program
Generate a library file from an object module

Move a file to another directory or volume

Change the default prefixes

Change default language to ProDOS 16 text

Quit CPW

Change a filename

Same as ASMLG or CMPLG

Set shell variables

Show languages, system default language, prefixes,
time, volumecs on line

Change the positions of two files in a directory

4-13

Chapter 4. Shell

Type

Internal
Language
Intemal
Internal
Internal
Internal
Language
Internal
Internal
Internal
Internal
Internal
Internal
Internal
Internal
Internal
Internal
Internal
Internal

External
Internal
Internal
External
Internal
Intemnal
Internal
Internal
Internal
Language
Internal
Intemal
Internal
Internal
Internal
Internal

Internal
External
Internal

Language

Internal
External
External
Iniemal
Internal
Language
Internal
Internal
Internal
Internal
Internal

Intemnal

8/20/86

Chapter 4. Shell

TEXT
TYPE
UNSET

Cortland Programmer’s Workshop

Change default language to TEXT Language
Type a file to standard output Internal
Delete a shell variable Internal

See Chapter 8 for instructions on adding CPW utilities to the Programmer’s Workshop.

Command Descriptions

The following notation is used to describe commands:

UPPERCASE

italics

prefix

filename

pathname

AlR
[1

Beta Draft

Uppercase letters indicate a command name or an option that must
be spelled exactly as shown. The shell is not case sensitive; that is,
you can enter-commands in any combination of uppercase and
lowercase letters.

Italics indicate a variable, such as a filename or address.

This parameter indicates any valid directory pathname or partial
pathname. It does not include a filename. If the volume name is
included, prefix must start with a slash (/); if prefix does not start
with a slash, then the current prefix is assumed. For example, if
you are copying a file to the subdirectory SUBDIRECTORY on the
volume VOLUME, then the prefix parameter would be:
/VOLUME/SUBDIRECTORY/. If the current prefix were
/VOLUME/, then you could use SUBDIRECTORY for pathname .

The device numbers .D1, .D2,Dn can be used for volume
names; if you use a device number, do not precede it with a slash.
For example, if the volume VOLUME in the above example were in
disk drive . D1, then you could enter the prefix parameter as
,D1/SUBDIRECTORY/.

This parameter indicates a filename, not including the prefix. The
unit names . CONSOLE and . PRINTER can be used as filenames.

This parameter indicates a full pathname, including the prefix and
filename, or a partial pathename, in which the current prefix is
assumed. For example, if a file is named FILE in the subdirectory
DIRECTORY on the volume VOLUME, then the pathname parameter
would be: /VOLUME/DIRECTORY/FILE. If the current prefix
were /VOLUME/, then you could use DIRECTORY/FILE for
pathname . A full pathname (including the volume name) must

begin with a slash (/); do not precede parhname with a slash if you
are using a partial pathname.

The unit names . CONSOLE and . PRINTER can be used as
filenames; the device numbers .D1, .D2,Dncan be used for
volume names.

A vertical bar indicates a choice. For example, +L | -L indicates
that the command can be entered as either +L or as ~L.

An underlined choice is the default value.

Parameters enclosed in square brackets are optional.

4-14- 8120186

Cortland Programmer’s Workshop Chapter 4. Shell

Elipses indicate that a parameter or sequence of parameters can be
repeated as many times as you wish.

The following pointers will help you use the CPW Shell command interpreter:

°

There is no command-line prompt; whenever the cursor appears in the left margin,
you can enter a command.

You must separate the command from its parameters by one or more spaces.

You can use the right-arrow key to expand command names as described in the
“Executing Commands” section of Chapter 2; you can use the Up- and Down-Arrow
keys to scroll through previously-entered commands.

There are no abbreviations for command names (except for those aliases that you add
to the system as described in the previous section).

All commands and parameters (except for segment names) can be entered in any
combination of uppercase and lowercase characters.

Segment names must be entered as all uppercase for source languages that are not
case sensitive; for case-sensitive source languages, segment names must be entered
exactly as they appear in the source code.

Where there is a conflict between a parameter in a command line and a source-code
command, the command-line parameter takes precedence. When neither a source-
code command nor a command-line parameter has been used, the default parameter is
used.

If you fail to enter a required parameter, you are prompted for it, as described in
Chapter 2.

Any of these commands can be placed in an Exec command file for automatic
execution; Exec files are described in the section “Exec Files™ in this chapter.

ALINK

ALINK [+L|=L] [+S|=8] sourcefile [KEEP=outfile]

This internal command calls the CPW Linker to process a file of LinkEd commands.
ALINK is a synonym for ASSEMBLE; you can use the ASSEMBLE or COMP ILE
commands instead of ALINK if you prefer.

Note: The ALINK command accepts all of the parameters of the ASSEMBLE
command; however, some of these parameters are ignored by the linker. Only

those parameters that are used by the linker are described here. See the ASML

command for a complete list of parameters.

+L |- If you specify +L, the linker generates a listing of the LinkEd source code;
and a listing (called a link map) of the segments in the object module,
including the starting address, the length in bytes (hexadecimal) of each
segment, and the segment type. If you specify —L, the source-code listing
and link map are not produced. The L parameter in this command overrides
any LIST and SOURCE commands in the LinkEd source file.

Beta Draft 4-15 8/120/86

Chapter 4: Shell Cortland Programmer’ s Workshop

+31-8 If you specify +8S, the linker produces an alphabetical listing of all global
references in the object module (called a symbol table). If you specify
-3, the symbol table is not produced. The S parameter in this command
overrides the SYMBOL command in the LinkEd source file.

sourcefile 'The full pathname or partial pathname (including the filename) of a LinkEd
source file.

KEEP=outfile You can use this parameter to specify the pathname or partial pathname
of the load file.

This parameter has the same effect as placing a KEEP command in your
LinkEd source file. If you have a KEEP command in the LinkEd file and

you also use the KEEP parameter, then the KEEP command in the LinkEd
file takes precedence.

Important: Keep the following points in mind regarding the KEEP
pararneter:

¢ If you use neither the KEEP parameter nor the KEEP command, then no
load file is produced.

« If a file named outfile already exists, it is overwritten without a warning
when this command is executed.

The output listing of the link is sent to the screen unless you redirect output to the printer,

or use the PRINTER ON LinkEd command. Output redirection is described in the section
“Redirecting Input and Output” in this chapter.

Important: If you do not need to take advantage of the advanced link capabilities
provided by LinkEd, do not create a LinkEd file, and do not use the ALINK
command. Instead, use one of the following commands to link your program:

LINK, ASML, ASMLG, CMPL, or CMPLG. The linker is described in detail in
Chapter 7.

ASM65816
ASM65816

This language command sets the shell default language to CPW 65816 Assembly
Language.

ASML

ASML [+L|=L] [+S|=S]sourcefile [KEEP=outfile)
(NAMES= (segl [seg2(..)))] [languagel= (option ...)
(language2= (option ...) ...1]

This internal command assembles (or compiles) and links a source file. The CPW Shell
checks the language of the source file and calls the appropriate assembler or compiler. If
the maximum error level returned by the assembler or compiler is less than or equal to the
maximum allowed (0 unless you specify otherwise with the MERR directive or its

Beta Draft ' 4-16 820186

Cortland Programmer’s Workshop Chapter 4. Shell

equivalent in the source file), then the resulting object module is linked. The linker is
described in Chapter 7. Assembler error levels are described in Appendix B.

Notes: You can use APPEND directives (or the equivalent) to tie together source
files written in different computer languages; CPW compilers and assemblers check
the language type of each file and return control to the shell when a different
language must be called. See the section “Assembling or Compiling a Program” in
Chapter 2 for a description of the assembly and compilation process.

Not all compilers or assemblers make use of all the parameters provided by this
command (and the ASSEMBLE, ASMLG, COMPILE, CMPL, CMPLG, and RUN
commands, which use the same parameters). The CPW Assembler, for example,
includes no language-specific options, and so makes no use of the

language= (option ...) parameter. If you include a parameter that a compiler or
assembler cannot use, it ignores it; no error is generated. If you used APPEND
directives to tie together source files in more than one language, then all parameters
are passed to every compiler, and each compiler uses those parameters that it
recognizes. See the reference manual for the compiler you are using for a list of the
options that it accepts.

In general, command-line parameters (those described here) override source-code
options when there is a conflict.

+L|~-L If you specify +L, the assembler or compiler generates a source listing; if
you specify —L, the listing is not produced. The L parameter in this
command overrides the LIST directive in the source file.

+3|-s If you specify +8, the linker produces an alphabetical listing of all global
references in the object module; the assembler or compiler may also produce
a symbol table. The CPW Assembler, for example, produces an

alphabetical listing of all local symbols following each END directive. If
you specify -S, these symbol tables are not produced. The S parameter in
this command overrides the SYMBOL directive in the source file.

Beta Draft 4-17 8120186

Chapter 4. Shell Cortland Programmer’s Workshop

sourcefile The full pathname or partial pathname (including the filename) of the source

file.

KEEP=outfile You can use this pararneter to specify the pathname or partial pathname

(including the filename) of the output file. For a one-segment program,
CPW names the object module outfile .ROOT. If the program contains more
than one segment, CPW places the first segment in outfile .ROOT and the
other segments in outfile . A. If this is a partial assembly (or several source
files with different programming languages are being compiled), then other
filename extensions may be used; see the section “Partial Assemblies or
Compiles” in this chapter. If the assembly is followed by a successful link,
then the load file is named outfile.

This parameter has the same effect as placing a KEEP directive in your
source file. If you have a KEEP directive in the source file and you also use
the KEEP parameter, two object modules are produced with the extension

. ROOT; one corresponding to the parameter and one to the directive.
However, the pathname in the KEEP directive takes precedence; other files
with .A or other extensions are created only with the filename used in the
directive, and the linker uses only the pathname given in the KEEP directive.

Important: Keep the following points in mind regarding the KEEP
parameter:

+ If you use neither the KEEP parameter nor the KEEP directive, then the
object modules are not saved at all. In this case, the link cannot be
performed, because there is no object module to link.

« The filename you specify in outfile must not be over 10 characters long.
This is because the extension . ROOT is appended to the name, and
ProDOS 16 does not allow filenames longer than 15 characters.

+ If a file named outfile already exists, it is overwritten without a warning
when this command is executed.

NAMES=(segl seg2 ...) This parameter causes the assembler or compiler to perform

-,

Beta Draft

a partial assembly or compile; the operands seg!, seg2, ... specify the
names of the segments to be assembled or compiled. Separate the segment
names with one or more spaces. The CPW Linker automatically selects the
latest version of each segment when the program is linked.

In CPW Assembly language, you assign names to segments with START or
DATA directives. In most high-level languages, each subroutine becomes
an object segment; the segment name is the same as the subroutine name.
The object file created when you use the NAMES parameter contains only the
specified segments. When you link a program, the linker scans all the files
whose filenames are identical except for their extensions, and takes the latest
version of each segment. Therefore, you must use the same output filename
for every partial compilation or assembly of a program.

For example, if you specify the output filename as OUTF ILE for the
original assembly of a program, then the assembler creates object modules
named OUTFILE.RQOOT and QUTFILE.A. In this case you must also
specify the output filename as OUTF ILE for the partial assembly. The new
output file is named OUTF ILE. B, and contains only the segments listed
with the NAMES parameter. ‘

4-18 8/20/86

Cortland Programmer’s Workshop Chapter 4. Shell

Note: No spaces are permitted immediately before or after the equal sign
in this parameter.

See the section “Partial Assemblies or Compiles” in this chapter for more
information on partial assemblies.

languagel=(option ...) ... This parameter allows you to pass parameters directly to
specific CPW compilers or assemblers. For each compiler or assembler for
which you want to specify options, type the name of the language (exactly
as defined in the command table), an equal sign (=), and the string of
options enclosed in parentheses. The contents and syntax of the options
string is specified in the compiler or assembler reference manual; the CPW
Shell does no error checking on this string, but passes it through to the
compiler or assembler. You can include option strings in the command line
for as many languages as you wish; if that language compiler is not called,
then the string is ignored.

Note: No spaces are permitted immediately before or after the equal sign
in this parameter.

Listings and error messages are sent to the screen unless you include a PRINTER ON
directive (or equivalent) in the source file; or redirect output to a disk file or the printer.
Output redirection is described in the section “Redirecting Input and Output” in this chapter.

The following command assembles and links a source file named MYF ILE, and writes the
load file to disk as the file MYPROG. No source listing or symbol table is produced unless
called for by directives in MYFILE:

ASML MYFILE KEEP=MYPROG

The following command assembles and links a source file named MYFILE, and writes the
load file to disk as the file MYPROG. A symbol table is produced and no source listing is
produced regardless of whether called for by directives in MYFILE:

ASML -L +S MYFILE KEEP=MYPROG

The following command assembles the segments TOOLCALL and TEXT_OUT in the source
file named MYFILE, links the program, and writes the load file to disk as the file MYPROG.

ASML MYFILE KEEP=MYPROG NAMES=(TOOLCALL TEXT_OUT)

The following command assembles the source file named MYFILE; if MYFILE or a file
appended to MYFILE is a C program, then the C-compiler option that specifies a prefix for
Include files is passed to the C compiler. After the program is assembled or compiled, it is
linked and the load file is written to disk as the file MYPROG.

ASML MYFILE KEEP=MYPROG C=(-I/CPW/CINCLUDES/)

Note: The 2SML, ASMLG, CMPL, and CMPLG commands first assemble or
compile the source file (or files), then send the object file specified in the KEEP
parameter (or in a KEEP directive in the source file) to the linker as its only input.
These commands cannot be used to send several object files with different root
filenames to the linker. To link two or more object files, use the LINK command.

Bera Draft 4-19 8120186

Chapter 4: Shell Cortland Programmer’s Workshop

Important: If you are using a LinkEd file to take advantage of the advanced link
capabilities it provides, do not use the ASML command. Instead, use either the
ASSEMBLE or COMP ILE command to assemble or compile your program. You
can process the LinkEd file automatically by appending it to the end of your
program with an APPEND directive (or the equivalent), or you can process it
independently with the ALINK command. The linker is described in detail in
Chapter 7.

ASMLG

ASMLG [+L|-L] (+S|-S)sourcefile [KEEP=outfile]
(NAMES=(segl [seg2[..11)] [languagel= (option ...)
llanguage2= (option ...) ...]1]

_This internal command assembles (or compiles), links, and runs a source file. Its function
is identical to that of the ASML command, except that once the file has been successfully

linked, it is executed automatically. See the ASML command for a description of the
parameters.

ASSEMBLE
ASSEMBLE [+L|-L] ([+S|~-Slsourcefile [(KEEP=outfile]

[NAMES=(segl [seg2{ ..11)] [languagel= (option ...)

(languagel= (option ...} ...]]
This internal command assembles (or compiles) a source file. Its function is identical to
that of the ASML command, except that the ASSEMBLE command does not call the linker to
link the object modules it creates; therefore, no load module is generated. You can use the

LINK command or a LinkEd file to link the object files created by the ASSEMBLE
command. See the ASML command for a description of the parameters.

C
C

This language command sets the shell default language to CPW C.

CATALOG

CATALOG [prefix]
CATALOG [pathname]

This internal command lists to the screen the directory of the volume or subdirectory you
specify.

Beta Draft 4-20 ' 8120186

Cortland Programmer’s Workshop Chapter 4. Shell

prefix The pathname or partial pathname of the volume, directory, or subdirectory
for which you want a directory listing. If the prefix is omitted, then the
contents of the current directory are listed.

pathname The full pathname or partial pathname (including the filename) of the file for
which you want directory information. You can use wildcards in the
filename.

For example, to list the entire contents of the current directory, use the following command:
CATALOG

To list the entire contents of the subdirectory /CPW/UTILITIES/, use the following
command:

CATALOG /CPW/UTILITIES

To get directory information about the MAKELIB file in the UTILITIES/ subdirectory
when the current prefix is /CPW/, use the following command:

CATALOG UTILITIES/MAKELIB

To list every file beginning with a M in the UTILITIES/ subdirectory, use the following
command:

CATALOG /CPW/UTILITIES/M=

Or, if /CPW/UTILITIES/ were the current directory, you could use the following
command to achieve the same result;

CATALOG M=

You can alphabetize ProDOS 16 directories with the COMPRESS command, and change the

positions of files in a directory with the SWITCH command. See the section “Listing the
Directory” in Chapter 2 for a description of the fields in the directory listing.

CHANGE
CHANGE pathname language

This internal command changes the language type of an existing file.

pathname The full pathname or partial pathname (including the filename) of the source
file whose language type you wish to change. You can use wildcard
characters in the filename.

language The language type to which you wish to change this file.

In CPW, each source or text file is assigned the current default language type when it is
created. When you assemble or compile the file, CPW checks the language type to
determine which assembler, compiler, linker, or text formatter to call. Use the CATALOG
command to see the language type currently assigned to a file. Use the CHANGE command
to change the language type to any of the languages listed by the SHOW LANGUAGES

Beta Draft 4-21 820186

Chapter 4. Shell Cortland Programmer’s Workshop

command. The previous section, "Command Types and the Command Table" includes a
discussion of language types and language commands.

You can use the CHANGE command to correct the CPW language type of a file if the editor
was set to the wrong language type when you created the file, for example. Another use of
the CHANGE command is to assign the correct CPW language type to an ASCII text file
(ProDOS 16 filetype $04) created with another editor.

CMPL

CMPL (+L}=L] [+S|=S]sourcefile [KEEP=outfile]
(NAMES=(segl [seg2{ ..11)1 [languagel= (option ...)
(language2= (option ...) ...]]

This internal command compiles (or assembles) and links a source file. Its function and

parameters are identical to those of the ASML command. See your compiler manual for the
language-specific options available.

CMPLG

CMPLG [+L|=L] [(+S|=S]sourcefile [KEEP=oulfile]
(NAMES= (segl [, seg2(,...1])] [languagel= (option ...)
(language2= (option ...) ...]]

This internal command compiles (or assembles), links, and runs a source file. Its function
is identical to that of the ASMLG command. See the ASML command for a description of
the parameters. See your compiler manual for the language-specific options available.

COMMANDS
COMMANDS pathname
This internal command causes CPW to read a command-table file, resetting all the
commands to those in the new command table.
pathname The full pathname or partial pathname (including the filename) of the file
containing the command table.

When you load CPW, it reads the command-table file named SYSCMND in the system
prefix. You can use the COMMANDS command to read in a custom command table at any

time. Command tables are described in the section “Command Types and the Command
Table” in this chapter.

Beta Draft 4-22 ' 8120186

Cortland Programmer’'s Workshop Chapter 4. Shell

COMPILE

COMPILE [+L|=L] [+S|=S]sourcefile [KEEP=outfile]
[NAMES= (segl [,seg2[,..11)] [languagel= (option ...)
(language2= (option ...) ..]]

This internal command compiles (or assembles) a source file. Its function is identical to
that of the ASML command, except that it does not call the linker to link the object modules
it creates; therefore, no load module is generated. You can use the LINK command or a
LinkEd file to link the object files created by the COMP ILE command. See the ASML
command for a description of the parameters. See your compiler manual for the language-
specific options available.

COMPRESS
COMPRESS A|C|A C [prefix(/]]

This internal command compresses and alphabetizes directories.

A Use this parameter to alphabetize the file names in a directory. The
. filenames appear in the new sequence whenever you use the CATALOG
command.
C Use this parameter to compress a directory. When you delete a file from a

directory, a “hole” is left in the directory that ProDOS 16 fills with the file
entry for the next file you create. Use the C parameter to remove these holes
from a directory, so that the name of the next file you create is placed at the
end of the directory listing instead of in a hole in the middle of the listing.

A C You can use both the A and C parameters in one command; if you do so,
you must separate them with one or more spaces.

prefix The pathname or partial pathname of the directory you wish to compress or
aphabetize, not including any filename. If you do not include a volume or
directory path, then the current directory is acted on.

This command works only on ProDOS 16 directories, not on other file systems such as

DOS or Pascal. To interchange the positions of two files in a directory, use the SWITCH
command.

Note: When you “delete” a file, the file and its directory entry remain on the disk,
but the directory entry and the blocks on the disk containing the file are marked by
ProDOS 16 as being available; that is, they can be overwritten. Most programs that
“recover’” deleted files take advantage of this fact by reading the old directory
information off the disk (assuming you haven’t written any new information to the
disk since deleting the file). The COMPRESS command removes this information
from the directory, making it harder to recover deleted files.

Beta Draft 4-23 8120186

Chapter 4. Shell Cortland Programmer's Workshop

COPY

COPY (-C] pathnamel [prefix2/] [filename?2)
COPY prefixl prefix2
COPY volumel volume2

This internal command copies a file to a new subdirectory, or to a duplicate file with a
different filename. This command can also be used to copy an entire directory or to
perform a block-by-block disk copy.

-C If you specify —C before the first filename, then COP Y does not prompt you
if the target filename (filename2) already exists.

pathnamel The full or partial pathname (including the filename) of the file to be copied.
Wildcards may be used in the filename.

prefixl The pathname or partial pathname of a directory that you wish to copy; if
you do not include a filename in the first parameter, then the directory
(including all the files, subdirectories, and files in the subdirectories) is
copied.

prefix2 The pathname or partial pathname of the directory you wish to copy the file
or directory to. If you do not include the pathname of a volume or
subdirectory, then the current directory is used.

filename2 The filename to be given to the copy of the file. Wildcards can not be used
in this filename. If you leave this parameter out, then the new file has the
same name as the file being copied.

volumel The name of a volume that you want to copy onto another volume. If both
parameters are volume names, then a block-by-block disk copy is
performed. You can use a device number instead of a volume name.

volume2 The name of the volume that you want to copy onto. If both parameters are
volume names, then a block-by-block disk copy is performed. You can use
a device number instead of a volume name.

If you do not specify filename2, and a file with the filename specified in pathnamel exists
in the target subdirectory, or if you do specify filename2 and a file named filename2 exists
in the target subdirectory, then you are asked if you want to replace the target file. Type Y
and press RETURN to replace the file. Type N and press RETURN to copy the file to the
target prefix with a new filename. You are prompted for the new filename. Enter the
filename, or press RETURN without entering a filename to cancel the copy operation. If
you specify the —C parameter, then the target file is replaced without prompting.

Note: If you do not include any parameters after the COPY command, you are
prompted for a pathname, since CPW prompts you for any required parameters.
However, since the target prefix and filename are not required parameters, you are
not prompted for them. Consequently, the current prefix is always used as the
target directory in such a case. To copy a file to any subdirectory other than the
current one, you raust include the target pathname as a parameter either in the
command line, or following the pathname entered in response to the filename
prompt.

If you use volume names for both the source and target, then the COP Y command copies
one volume onto another. In this case, the contents of the target disk are destroyed by the

Beta Draft 4-24 820186

Cortland Programmer’s Workshop ’ Chapter 4: Shell

copy operation. The target disk must be initialized as a ProDOS 16 volume (use the INIT
command) before this command is used. This command performs a block-by-block copy,
so it makes an exact duplicate of the disk; both disks must be the same size for this
command to work. You can use device numbers rather than volume names to perform a
disk copy; device numbers are described in the section “Device Numbers and Names” in
Chapter 2.

The following command makes a copy of the file FILEA on the system prefix, gives the
copy the filename FILEB, and places it in the same prefix:

COPY FILEA FILEB

The following command copies the file MYPROG from the directory CPW/ into the
subdirectory CPW/PROGRAMS/ without changing the name of MYPROG:

COPY /CPW/MYPROG /CPW/PROGRAMS/
The following command copies the subdirectory /CPW/UTILITIES/HELP/ into the
subdirectory /HARDISK/DOCUMENTS/, renaming the HELP / subdirectory
HELPFILES/:

COPY /CPW/UTILITIES/HELP/ /HARDISK/DOCUMENTS/HELPFILES/

The following command copies the volume CPW onto the volume in disk drive .D2:

COPY /CPW/ .D2

CREATE
CREATE prefix[/]

This internal command creates a new subdirectory.
prefix The pathname or partial pathname of the subdirectory you wish to create.

CRUNCH
CRUNCH rootname

This internal command combines the object modules created by partial assemblies or
compiles into a single object module. For example, if an assembly and subsequent partial
assemblies have produced the object modules FILE.ROOT, FILE . A, FILE.B, and
FILE.C, then the CRUNCH command combines FILE .A, FILE.B,and FILE.C into a
new file called FILE . A, deleting the old object modules in the process. The new FILE.A

Beta Draft 4-25 8120186

Chapter 4. Shell Cortland Programmer’s Workshop

contains only the latest version of each segment in the program. New segments added
during partial assemblies are placed at the end of the new FILE.A.

rootmame The full pathname or partial pathname, including the filename but minus any
filename extensions, of the object modules you wish to compress. For
example, if your object modules are named FILE .ROOT, FILE. &, and
FILE.B in subdirectory /HARDISK/MYFILES/, then use
/HARDISK/MYFILES/FILE for rootname.

Note: CRUNCH requires a few blocks of workspace on the disk; if your disk is
nearly full, delete some unneccessary files or copy your object modules to a clean
disk before trying to use this command.

CRUNCH lists the type of each segment it finds; the segment types it recognizes are:
Static Code
Dynamic Code
Static Data
Dynamic Data
Use the DUMPOBJ command to obtain a listing of the segments in any object or load file.
See the section “Partial Assemblies or Compiles” in this chapter for more information on

partial assemblies. Segment types are discussed in the section “Cortland Concepts” in
Chapter 1.

DEBUG
DEBUG
This external command calls the CPW Debugger.

The debugger is described in detail in Chapter 6.

DELETE
DELETE pathname

This internal command deletes the file you specify.

pathname The full pathname or partial pathname (including the filename) of the file to
be deleted. Wildcards may be used in the filename.

DISABLE
DISABLE D|N|B|W|R pathname

This internal command disables one or more of the access attributes of a ProDOS 16 file.

D “Delete” privileges. If you disable this attribute, the file cannot be deleted.
N “Rename” privileges. If you disable this attribute, the file cannot be
renamed.

Beta Draft 4-26 8120186

Cortland Programmer’s Workshop Chapter 4. Shell

B “Backup required” flag. If you disable this attribute, the file will not be
flagged as having been changed since the last time it was backed up.

W “Write” privileges. If you disable this attribute, the file cannot be written to.

R “Read” privileges. If you disable this attribute, the file cannot be read. ‘

pathname The full pathname or partial pathname (including the filename) of the file
whose attributes you wish to disable. You can use wildcard characters in
the filename.

You can disable more than one attribute at one time by typing the operands with no

intervening spaces. For example, to “lock” the file TEST so that it cannot be written to,
deleted, or renamed, use the command

DISABLE DNW TEST

Use the ENABLE command to reenable attributes you disabled with the DISABLE
command.

When you use the CATALOG command to list a directory, the attributes that are currently
enabled are listed in the Access field for each file. ProDOS 16 access attributes are
described in the ProDOS 16 Technical Reference Manual. Directory listings are described
in the section “Listing a Directory” in Chapter 2.

DUMPOBJ
DUMPOBJ [option ...] pathame [NAMES= (segl seg2 ...))

This external command writes the contents of an object file to standard output (normally the
screen). The default format for the listing is object module format (OMF) operation codes
and records. You can also list the file as a 65816 machine-language disassembly or as
hexadecimal codes.

option You can specify as many of the following options as you wish by
separating the options with spaces. If you select two mutually exclusive
options (such as +X and +D), the last one listed is used. If an option can’t
function due to the other options set, it is ignored; for example, if you select
~H to suppress segment headers, and also specify ~S to select short
headers, then the -S is ignored.

+X Write the file dump in hexadecimal codes rather than OMF records.
Segment headers are always printed in ASCII text unless you also
select the ~H option.

+D Write the file dump as a 65816 disassembly rather than OMF records.

—-H If the output format is hexadecimal codes (+X option), then this option
causes the headers to also be listed as hexadecimal codes. For all
other output formats, the headers are not printed at all.

-0 Don’t show the contents of the segments; list the headers only.

Beta Draft 4-27 . 8120186

Chapter 4. Shell Cortland Programmer’s Workshop

-F Suppress the checking of the filetype. You can use this option to
dump the contents of any file, whether it is in OMF or not. See the
following discussion for more information on examining non-OMF
files.

- -M For 65816 disassembly listings, assume that the CPU is set to short

pathname

segl seg2 .

memory (accumulator) registers at the start of the disassembly, rather
than starting in full native mode. This option has no effect on OME-
format and hexadecimal listings.

-I For 65816 disassembly listings, assume that the CPU is set to short
index (X and Y) registers at the start of the disassembly, rather than
starting in full native mode. This option has no effect on OMF-format
and hexadecimal listings.

—-A Suppress all information but the operation codes and operands for
each line of an OMF-format or 65816-format disassembly. The
default is to include the displacement into the file and the program
counter for each line at the beginning of the line.

—S Write only the name of the segment and the segment type for the
segment headers. The default is to include all of the information in the
segment header.

The full pathname or partial pathname (including the filename) of the file
you wish to dump. The file may be a library file, the output of an assembler
or compiler, a load file, or any other file that conforms to CPW object
module format. If you use the —F option, you can specify a file of any
filetype.

.. The names of specific segments you wish to dump. If you specify the
NAME S parameter, only the segments you specify are processed. To get a
list of segments in the file, use DUMPOBJ with the -0 and -S options,
Segment-name searches are case sensitive (that is, seg/, seg2, ... must
match the segment names exactly, including the case of the characters).

If the file consists of more than one segment, each segment is listed separately . Each
segment listing begins with the segment header, followed by the segment body. A typical
segment header is shown in Figure 4.2, The fields in the segment header are described in
the section “Object Module Format” in Chapter 9.

Beta Draft

4-28 . ‘ 8120186

Cortland Programmer’s Workshop Chapter4: Shell

Block count : $00000001 1
Reserved space : $00000000 0
Length : $0000000F 15
Kind : $00 static code
Label length : $0Aa 10
Number length : $04 4
Version : $01 1
Bank size : $00010000 65536
Org : $00000000 0
Alignment : $00000000 0
Number sex : $00 0
Segment number : $0000 0
Disp to names : $002C 44
Disp to body : S003B 59
Load name :

Segment name : Second

Figure 4.2, Sample DUMPOBJ Segment Header

The format in which the body of the segment is shown depends on the option used. The
default is to show the contents of each record in the segment in object module format. A
typical OMF segment dump is shown in Figure 4.3. The first column shows the actual
displacement into the segment, in bytes, of that record. The segment header takes up 59
($3B) bytes, so the op code of the first record in the segment is at $3C, and the first record
starts at $3D. The second column shows the setting of the program counter for that
segment; that is, the cumulative number of bytes that the linker will create in the load file.
The third and fourth columns show the record type and operation code of the OMF record
shown on that line. The last column shows the contents of the record. Expressions are
shown in postfix form; that is, the values being acted on are written first, followed by the
operator. OMF records and expressions are described in the section “Object Module
Format” in Chapter 9.

Note: The OMF dump is provided to aid in the debugging of compilers; if you are
not highly familiar with the OMF, the default DUMPOBJ listing will not be of much
use to you. However, you can use the options provided to examine the contents of
an object file in machine-language disassembly format or as hexadecimal codes.

00003D 000000 USING (SE4) DATA
000048 000000 CONST ($01) A2 :
00004a 000001 EXPR (SEB) 01 : MSG4MSG3-

I |

| I

| l
000064 000002 | CONST ($03) | AOO0OBY
000068 000005 | BEXPR ($SED) |

| |

l l

| |

I

02 : MSG3
000076 000007 CONST ($01) 20
000078 000008 BEXPR ($ED) 02 : COUT
000086 00000A CONST ($05) C8CADOF 660

00008C 000O0OF END (500)

Figure 4.3. DUMPOBJ OMF-Format Segment Body

If you select the +d option, the segment body is displayed in 65816 disassembly format. A
typical disassembly segment dump is shown in Figure 4.4. The first column shows the
actual displacement into the segment, in bytes, of the first byte in the line. The segment
header takes up 59 ($3B) bytes, so the first record in the segment starts at $3C. The

Beta Draft 4-29 820156

Chapter4: Shell Cortland Programmer’s Workshop

second column shows the setting of the program counter for that segment; that is, the
cumulative number of bytes that the linker will create in the load file. The third column
shows the disassembly., The disassembly starts with LONGA and LONGTI directives
indicating whether the disassembler is assuming long or short operands for the accumulator
and index registers. CPW Assembly Language is described in the Cortland Programmer’s
Workshop: Assembly Language Reference manual.

Note: The disassembler tries to keep track of REP and SEP instructions, which
are used to set bits in the status register. The status register settings determine
whether 16-bit (native mode) or 8-bit (emulation mode) index-register (X and Y)
and accumulator-register transfers are used by the CPU. Any time the disassembler
finds an REP or SEP instruction with an immediate operand, it inserts the
appropriate LONGA and LONGT directives in the disassembly to indicate the state of
the registers. (The LONGA and LONGI directives tell the CPW Assembler whether
to use long or short operands for transfer instructions.) LONGA and LONGI
directives are also placed at the beginning of every segment to indicate the state of
the registers on entering the segment. If an expression involving a label was used
as the operand of the REP or SEP instruction, then the disassembly might lose track
of the setting of the status register.

00003C 000000 LONGA ON

00003C 000000 LONGI OFF

00003C 000000 SECOND START

00003C 000000 USING DATA

000047 000000 LDX # (MSG4-MSG3)
00004F 000003 LDY #500

I
I
l
|
|
|
000052 000006 | LDA MSG3, Y
000057 000006 | JSR couTt
!
I
I
|
|

00005D 000009 INY
00005SF 00000A DEX
000060 00000B BNE *+SF6
000062 Q0000D RTS
000063 0000OCE END

Figure 4.4. DUMPOBJ Disassembly-Format Segment Body

If you select the +x option, the segment body is displayed in hexadecimal format. A typical
hexadecimal segment dump is shown in Figure 4.5. The first column shows the actual
displacement into the segment, in bytes, of the first byte in the line. The segment header
takes up 59 ($3B) bytes, so the first byte in the segment body is at $3C. The next four
columns show the next 16 bytes in the file. The last column shows the ASCII equivalents
of those bytes.

Beta Draft 4-30 8/20186

Cortland Programmer’s Workshop Chapter 4. Shell

complete this figure with up-to-date hex dump

00003C
00004C
00005C
00006C
00007C
00008C
00009C
0000AC
0000BC
gooocc
0000DC
0000EC
0000FC
goo1o0C

| E4444154 41202020 20202001 A2EB0183
I
I
I
I
|
|
|
I
I
I
I
|
!
00011C {
I
I
[
!
|
[
I
I
I
I
[
I
!
I

4D534734 20202020 2020834D 53473320

dDATA "k
MSG4 MSG3

00012C
00013C
00014cC
00015C
00016C
00017C
00018C
00018C
0001AC
0001BC
goolcc
0001DC
0001EC

I
I
I
I
I
I
I
I
!
!
!
[
[
I
|
[
[
I
|
!
[
[
I
!
I
!
|
!
0001FC I

Figure 4.5. DUMPOBJ Hexadecimal-Format Segment Body

DUMPOBJ can be used to dump the contents of any file, even if it is not in OMF. To dump
the contents of a non-OMF file, use the —H and —F options, together with either the +X or
+D options.

Important: Any other combination of options, or no options, will probably

produce unusable results, since in that case DUMBOBJ attempts to scan the file for
segments as if it were in OMF.

DUMPOBJ is extremely useful for debugging compilers and assemblers, but is also useful
whenever you want to see the contents of an OMF file. For example, before using the
SELECT command in a LinkEd file to extract specific segments from the object file

GOOD . STUFF, you could use the following command to list the names and segment types
of all the segments in the file:

DUMPOBJ -s —o GOOD.STUFF
DUMPOBJ specifies the type of each segment (such as static data, static code, dynamic data,

and so forth). Code segments are created by a START—END pair of directives in a CPW

Assembly Language source file; data segments are created by a DATA—END pair. In most
high-level languages, each subroutine corresponds to an object segment. Static and

Beta Draft 4-31 8/20/86

Chapter 4: Shell Cortland Programmer’s Workshop

dynamic segments are assigned by the linker; you can use LinkEd commands to control
these assignments. See Chapter 7 for a discussion of LinkEd commands.

EDIT
EDIT pathname

This external command calls the CPW Editor and opens a file to edit.

pathname The full pathname or partial pathname (including the filename) of the file
you wish to edit. If the file named does not exist, a new file with that name
is created and opened. If you use a wildcard character in the filename, the
first file matched is opened.

The CPW default filetype changes to match the filetype of the open file. If you open a new
file, that file is assigned the current default filetype. Use the CHANGE command to change
the filetype of an existing file. To change the CPW default filetype before opening a new
file, type the name of the language you wish to use, and press RETURN.

The editor is described in Chapter 5.

ENABLE

ENARLE D|N|BlW|Rpaanne

This internal command enables one or more of the access attributes of a ProDOS 16 file, as

described in the discussion of the DISABLE command. You can enable more than one

attribute at one time by typing the operands with no intervening spaces. For example, to

“unlock” the file TEST so that it can be written to, deleted, or renamed, use the command
ENABLE DNW TEST

When a new file is created, all the access attributes are enabled. Use the ENABLE

command to reverse the effects of the DISABLE command. The parameters are the same
as those of the DISABLE command.

EXEC

EXEC

This language command sets the shell default language to the EXEC command language.
When you type the name of a file that has the EXEC filetype, the shell executes each line of

the file as a shell command. Exec command files are described in the section "Exec Files"
in this chapter.

EXECUTE

EXECUTE pathname [paramlist]

Beta Draft 4-32 8120186

Cortland Programmer’s Workshop Chapter 4. Shell

This internal command executes an Exec file. If this command is executed from the CPW
Shell command line, then the variables defined in the Exec file are treated as if they were
defined on the command line,

pathname The full or partial pathname of an Exec file. ***can this filename
include wildcards?***

paramiist The list of parameters being sent to the Exec file,

Normally, variables defined within an Exec file or passed into that Exec file as parameters
are local to that file. If you use the EXECUTE command, however, then variables defined
in or passed to an Exec file are valid in the Exec file that called that file. If you use an
EXECUTE command on the shell command line to execute an Exec file, then the variables
defined in that Exec file are global; they are valid in any Exec file. See the section “Exec
Files” in this chapter for a more complete discussion of this command.

FILETYPE
FILETYPE pathname filetype

This inter.ial command changes the ProDOS 16 filetype of a file.

pathname The full pathname or partial pathname (including the filename) of the file
whose filetype you wish to change.

filetype The ProDOS 16 filetype to which you want to change the file. Use one of
the following three formats for filerype:

* A decimal number 0-255.
* A hexadecimal number $00-$FF.

+ The three-letter abbreviation for the filetype used in disk directores; for
example, S16, OBJ, EXE. A partial list of ProDOS 16 filetypes is shown
in Table 4.4. See the Cortland ProDOS 16 Reference for a complete list
of filetypes.***Is it in there?***

You can change the filetype of any file with the FILETYPE command; CPW does riot
check to make sure that the format of the file is appropriate. However, the ProDOS 16 call
used by the FILETYPE command may disable some of the access attributes of the file.
Use the CATALOG command to check the filetype and access-attribute settings of the file;
use the ENABLE command to reenable any attributes that are disabled by ProDOS 16.

Table 4.4. ProDOS Filetypes ***please check, correct, and add as
necessary**#*

Decimal Hex Abbreviation Filetype

Beta Draft 4-33 ' 8120186

Chapter 4. Shell Cortland Programmer’s Workshop

004 $04 TXT Text

006 $06 BIN ProDOS 8 binary load

015 $OF DIR Directory

176 $BO SRC Source

177 $B1 OBJ Object

178 §B2 LIB Library

179 $B3 S16 ProDOS 16 system load

180 $B4 RTL Run-time library

181 $BS EXE Shell load

182 $B6 STR Startup load

127 $FF SYS ProDOS 8 system load
HELP

HELP [commandname]

This internal command provides on-line help for all the commands in the command table
provided with the CPW Development Environment. If you omit commandname, then a list
of all the commands in the command table are listed on the screen.

commandname The name of the CPW Shell command about which you want
information.

When you specify commandname, the shell looks for a text file with the specified name in
the subdirectory CPW/UTILITIES/HELP/. If it finds such a file, the shell prints the
contents of the file on the screen. Help files contain information about the purpose and use
of commands, and show the command syntax in the same format as used in this manual.

If you add commands to the command table, or change the name of a command, you can

add, copy, or rename a file in the HELP / subdirectory to provide information about the
new command.

INIT
INIT device [name)

This external command formats a disk as a ProDOS 16 volume.

device The device number of the disk drive containing the disk to be formatted; or,
if the disk being formatted already has a volume name, you can specify the
volume name instead of a device number.

name The new volume name for the disk. If you do not specify name, then the
name BLANK is used.

CPW recognizes the device type of the disk drive specified by device, and uses the
appropriate format. INIT works for all disk formats supported by ProDOS 16.

Warning: INIT destroys any files on the disk being formatted.

Beta Draft 4-34 8120186

Cortland Programmer’s Workshop Chapter 4: Shell

LINK

LINK [+L|=L] [+S|=S8] objectfile [KEEP=outfile)
LINK [+L|=L] [+S|=S] (objectfilel objectfile2 ..) [KEEP=outfile]

This internal command calls the CPW Linker to link object modules to create a load file.
You can use this command to link object modules created by CPW assemblers or compilers
. The linker is described in Chapter 7.

+L|-L If you specify +L, the linker generates a listing (called a link map) of the
segments in the object module, including the starting address, the length in
bytes (hexadecimal) of each segment, and the segment type. If you specify
-L, the link map is not produced.

+S|-S If you specify +S, the linker produces an alphabetical listing of all global
references in the object module (called a symbol table). If you specify -S,
the symbol table is not produced.

objectfile The full or partial pathname, minus filename extension, of the object files to
be linked. All files to be linked must have the same filename (except for
extensions), and must be in the same subdirectory. For example, the
progranmi TEST might consist of object files named TEST . ROOT, TEST . A,
and TEST. B, all located in directory /CPW/MYPROG/. In this case, you
would use /CPW/MYPROG/TEST for objectfile.

(objectfilel objectfile2,...) You can link several object files into one load file with a
single LINK command. Enclose in parentheses the full pathnames or partial
pathnames, minus filename extensions, of all the object files to be included;
separate the filenames with spaces. The first file named, objectfilel, must
have a . ROOT file; for the other object files, either a .ROOT file ora . A file
must be present. For example, the program TEST might consist of object
files named TEST1 .ROOT, TEST1 .A, TEST1.B, TEST2 . A, and
TEST2.B, all in directory /CPW/MYPROG/. In this case, you would use

(/CPW/MYPROG/TEST1 /CPW/MYPROG/TEST2) for objectfile.

KEEP=outfile Use this parameter to specify the pathname or partial pathname of the
executable load file.

Important: If you do not use the KEEP parameter, then the link is
performed, but the load file is not saved.

Important: If you do not include any parameters after the LINK command, you
are prompted for an input filename, as CPW prompts you for any required
parameters. However, since the output pathname is not a required parameter, you
are not prompted for it. Consequently, the link is performed, but the load file is not
saved. To save the results of a link, you must include the KEEP parameter in the

command line (or following the pathname you enter in response to the Filename
prompt).

As an example of the first form of the LINK command, suppose you want to link the object
file /CPW/TEST1, consisting of files TEST1.ROOT, TEST1 .3, and TEST1.B. The

following command creates the load file /CPW/MYTEST; no the link map or symbol table
are produced:

LINK /CPW/TEST1 KEEP=/CPW/MYTEST

Beta Draft ’ 4-35 8120186

Chapter 4. Shell Cortland Programmer’s Workshop

As an example of the second form of the LINK command, suppose you want to link the
object file /CPW/MYPROG/TESTL consisting of files TEST1 .ROOT, TEST1 .A, and
TESTL1.B, and the object file /CPW/MYPROG/TEST2 consisting of files TEST1 .A and
TEST1.B, combining them into a single load file. The following command creates the load
file /CPW/MYTEST, printing the link map but suppressing the symbol table:

LINK +L -S (/CPW/TEST1,/CPW/TEST2) KEEP=/CPW/MYTEST

To automatically link a program after assembling or compiling it, use one of the following
commands instead of the LINK command: ASML, ASMLG, CMPL, CMPLG.

Note: The ASML, ASMLG, CMPL, and CMP LG commands call the linker with the
object file specified in the KEEP parameter (or in a KEEP directive in the source file)
as its only input; these commands cannot be used to send several object files with
different root filenames to the linker. To link two or more object files, use the
LINK command.

If you need to take advantage of the advanced link capabilites provided by the CPW Linker,
create a file of LinkEd commands and process it using the ALINK command (or by

appending it to the last source file when you compile or assemble your program). The
linker is described in detail in Chapter 7.

Important: The LINK command can be used only to process object files; do not
try to process a LinkEd file with the LINK command.
LINKED
LINKED
This language command sets the default language type to the CPW Linker command
language, LINKED. To process a file of LinkEd commands, use one of the following shell

commands: ALINK, ASSEMBLE, or COMP ILE.

If you do not need to take advantage of the advanced link capabilities provided by LinkEd,
do not create a LinkEd file, and do not use the AL INK command. Instead, use one of the

following commands to link your program: LINK, ASML, ASMLG, CMPL, or CMPLG.
The linker is described in detail in Chapter 7.

MACGEN

MACGEN [+C|-C] infile outfile macrofilel [macrofile2 ...]
This external command creates a custom macro file for a CPW Assembler program by

searching one or more macro libraries for the macros referenced in the program and placing
the referenced macros in a single file.

Beta Draft 4-36 8/20186

Cortland Programmer’s Workshop Chapter 4: Shell

+C|=C If you specify +C (the default value), then all excess spaces are removed
from the macro file to save space. If you use the GEN ON directive (to
include expanded macros in your sourcefile listing), or the TRACE ON
directive (to include conditional execution directives in your sourcefile
listing), then use the —C parameter in MACGEN to improve the readability of
the listing.

infile The full pathname or partial pathname (including the filename) of the CPW
Assembler source file. MACGEN scans infile for references to macros.

outfile The full pathname (including the filename) of the macro file to be created by
MACGEN.

macrofilel macrofile2 ... The full pathnames or partial pathnames (including the
filenames) of the macro libraries to be searched for the macros referenced in
infile. At least one macro library must be specified. Wildcards can be used
in the filenames. If you specify more than one filename, separate the names
with one or more spaces.

Since macro-library searches are time consuming, and any given program may use macros
from several macro libraries, it is often more efficient to create a custom macro library
containing only those macros needed oy your program. MACGEN generates such a library.

MACGEN scans infile, including all files referenced with COPY and APPEND directives, and
builds a list of the macros referenced by the program. It then opens a temporary file called
SYSMAC on the work prefix, scans macrofilel for referenced macros, and writes the
macros it finds to SYSMAC. If there are still unresolved references to macros, MACGEN
scans macrofile2, and so on. MACGEN can handle macros that call other macros. If there
are still unresolved references to macros after all the macro files you specified in the
command line have been scanned, then MACGEN lists the missing macros and prompts you
for the name of another macro library. Press RETURN without a filename to terminate the
process before all macros have been found. After all macros have been found (or you
press RETURN to end the process), SYSMAC is copied to outfile.

The following example scans the file /CPW/MYPROG for macro names, searches the macro
libraries /LIB/MACROS and /LIB/MATHMACS for the referenced macros, and creates the
macro file /CPW/MYMACROS:

MACGEN /CPW/MYPROG /CPW/MYMACROS /LIB/MACROS /LIB/MATHMACS

Since the macros are written to a temporary file instead of directly to outfile, you can
specify a previous version of outfile as one of the macro libraries to be searched. For
example, suppose the program MYPROG already has a custom macro file called

MY .MACROS, but you want to add one or more macros from the file LIB.MACROS. In
this case, you could use the following command:

MACGEN MYPROG MYMACROS MYMACROS LIB.MACROS
Important: Before you assemble your program, make sure that the source code

contains the directive MCOPY outfile to cause the assembler to search outfile for the
macros. .

Beta Draft 4-37 8120186

Chapter 4: Shell Cortland Programmer’s Workshop

MAKELIB
MAKELIB [-F] [-D] libfile [+|~| ~objectfile]l +|~-|~objectfile2 . ..)

This external command creates a library file.

-F If you specify -F, a list of the filenames included in /ibfile is produced. If
you leave this option out, no filename list is produced.

-D If you specify -D, the dictionary of symbols in the library is listed. Each
symbol listed is a global symbol occurring in the library file. If you leave
this option out, no dictionary is produced.

libfile The full pathname or partial pathname (including the filename) of the library
file to be created, read, or modified.

+objectfilen The full pathname or partial pathname (including the filename) of an object
file to be added to the library. You can specify as many object files to add
as you wish. Separate object filenames with spaces.

~objectfilen The filename of a component file to be removed from the library. This
parameter is a filename only, not a pathname. You can specify as many
component files to remove as you wish. Separate filenames with spaces.

~objectfilen The full pathname or partial pathname (including the filename) of a
component file to be removed from the library and written out as an object
file. If you include a prefix in this pathname, the object file is written to
that prefix. You can specify as many files to be written out as object files as
you wish. Separate filenames with spaces.

A CPW library file (ProDOS 16 filetype $B2) consists of one or more component files,
each containing one or more segments. Each library file contains a library-dictionary
segment that the linker uses to find the segments it needs. Library files can be searched
faster than object files by the CPW Linker, It is easier for the linker to resolve references
between object files when those files are incorporated into the same library file.

MAKELIB creates a library file from any number of object files. In addition to indicating
where in the library file each segment is located, the library-dictionary segment indicates
which object file each segment came from. The MAKELIB utility can use that information
to remove any component files you specify from a library file; it can even recreate the
original object file by extracting the segments that made up that file and writing them out as
an object file. Use the ~F and ~D parameters to list the contents of an existing library file.

Note: The MAKELIB command is for use only with CPW object-module-format
(OMF) library files used by the linker. For information on the creation and use of
libraries used by language compilers, consult the manuals that came with those

compilers.
- To create an OMF library file using the CPW Assembler, use the following procedure:

1. Write one or more source files in which each library subroutine is a separate
segment.

2. Assemble the programs, specifying a unique name for each program with the KEEP
paramneter in the ASSEMBLE command. Each multi-segment program is saved as
two object files, one with the extension .ROOT, and one with the extension . A.

Beta Draft 4-38 8120186

Cortland Programmer’'s Workshop Chapter 4. Shell

3. Run the MAKELIB utility, specifying each object file to be included in the library
file. For example, if you assembled two files, creating the object files
LIBOBJ1.ROOT, LIBOBJ1.A, LIBOBJ2 .ROOT, LIBOBJ2 .A, and your library
file is named LIBFILE, then your command line should be as follows:

MAKELIB LIBFILE +LIBOBJ1.ROOT +LIBOBJ1.A +LIBOBJ2.ROOT +LIBOBJ2.A

4. Place the new library file in the LIBRARIES/ subdirectory. (You can accomplish

this in step 3 by specifying /CPW/LIBRARIES/LIBF ILE for the library file, or
you can use the MOVE command after the file is created.)

CPW OMF library files and library-dictionary segments are described in the section “Object
Module Format” in Chapter 9. The CPW Linker is described in Chapter 7.

MOVE
MOVE [~C] pathnamel [prefix/] [filename2]

This internal command moves a file from one directory to another; it can also be used to
rename a file.

-C If you specify —C before the first ﬁléhame, then MOVE does not prompt you
if the target filename (filename2) already exists.

pathnamel The full pathname or partial pathname (including the filename) of the file to
be moved. Wildcards may be used in this filename.

prefix The pathname or partial pathname of the directory you wish to move the file
to. If you do not include a volume or the path of a subdirectory, then the
current directory is used. Wildcards can not be used in this pathname. If
the subdirectory of filename2 is the same as that of pathnamel , then the file
is only renamed.

filename2 If you specify filename2, the file is renamed when it is moved. If you leave
this parameter out, then the file is not renamed.

If pathnamel and the target directory are on the same volume, then CPW calls ProDOS 16
to move the directory entry (and rename the file, if filename?2 is specified). If the source
and destination are on different volumes, then the file is copied; if the copy is successful,
then the original file is deleted. If filename?2 already exists and you complete the move
operation, then the old file named filename2 is deleted and replaced by the file that was
moved.

PREFIX
PREFIX [n] prefix[/]

This internal command sets any of the eight standard ProDOS 16 prefixes to a new
subdirectory.

n A number from 0 to 7, indicating the prefix to be changed. If this parameter
is omitted, O is used. This number must be preceded by one or more
spaces.

Beta Draft 4-39 8120186

Chapter 4: Shell Cortland Programmer’s Workshop

prefix The pathname or partial pathname of the subdirectory to be assigned to
prefix n.

Prefix O is the ProDOS 16 system prefix (also called the “current prefix”); all shell
commands that accept a pathname use Prefix 0 as the default prefix if you do not include a
slash (/) at the beginning of the pathname. Prefixes 1 through 5 are used for specific
purposes by CPW; see the section “Standard Prefixes” in this chapter for details. The
default settings for the prefixes are shown in Table 4.1. Use the SHOW PREFIXn
command to find out what the prefixes are currently set to.

The prefix assignments are reset to the defaults each time CPW is booted. To use a custom
set of prefix assignments every time you start CPW, put the PREF IX commands in the
LOGIN file. (The LOGIN file is an Exec file that is executed automatically at load time if it

is present. See the section “Exec Files” in this chapter for instructions on writing an Exec
file.)

PRODOS
PRODOS

This language command sets the CPW Shell default language to ProDOS 16 text. ProDOS
16 text files are standard-ASCI files with ProDOS 16 filetype $04; these files are
recognized by ProDOS 16 as text files. CPW TEXT files, on the other hand, are standard-
ASCII files with ProDOS 16 filetype $B0 and a CPW language type of TEXT. The CPW

language type is not used by ProDOS 16. See the Cortland ProDOS 16 Reference for a
discussion of ProDOS 16 filetypes.

QUIT
QUIT

This internal command terminates the CPW program and returns control to ProDOS. If
you called CPW from another program, ProDOS returns you to that program; if not,
ProDOS prompts you for the next program to load.

RENAME
RENAME pathnamel pathname2
This internal command changes the name of a file. You can also use this command to

move a file from one subdirectory to another on the same volume.

pathnamel The full pathname or partial pathname (including the filename) of the file to
be renamed or moved. If you use wildcards in the filename, the first
filename matched is used.

pathname2 The full pathname or partial pathname (including the filename) to which

pathnamel is to be changed or moved. You cannot use wildcards in the
filename. .

Beta Draft 440 8120186

Cortland Programmer’ s Workshop Chapter 4. Shell

If you specify a different subdirectory for pathname2than for pathnamel , then the file is
moved to the new directory and given the filename specified in pathname?2.

Important: The subdirectories specified in pathnamel and pathname2must be on

the same volume. To rename a file and move it to another volume, use the MOVE
command.

RUN

RUN ([+L|-L]) [+S|=S)sourcefile [KEEP=outfile]
[NAMES= (segl [,seg2[,..]11)] [languagel= (option ...)
[language2= (option ...) ...]]

This internal command compiles (or assembles), links, and runs a source file. Its function
is identical to that of the ASMLG command. See the ASML command for a description of
the parameters. See your compiler or assembler manual for the default values of the
parameters and the language-specific options available.

SHOW b
SHOW LANGUAGE| LANGUAGES| PREFIX n| TIME| UNITS

This internal command provides information about the system.
LANGUAGE Shows the current system-default language.

LANGUAGES Shows a list of all languages defined in the language table, including
their language numbers.

PREFIX n Shows the current subdirectory to which PREFIX n is set, where nis a
number from 0 to 7. If you omit », then PREFIX 0 is shown. Note that
there is a space between PREFIX and n. See the section “Standard
Prefixes” in this chapter for a discussion of CPW prefixes.

TIME Shows the current time.

UNITS Shows the available units, including device numbers and volume names.

More than one parameter can be entered on the command line; to do so, separate the
parameters by one or more spaces.

SWITCH
SWITCH pathnamel pathname2

This internal command interchanges two filenames in a directory.

pathnamel The full pathname or partial pathname (including the filename) of the first
filename to be moved. If you use wildcards in the filename, the first
filename matched is used.

Beta Draft _ 441 8120186

Chapter 4: Shell Cortland Programmer’s Workshop

pathname2 The full pathname or partial pathname (including the filename) to be
switched with pathnamel . The prefix in pathname2 must be the same as
the prefix in pariname2.You cannot use wildcards in this filename.

For example, suppose the directory listing for /CPW/MYPROGS/ is as follows:

/CPW/MYPROGS/=

Name Type Blocks Modified Created Access Subtype
C.SOURCE SRC 5 26 MAR 86 07:43 29 FEB 86 12:34 DNBWR c
COMMAND ,FILE SRC 1 9 APR 86 19:22 31 MAR 86 04 22 DNBWR EXE
ABS,OBJECT OBJ 8 12 NOV 86 15:02 4 MAR 86 14:17 NBWR

To reverse the positions in the directory of the last two files, use the following command:
SWITCH /CPW/MYPROGS/COMMAND.FILE /CPW/MYPROGS/ABS.OBJECT

Now if you list the direcatory again, it looks like this:

/CPW/MYPROGS/=

Name Type Blocks Modified Created Access Subtype
C.SOURCE SRC 5 26 MAR 86 07:43 29 FEB 86 12:34 DNBWR c
ABS,OBJECT OBJ 8 12 NOV 86 15:02 4 MAR 86 14:17 NBWR
COMMAND.FILE SRC 1 9 APR 86 19:22 31 MAR 86 04 22 DNBWR EXE

You can alphabetize ProDOS 16 directories with the COMPRESS command, and list

directories with the CATLOG command. This command works only on ProDOS 16
directories, not on other file systems such as DOS or Pascal.

TEXT

TEXT

This language command sets the CPW Shell default language to CPW TEXT. CPW text
files are standard-ASCII files with ProDOS 16 filetype $B0 and a CPW language type of
TEXT. The CPW language type is not used by ProDOS 16.

Use the PRODOS command to set the language type to ProDOS 16 text; that is, standard-
ASCII files with ProDOS 16 filetype $04. PRODOS text files are recognized by ProDOS

16 as text files. See the Cortland ProDOS 16 Technical Reference manual for a discussion
of ProDOS 16 filetypes.

TYPE

TYPE (+N] pathnamel [startlinel [endlinel]]
[pathname2 [startline2 [endline2]]...]

This internal command prints one or more text or source files to standard output (usually
the screen).

Beta Draft 442 - 8120186

Cortland Programmer's Workshop Chapter 4. Shell

+N This option causes CPW to precede each line with a line number.

pathnamen The full pathname or partial pathname (including the filename) of the file to
be printed. You can use wildcards in this filename, in which case every text
or source file matching the wildcard filename specification is printed. You
can specify more than one pathname in the command; separate pathnames
with spaces. '

startlinen The line number of the first line of this file to be printed. If this parameter is
omitted, then the entire file is printed.

endlinen The line number of the last line of this file to be printed. If this parameter is
omitted, then the file is printed from startline to the end of the file.

CPW text files, ProDOS 16 text files, and CPW source files can be printed with the TYPE
command. To redirect output to a printer or file, use output redirection as described in the
section “Redirecting Input and Output” in this chapter.

Exec Files

You can execute one or more CPW Shell commands from a command file. To (ceate a
command file, set the system language to EXEC by typing EXEC Return, and open a new
file with the editor. Any of the commands described in this chapter can be included in an
Exec file. The commands are executed in sequence, as if you had typed them from the
keyboard. To execute an Exec file, type the full pathname or partial pathname (including
the filename) of the Exec file and press RETURN.

You can anticipate command prompts and include responses to them. For example, you
could use the following Exec file, called NEWCOPY, to make a copy named NEWTEST of
the file TEST on the current directory:

COPY
TEST

N
NEWTEST

When you execute this Exec file by typing NEWCOPY and pressing RETURN, the
following sequence appears on the screen:

NEWCOPY

COPY
File Name: TEST

File Exists. Replace it? N
New File Name: NEWTEST

CPW then copies the file TEST to the filename NEWTEST on the current directory.
If you execute an interactive utility, such as the CPW Editor, from an Exec file, the utility

operates normally, accepting input from the keyboard. If the utility name was not the last
command in the Exec file, then you are returned to the Exec file when you quit the utility.

Beta Draft 443 ' 8120186

Chapter 4: Shell A Cortland Programmer’s Workshop

Exec files are programmable; that is, CPW includes several commands designed to be used
within Exec files that permit conditional execution and branching. You can also pass
parameters into Exec files by including them on the command line. These features are
described in the following sections.

Exec files can call other Exec files. The level to which Exec files can be nested and the
number of variables that can be defined at each level depend on the available memory.

You can put more than one command on a single line of an Exec files; to do so, separate the

commands with semicolons (;). For example, the Exec file shown above could be written
as follows:

COPY;TEST; N;NEWTEST

Passing Parameters Into Exec Files

When you execute an Exec file, you can include the values of as many parameters as you
wish by listing them after the EXEC pathname on the command line. Separate the
parameters with spaces or tab characters; to specify a parameter value that has embedded
spaces or tabs, enclose the value in single or double quotes. Quote marks embedded in a
parameter string must be doubled.

For example, suppose you want to execute an Exec file named FARM, and you want to pass
the following parameters to the file:

* cow
¢« chicken
* one egg

* tom's cat
In this case, you would enter the following command on the command line:
FARM cow chicken 'one egg' 'tom''s cat'

Parameters are assigned to variables inside the Exec file as described in the next section.

Programming Exec Files

In addition to being able to execute any of the shell commands discussed in the Command
Descriptions section of this chapter, Exec files can use several special commands that
permit conditional execution and branching. This section discusses the use of variables in

Exec files, the logic operators used to form Boolean (logical) expressions, and the EXEC
command language.

Variables

Any alphanumeric string up to eight characters long can be used as a'variable name in an
Exec file. (If you use more than eight characters, only the first eight are significant.) All

Beta Draft . 4 8120186

N

Cortland Programmer’s Workshop Chapter 4. Shell

variable values and parameters are ASCII strings of 256 or fewer characters. Variable
names are not case sensitive, but the values assigned to the variables are case sensitive. To
define values for variables, you can pass them into the Exec file as parameters, or include
them in a FOR command or a SET command as described in the section “Conditional-
Execution Commands.” To assign a null value to a variable (a string of zero length), use
the UNSET command. Variable names are always enclosed in curly brackets ({ }), except
when being defined in the SET, UNSET and FOR commands.

Variables can be defined within an Exec file, or on a shell command line before the Exec
file is executed, by using the SET command. Variables included in an EXPORT command
on a shell command line can be used within any Exec file. Variables included in an
EXPORT command within an Exec file are valid in any Exec files called by that file; they
can be redefined locally, however. Variables redefined within an Exec file revert to their
original values when that Exec file is terminated.

Note: Several of these variables may have the values 0 or 1; keep in mind that
these values are literal ASCII strings. A null value (a string of zero length) is
considered undefined; that is, neither O nor 1.

The following variable names are reserved:
{0} The name of the Exec file being executed.

{(1},{2}, .. Parameters from the command line. Parameters are numbered
sequentially in the sequence in which they are entered.

{#} The number of parameters passed.

{CaseSensitive)} If you set this variable to (the ASCII character) 0, or null
(undefined), then string comparisons are not case sensitive. If you
set this variable to any other value, then string comparisons are case
sensitive. The default value is null.

{Command} The last command executed; if the command was a filename (as for a
CPW utility), then Command is a full **¥*??or partial??***
pathname. ***are command parameters included?***

{Echo} If you set this variable to a non-null value, then commands within
the Exec file are printed to the screen before being executed. The
default value for Echo is null (undefined).

{Exit} If you set this variable to a non-null value, and if any command or
nested Exec file returns a non-zero error status, then execution of the
. Exec file is terminated. The default value for Exit is (the ASCII
character) 1. Use the UNSET command to set Exit to a null value
(that is, to delete its definition).

{FileType} A hexadecimal number (represented as an ASCII string)
corresponding to a load filetype. If FileType is undefined or set
to a nonvalid filetype, then $B5 (shell load file) is used. The most
common alternative is $B3 (system load file). Valid load filetypes
are $B3-$BE.

{PrinterColumns} An ASCII number indicating the number of characters on a
line. The printer driver assumes a new line has begun each time
PrinterColumns+] characters have been printed since the last

Beta Draft 445 8120186

Chaprer 4: Shell

{PrinterInit}

Cortland Programmer’'s Workshop

carriage return. The printer driver uses this parameter to count lines
on a page in the case that your printer automatically inserts a carriage
return—line feed to wrap lines that are too long. If your printer stops
printing at the end of the line, or returns to the start of the line and
overprints the line, then set PrinterColumns to O and the printer
driver will count a new line only when a carriage return is sent.

The initialization string to be sent to your printer each time you send
text to the printer. Use this string to set the printer options you want
to use, such as character pitch, print quality, line spacing, or
boldfacing. Precede a character with a caret (*) to indicate a control
character. A space is interpreted as a space character, $20.

Caution: the shell does no error checking on the initialization
string; if you specify an illegal control character, the shell
subtracts $40 from the character and sends it to the printer
anyway. For example, if you specify ~g, the shell sends $27
to the printer.

The following command sends the string “Control-L Esc a 2 to
the printer (for an Apple ImageWriter II printer, this string feeds the
paper to the next top-of-form position and sets the printer to near-
letter-quality mode):

SET PRINTERINIT ~L*{a2

See the manual that came with your printer for the options available
and the codes necessary to set them.

{PrinterLineFeed} If this variable is not defined, then no line feed character

($0A) is inserted after a carriage return ($0D). If this variable is
non-null, the printer driver automatically inserts a line feed after
every carriage return. If no line feed is added when one is needed,
the printer overprints every line of text without advancing the paper.
If a line feed is added when one is not needed, the lines are double
spaced.

{PrinterLines} An ASCII number indicating the number of lines to be sent to the

printer before a form-feed character ($0C) is sent. If
PrinterLines = 0, then no form-feed characters are sent.

{PrinterSlot} The number of the slot containing your printer-driver PC board; an

{Status}

Logic Operators

ASCH number from 0-7. The default value for PrinterSlot is
1.

The error status returned by the last command or Exec file executed.
This variable is the ASCII character 0 ($30) if the command
completed successfully. For most commands, if an error occurred,
the error value returned by the command is the ASCII string 255.

CPW includes two operators that you can use to form Boolean (logical) expressions.
String comparisons are case sensitive if {CaseSensitive} is (the ASCII character) 1
(or any value other than 0 or null). If an expression result is true, then the expression

Beta Draft

446 8120186

Cortland Programmer’'s Workshop Chapter 4: Shell

returns the character 1. If an expression result is not true, then the expression returns the
character 0. There must be one or more spaces before and after the comparison operator.

str] ==str2 String comparison: true if string st/ and string s#r2 are identical;
false if not.

strl 1=str2 String comparison: false if string st7/ and string s#72 are identical;
true if not.

Operations can be grouped with parentheses. For example, the following expression is
true if one of the expressions in parentheses is false and one is true; the expression is false
if both expressions in parentheses are true or if both are false:

IF (COWS == KINE) != (CATS == DOGS)

Important: Every symbol or string in a logical expression must be separated from
every other by at least one space. In the preceding expression, for example, there is
a space beween the string comparison operator ! = and the left parenthesis, and
another space between the left parenthesis and the string CATS.

Comments

To enter a comment into an Exec file, start the line with the number-sign character (#). For
example, the following Exec file sends a catalog listing to the printer:

CATALOG >.PRINTER
#Send a catalog listing to the printer

Use a semicolon followed by the number-sign character to put a comment on the same line
as a command:

CATALOG >.PRINTER ;#Send a catalog listing to the printer

Exec-File Commands

The commands described in this section can be used in Exec files to control conditional
execution and branching, and to assign values to variables.
The following notation is used to describe commands:

UPPERCASE Uppercase letters indicate a command name or an option that must
be spelled exactly as shown. The CPW Shell is not case sensitive;
that 1s, you can enter commands in any combination of uppercase
and lowercase letters..

italics Italics indicate a variable, such as a filename or address.
[] Parameters enclosed in square brackets are optional.

Elipses indicate that a parameter or sequence of parameters can be
repeated as many times as you wish.

Beta Draft 447 8/20/86

Chapter 4: Shell Cortland Programmer’s Workshop

. Vertical elipses indicate that any number of shell commands can be
. inserted between the two commands shown.

Break

BREAK

This command terminates the innermost FOR, LOOP, or IF statement currently executing.
For example, if an IF statementis executing inside a FOR loop and a BREAK statement is
encountered, then control passes to the statement following the next END statement. A
BREAK statement must be used to terminate a LOOP loop.

Continue
CONTINUE

This command causes control to skip over following statements to the next END statement.
It does not cause termination of the loop (unless the last value of value has been used).

Echo
ECHO string

This command lets you write messages to the screen.

string The string that you wish to print to the screen. All characters starting with
the first non-space character after the ECHO command to the end of the line
are printed to the screen. If you include variables in the string, they are

expanded (that is, their current value is substituted) before they are printed
to the screen.

Execute
EXECUTE pathname [paramlist]

This command executes an Exec file, treating the variables defined in the file as if they were
defined in the Exec file that contains the EXECUTE command. If this command is executed
from the CPW Shell command line, then the variables defined in the Exec file are treated as
if they were defined on the command line.

pathname The full or partial pathname of an Exec file. ***can this filename
include wildcards?***

paramiist The list of parameters being sent to the Exec file.

Normally, variables defined within an Exec file or passed into that Exec file as parameters

are local to that file. If you use the EXECUTE command, however, then variables defined
in or passed to an Exec file are valid in the Exec file that called that file. If you use an
EXECUTE command on the shell command line to execute an Exec file, then the variables

Beta Draft 448 8120186

Cortland Programmer's Workshop Chapter 4: Shell

defined in that Exec file are global; they are valid in any Exec file. For example, suppose
you write an Exec file called SETUP that contains the following lines:

SET ECHO ON
SET PRINTERSLOT {1}

You can excute this Exec file from the command line with the following command:
SETUP 2

In this case, the variable ECHO is set on and PRINTERSLOT is set to 2 (the value passed
as a command-line parameter) only while the Exec file is executing. When the Exec file
finishes, ECHO and PRINTERSLOT return to their default values. To make the values of

ECHO and PRINTERSLOT remain valid after the file SETUP has finished excuting, use the
following command: ’

EXECUTE SETUP 2

Note: When the CPW Shell finds an Exec file named LOGIN in the CPW system
prefix during system load, the shell treats the variables defined in LOGIN as if they,
were typed from a shell command line. To reexecute LOGIN without reloading
CPW (to reset system parameters to your selected defaults, for example), use the
command EXECUTE LOGIN.***Is that true?***

Exit
EXIT [number)

This command terminates execution of the Exec file.

number ~ This parameter is the error status with which the Exec file terminates. If
you specify a value for number, and the Exec file was executed from
another Exec file, then the predefined variable {status}==number . This
parameter is useful only for nested Exec files, and allows you to terminate
an Exec file if an Exec file it called terminated with an error.

Export
EXPORT (variable ...]

This command makes the listed variables available to Exec files called by the current exec
file. ***Can more than one variable be listed, as in MPW, or not?***

variable The names of variables you wish to make available to enclosed Exec files.
Variable names are not case sensitive, and only the first eight characters are
significant. If you omit variable, then a list of all exported variables (for the
current Exec file) is written to standard output.

Variables included in an EXPORT statement in a shell command line can be used within any

Exec file. Variables included in an EXPORT statement in an Exec file can be used in any
Exec file called by that file (and are passed on to any Exec files enclosed at lower levels);

Beta Draft 449 8720156

Chapter4: Shell Cortland Programmer’s Workshop

they do not affect the values of variables in an Exec file that called that file. Variables
defined within an Exec file and not exported are local to that file. Variables exported and
redefined within an enclosed Exec file revert to their original values when the enclosed
Exec file is terminated.

Variables included in an EXPORT statement in the LOGIN file are exported to the shell
command level.

For—End

FOR variable [IN valuel value2 ...]

END

This command sequence creates a loop that is executed once for each parameter-value
listed.

variable The name of the variable whose value changes each pass through the loop.
If variable has not been previously defined, this statement defines it.

IN valuel value2 ... Each value or string listed after the optional parameter IN is
assigned to variable for one pass through the loop. That is, the first time
through the loop {variable } ==valuel; the second time through the loop
{variable}==value2; and so forth. The values of value must be separated
by one or more spaces.

If IN is omitted, then the parameters listed after the Exec-file pathname
(when the Exec file is called) are used. The Exec-file pathname itself
(parameter 0) is not used as a value for variable.

END Each of the statements between the FOR statement and the END statement is
executed once for each value of value (or for each parameter, if IN is not

used). If variable appears in any of these statements, it takes on the current
value of value.

For example, the following Exec file, named ERASE, would delete from a directory all files
that ended in the extensions .QOLD, .BAK, and . TEST (note that the equal sign used here is
a wildcard in the DELETE command, not an Exec-file logic operator):

ERASE

FOR EXT IN OLD BAK TEST
DELETE =, (EXT}

END

The same result could be obtained by including the extensions as parameters on the
command line, and omitting them from the FOR command:

ERASE OLD BAK TEST

Beta Draft 4-50 8/20/86

Cortland Programmer’s Workshop Chapter 4: Shell

FOR EXT
DELETE =. {EXT}
END

If—Else If—Else—End

IF expression

(ELSE IF expression)

END

This command sequence provides conditional branching in Exec files. The expressions are
tested until one evaluates as true, then the statements between that IF or ELSE IF and the
following ELSE IF, ELSE, or END statement are executed. All other statements between
the IF and END statements are skipped. If none of the expressions evaluate as true, and if

an ELSE statement is included, then the statements between the ELSE and the END
statement are executed.

expression Any expression formed with one of the logical operators discussed in the
previous section.

Loop—End

LOOP

.
*

END

This command sequence defines a loop that repeats continuously until a BREAK command
is encountered.

Set
SET [variable {value])
This command allows you to assign a value to a variable name. You can also use this

command to obtain the value of a variable or a list of all defined variables.

variable The variable name you wish to assign a value to. Variable names are not
case sensitive, and only the first eight characters are significant. If you omit
variable, then a list of all defined names and their values is written to
standard output. -

Beta Draft 4-51 8120186

Chapter 4. Shell Cortland Programmer’'s Workshop

value The string that you wish to assign to variable. Values are case sensitive and
are limited to 256 characters. All characters, including spaces, starting with
the first non-space character after variable to the end of the line, are included
in value. Ifyou include variablebut omit value, then the current value of
variable is written to standard output.

The SET command can be used on a shell command line or in an Exec file. Use the
EXPORT command to make a variable available to an enclosed Exec file. Variables defined
within an Exec file and not exported are local to that file. Use the EXECUTE command to
make variables defined in an Exec file available to the file (or the shell command level) that
called that file. Use the UNSET command to delete the definition of a variable.

Important: Certain variable names are reserved; see the subsection “Variables” in
this section for a list of reserved variable names.

Unset
UNSET variable

This command deletes the definition of a variable.

varigble The name of the variable you wish to delete. Variable names are not case
sensitive, and only the first eight characters are significant.

Use the SET command to define a variable. Variables defined within an Exec file and not
exported are local to that file. Variables exported and then deleted within an enclosed Exec
file revert to their original values when the enclosed Exec file is terminated. See the
EXPORT command for a discussion of exporting variables.

Example

When the following Exec file is executed, it attempts to assemble and link a source file; if
the operation is unsuccessful, then it attempts to assemble and link a different source file; if
neither program can be assembled and linked, then the Exec file writes a message to the
screen. If either file can be assembled and linked, then that program is run.

UNSET EXIT ;#Don't abort the program if

an assemble or link fails.
SET MESSAGE "No luck!" ; #Message to send if we fail.
ASML PROG1 KEEP=TEST1 ; #Attempt to assemble and link
the first program.

IF {status}==0 " J#If first prog was successful
TESTL1 ;#run the program and

EXIT ; #quit.,

ELSE ;#1f first prog failed

ASML PROGZ2 KEEP=TEST2 ; #attempt to assemble and link
the second program.

END ; #End of IF statement

IF {status}== ; #If second prog was successful
TESTZ2 ; #run the prog and

EXIT ;#quit.

ELSE ;#If both progs failed

Beta Draft 4-52 8/20/86

Cortland Programmer’s Workshop) Chapter 4: Shell

ECHO {message) ; #send message.
END ; #End of second IF statement.

Note: Equal signs (=) can have three different functions in Exec files: 1) As a
wildcard character in a filename; 2) As part of a CPW command parameter (for
example, KEEP=TEST); 3) In the string-comparison operators == and !=.

LOGIN Files

Each time you start CPW, it looks.for an Exec file named LOGIN on the CPW/SYSTEM/
prefix. If it finds such a file, CPW executes it before doing anything else. You can use
LOGIN to set system variables such as PRINTERSLOT, to change default prefix
assignments, or even to execute a utility program. Any CPW command described in this
chapter can be used in a LOGIN file. Any system variables set in a LOGIN file must be
included in an EXPORT command to be exported to the shell command level. To reexecute
LOGIN without reloading CPW (to reset system parameters to your selected defaults, for
example), use the command EXECUTE LOGIN.***]s that true?***

Beta Draft ‘ 4-53 8120186

SNIDE COMMENTS

Cortland Programmer's Workshop ’ Chapter 5. Editor

Chapter S

Editor

The CPW Editor allows you to write and edit source and text files for use with CPW
assemblers, compilers, and utility programs. A brief introduction to the use of the editor is
given in the section “Using the Editor” in Chapter 2. This chapter provides reference
material on the editor: in this chapter, all keyboard-based editing commands are described
in detail.

The first section in this chapter, “Modes,” describes the different modes in which the editor
can operate. The second section, “Macros,” describes how to create and use editor macros,
which allow you to execute a string of editor commands with a single keystroke. The third
section, “Commands,” describes each editor command and gives the key or key
combination assigned to the command. The fourth section, “Setting Editor Defaults,”
describes how to set the defaults for editor modes and tab settings for each language.

Modes

The behavior of the CPW Editor depends on the settings of several modes, as follows:
+ Insert
« Escape
+ Auto Indent
+ Text Selection
» Word Wrap

Each of these modes has two possible states; you can toggle between the states while in the
editor. All of these modes are described in this section. The commands for toggling
modes are described in the section “Command Descriptions” in this chapter; for example, to
learn how to toggle wrap mode, look up “Toggle Wrap Mode.”

Insert

When you first start the editor, it is in overstrike mode; in this mode the characters you type
replace any characters the cursor is on. The overstrike-mode cursor is a blinking block
alternating with the character it is on. In insert mode, the cursor becomes a vertical bar that
1s located between two character positions; any characters you type are inserted at the
cursor location, and any characters to the right of the cursor are moved to the right.

The maximum length of a line in the CPW Editor is 255 characters (including spaces).

(The editor displays only the first 80 characters of the line.) If you continue to insert
characters in a line after the line is 255 characters long, the new characters overstrike the

Bera Draft 5-1 ‘ 8120186

Chapter 5: Editor Cortland Programmer’s Workshop

old characters in the line. If the editor is both in insert and automatic-wrap modes, then
when the characters being inserted reach the end-of-line marker (usually at column 80, see
the section “Setting Editor Defaults” in this chapter), the editor inserts a carriage return
before the word you are currently typing. The result is that the word that included column
80 and all remaining characters on the line (up to the 255th character) are moved to the next
line down. See the section “Automatic Wrap” in this chapter for an example.

Escape

When you press the [ESC! key, the editor enters escape mode. Escape mode has several
special features:

o Every letter key executes a command. If no other command is defined for a key,
pressing the key terminates escape mode and returns you to text-entry mode. You
cannot enter text while in escape mode.

¢ You can cause a command to be repeated automatically up to 32767 times while in
escape mode by typing the number of repetitions after you press [ESC| and before you
execute the command. For example, if the editor is programmed so that the sequence
IESC! Y deletes a line of text, then to delete 10 lines of text (starting with the line the
cursor is on), type [ESC! 10 Y. Ifitis impossible for the editor to repeat the
command as many times as you specify, it repeats it the maximum number of times
possible. For example, if you type [ESCl 50 E to move the cursor up 50 lines when
it is only 10 lines from the top of the file, it moves up 10 lines and stops.

» In escape mode, the cursor is a plus sign (+) alternating with the character the cursor
is on.

« To exit escape mode, press [ESCI, or press any letter not defined as an escape-mode
command.

Auto Indent

You can set the editor so that [RETURNI moves the cursor to the first column of the next
line, or so that it follows indentations already set in the text. If the editor is set to put the
cursor on column 1 when you press [IRETURNI, then changing this mode causes the editor to
put the cursor on the first nonspace character in the next line; if the line is blank, then the
cursor is placed under the first nonspace character in the first nonblank line above the
cursor.

Select Text

The Cut, Copy, and Delete commands require that you first select a block of text. The
CPW Editor has two modes for selecting text: line-oriented and character-oriented selects.
As you move the cursor in line-oriented select mode, text or code is marked a line at a time.
In the character-oriented select mode, you can start and end the marked block at any
character. Line-oriented select mode is the default for assembly language; for text files and
most high-level languages, character-oriented select mode is the default.

While in either select mode, the following cursor-movement commands are active:
 bottom of screen

Beta Draft 52 ' 8120186

Cortland Programmer’s Workshop » Chapter 5: Editor

» top of screen
» cursor down
e CUrSOr up

e start of line

¢ SCreen moves

In addition, while in character-oriented select mode, the following cursor-movement
commands are active:

» cursor left
e cursor right
¢ end of line
e tab

o tableft

o word right
» word left

As you move the cursor, the text between the original cursor position and the final cursor
position is marked (in inverse characters). Press [RETURNI to complete the selection of text.

Automatic Wrap

For line-oriented computer languages like Assembly language, each program statement
must fit on one line; for such languages, you may not want the editor to automatically break
a line of text and keep entering text on the next line. For other languages and for text files,
it is better if the editor automatically inserts a carriage return, moves the cursor to the next
line down, and continues entering text when you reach the end of the line. You can set the
CPW Editor to either mode of operation.

In non-wrap mode, when you reach the end-of-line mark (usually at column 80—see the
section “Setting Editor Defaults” in this chapter), any additional characters you type
overwrite the last characater on the line. In automatic-wrap mode, when you type one
character too many to fit on the line, the entire word that that character is part of is wrapped
to the next line. For example, suppose you are typing the word pneumatolysis, and
the letter ¢ falls on column 80. In non-wrap mode, the additional characters overwrite the
last character on the line, and the line ends with pneumas; in automatic-wrap mode, the
entire word pneumatolysis is moved to the beginning of the next line.

Note: The CPW Editor does not have “soft” carriage returns; that is, once a line is
broken by the automatic wrap feature, there is a permanent carriage return at the end
of the line. If you delete characters on the first line, the continuation line does nor
move back up to maintain the length of the first line. To remove the carriage return
you must enter insert mode, then move the cursor to the beginning of the second
line and execute a Delete Character Left command.

If the editor is both in insert and automatic-wrap modes, then when the characters being
inserted reach the end of the line (usually column 80, see the section “Setting Editor

Beta Draft 5-3 8120186

Chapter 5. Editor Cortland Programmer’s Workshop

Defaults” in this chapter), the editor inserts a carriage return before the word you are
currently typing. The result is that the word that included column 80 and all remaining
characters on the line (up to the 255th character) are moved to the next line down. For
example, suppose you begin inserting characters in the following line (the last 20 characters
of the line are shown, with column numbers included for clarity). (The editor displays
only the first 80 characters on the line; additional columns are shown in the following
illustrations for clarity.)

0000000001111111111222222222233333333334444444444555555555566666666667777777777888
1234567890123456789012345678901234567890123456789012345678901234567890123456789012

tated earlier, the minerals in thils specimen appear to have pneumatolysis.

Now, with insert and automatic-wrap modes active, you begin to type characters in column
60:

22222222223333333333444444444455555555556666666666777777777788888888889999999999
01234567890123456789012345678901234567890123456789012345678901234567890123456789

inerals in this specimen appear to have formed as a result of pneumatolysis.

The fin of (the last character of the newly-inserted text) has reached column 80, and the
line wraps as follows:

0000000001111111111222222222233333333334444444444555555555566666666667777777777888
1234567890123456785%012345678901234567890123456789012345678901234567890123456789012

ated earlier, the minerals in this specimen appear to have formed as a result
of pneumatolysis.

The effect of inserting characters is the same whether you type them in or paste them in.
The Insert Space command, on the other hand, can extend a line past the end-of-line
marker.

Macros

You can define up to 16 ***I’m assuming all keypad keys, not just numbers,
can be used*** macros for the CPW Editor; a macro allows you to substitute a single
keystroke for up to 128 predefined keystrokes. The macro can contain text, editor
commands, and (by including shell [ENTER|) commands.

To create a macro, press G-[ESCl. The current macro definitions appear on the screen. To
replace a definition, press the key on the numeric keypad that corresponds to that macro,
then type in the new macro definition. Press |QPTIONI-[ESC| to terminate the macro
definition. You can include |CTRLI-key combinations, 3-key combinations, |OPTION|-key

combinations, and the [RETURN], |ENTER], [ESC!, and arrow keys. The following
conventions are used to display keystrokes in macros:

ICTRLI-key The uppercase character key is shown in inverse.
G—key - An open apple followed by key (for example, 3K)
[OPTION|-key The extended-ASCII character corresponding to that key.

IOPTIONI-keypad key A closed apple followed by keypad key (for example, 8)

Beta Draft 54 8120186

Cortland Programmer’ s Workshop Chapter 5: Editor

IESC! Control-[; an inverse left bracket.
IRETURNI Control-M; an inverse M.
IENTER| Control-J; an inverse J.

T Aninverse K. up arrow (T7?)

l Aninverse J. down arrow ({7?)
- An inverse H. left arrow («77)
- An inverse U. right arrow (—77)

IDELETEI A block (®).

Note: Each G-key combination or |QPTIONI-key combination counts as two
keystrokes in a macro definition.

When you are finished entering macros, press |OPTIONI-IESC] to terminate the last option
definition, then press |OPTIONI to end macro entry. The following prompt appears on the
screen:

Write macros to disk?

Type Y and press [IRETURNI to save the new macro definitions on disk. Type N and press
IRETURNI to return to the file without saving the macros. Macros are saved on disk in the

file SYSEMAC in the CPW system subdirectory (usually /CPW/SYSTEM/; see the section
“Standard Prefixes” in Chapter 4).

To execute a macro, hold down JOPTIONI and press the keypad key corresponding to that
macro. For example, assume you assign the following keystroke sequences to the 7, 2,
and 3 keys on the keypad:

1: [BEQ, ——mem e e o
2: [BIG,
3: $1€2€26262613, J—

When you press |OPTIONI-1 (using the I on the keypad), the editor enters escape mode,
inserts a blank line (above the line the cursor was on), exits escape mode, moves the cursor
to the beginning of the line, and inserts a space followed by a string of hyphens.

When you press |OPTIONI-2, the editor inserts a blank line, moves the cursor to the
beginning of the line, then inserts a vertical bar, a row of spaces, and another vertical bar.
When you press [QOPTIONI-3, the following sequence occurs:

1. The editor calls macro 1, which inserts a blank line in the file, moving the line the
cursor was on and all subsequent lines down to make room, then puts a space in
column 1 followed by a string of hyphens '

Beta Draft : 5-5 8120186

Chapter 5: Editor Cortland Programmer’s Workshop

2. The editor calls macro 2 four times in a row. Each time macro 2 is executed, the last
line written is pushed down out of the way and a new line is written consisting of
two vertical bars separated by a string of spaces.

3. The editor calls macro 1 again, which inserts another blank line at the top of the four
lines just written, then writes another string of hyphens.

4. The cursor moves down one line and right one column, to the first blank space in the
box just created (see Figure 5.1).

The output of macro 3 looks like this:

D D W DY D S A e) e e e) AT D D WS ch D e D e e D W D i e wa T m w emy

Figure 5.1. Output of an Editor Macro

The cursor is at the upper left comner of the box that the macro drew on the screen.

Command Descriptions

This section describes the functions that can be performied with editor commands. The key
assignments for each command are shown with the command description. See Appendix A
for a summary of all the default command-key assignments,

Note: Screen-movement descriptions in this manual are based on the direction the

display screen moves through the file, not the direction the lines appear to move on

the screen. For example, if a command description says that the screen scrolls

down one ling, it means that the lines on the screen move up one line, and the next
line in the file becomes the bottom line on the screen.

Beep the Speaker

ICTRLI-G

The ASCII control character BEL ($07) is sent to the output device. Normally, this causes
the speaker to beep.

Bottom of Screen

ICTRLI-B

The cursor moves to the first column in the last line on.the screen.

Beta Draft 56 8120186

Cortland Programmer’s Workshop Chapter 5. Editor

Bottom of Screen / Page Down

ICTRLI-G-J
S-4

The cursor moves to the last visible line on the screen, preserving the cursor’s horizontal
position. If the cursor is already at the bottom of the screen, the screen scrolls down one
screen’s height (for example, if the screen is 22 lines high, then the screen scrolls down 22
lines).

Change

See Search and Replace.

Clear

See Delete.

Copy

ICTRLI-C
a-C

When you execute the Copy command, the editor enters select mode, as discussed in the
section “Select Text” in this chapter. Use cursor-movement or screen-scroll commands to
mark a block of text (all other commands are ignored), then press [RETURNI. The selected

text is written to the file SYSTEMP in the work prefix. (To cancel the Copy operation

without writing the block to SYSTEMP, press |[ESC! instead of RETURN.) Use the Paste
command to place the copied material at another position in the file.

Cursor Down

ICTRLI-J
)

The cursor is moved down one line, preserving its horizontal position. If it is on the last
line of the screen, the screen scrolls down one line.

Cursor Left

ICTRLI-H
&—

The cursor is moved left one column. If it is in column one, the command is ignored.

Beta Draft 5-7 8120186

Chapter 5: Editor Cortland Programmer’s Workshop

Cursor Right

ICTRLI-U
e d

The cursor is moved right one column. If it is on the end-of-line marker (usually column
80), the command is ignored.

Cursor Up

ICTRLI-K
T .

The cursor is moved up one line, preserving its horizontal position. If it is on the first line
of the screen, the screen scrolls up one line. If the cursor is on the first line of the file, the
command is ignored.

Cut

ICTRLI-X
3-X

When you execute the Cut command, the editor enters select mode, as discussed in the
section “Select Text” in this chapter. Use cursor-movement or screen-scroll commands to
mark a block of text (all other commands are ignored), then press [RETURNI. The selected
text is written to the file SYSTEMP in the work prefix, and deleted from the file. (To cancel
the Cut operation without cutting the block from the file, press [ESC! instead of RETURN.)
Use the Paste command to place the cut text at another location in the file.

Define Macros

C-lESC

The editor enters the macro-definition mode. Press |JOPTIONI-IESC] to terminate a definition,
and JOPTIONI to terminate macro-definition mode. The macro-definition process is
described in the section “Macros” in this chapter.

Delete
&-|DELETE/

When you execute the Delete command, the editor enters select mode, as discussed in the
section “Select Text” in this chapter. Use any of the cursor movement or screen-scroll
commands to mark a block of text (all other commands are ignored), then press [RETURNI.
The selected text is deleted from the file and put in the Undo buffer (see the description of
the Undo command). (To cancel the Delete operation without deleting the block from the
file, press [ESC| instead of RETURN.)

Beta Draft 58 8120186

Cortland Programmer’s Workshop Chapter 5: Editor

_ Delete Character

ICTRLI-F
a-F
[ESCI G

The character that the cursor is on is deleted and put in the Undo buffer (see the description
of the Undo command). Characters to the right of the cursor are moved one space to the
left to fill in the gap. The last column on the line is replaced by a space.

Delete Character Left

IDELETE
ICTRUI-D

The cursor is moved left one column, and a Delete Character command is executed. If the
cursor is in column one and the overstrike mode is active, no action is taken. If the cursor
is in column one and the insert mode is active, then the line the cursor is on is appended to
the line above and the cursor remains on the character it was on before the delete.

Delete Line
IESClY

The line that the cursor is on is deleted, and the following lines are moved up one line to fill
in the space. The deleted line is put in the Undo buffer (see the description of the Undo
command).

Delete to EOL

ICTRLI-Y
a-Y

The character that the cursor is on, and all those to the right of the cursor to the end of the
line, are deleted and put in the Undo buffer (see the description of the Undo command).

Delete Word
|ESC! |DELETE]

When you execute the Delete Word command, the cursor is moved to the beginning of the
word it is on, then Delete- Character commands are executed for as long as the cursor is on
a nonspace character, then for as long as the cursor is on a space. This command thus
deletes the word plus all punctuation and spaces up to the beginning of the next word. If
the cursor is on a space, that space and all following spaces are deleted, up to the start of
the next word. All deleted characters, including punctuation and spaces, are put in the
Undo buffer (see the description of the Undo command).

Beta Draft 5-9 8120186

Chapter 5: Editor Cortland Programmer’s Workshop

End of Line

G-

S->

If the last column on the line is not blank, the cursor moves to the last column. If the last
column is blank, then the cursor moves to the right of the last nonspace character in the
line. If the entire line is blank, the cursor is placed in column 1.

Find

See Search.

Help

a-7
G-/

The contents of the SYSHELP file in the system prefix appear on the screen. Press
IRETURNI or [ESC! to return to the editor. Any other key is ignored.

Insert Line

ESCIB

A blank line is inserted at the cursor position, and the lines the cursor was on and below are
scrolled down to make room. The cursor remains in the same position on the screen.
Insert Space

IESCI H

A space is inserted at the cursor position. Characters from the cursor to the end of the line
are moved right to make room. Any character in column 255 on the line is lost. The cursor
remains in the same position on the screen. Note that the Insert Space command can extend
a line past the end-of-line marker.

Paste

ICTRLI-V
a-v

The contents of the SYSTEMP file are copied to the current cursor position. If the editor is
in line-oriented select mode, the line the cursor is on and all subsequent lines are moved
down to make room for the new material. If the editor is in character-oriented select mode,
the material is copied at the cursor column.

Beta Draft 5-10 ' 820186

Cortland Programmer’s Workshop Chapter 5: Editor

Warning: If enough characters are inserted to make the line longer than 255
characters, the excess characters are lost.

Quit

ICTRUI-Q

3-Q

Exit to the editor Quit menu, which gives you the following options:

R Return control to the editor. You are returned to the same position in the file you
were at when you quit it, in the same editing mode.

S Save the file to the filename used when the editor was entered and return to the editor
menu.

N Save the file to a new filename. You are prompted for a new filename, and the file is
saved to that filename. You are returned to the editor menu.

L Load a file. You are prompted for a filename, and that file is loaded from disk. If the
filename you specify is not on the disk, a new file is opened with that name. If you
have not yet saved the changes to the file you just quit, you are asked to verify that
you want to quit it before the new file is loaded. When the file you specify is loaded,
the editor places the cursor on the first character in the file, set to edit mode (as
opposed to escape mode), and set to the default parameters in the SYSTARBS file that
correspond to the language of the file.

E Leave the editor and return to the shell. If you have not yet saved the changes to the
file you just quit, you are asked to verify that you want to quit the editor without
saving changes.

If you press [RETURN| without entering any other data in response to a prompt, the
command is aborted and control returns to the menu.

Remove Blanks

ICTRLI-R
3-R

If the cursor is on a blank line, that line and all subsequent blank lines up to the next non
blank line are removed. If the cursor is not on a blank line, the command is ignored.

Repeat Count
1 to 32767

When in escape mode, you can enter a repeat count (any number from 1 to 32767)
immediately before a command, and the command is repeated as many times as you specify

Beta Draft 5-11 8120186

Chapter 5. Edirtor Cortland Programmer’'s Workshop

(or as many times as is possible, whichever comes first). Escape mode is described in the
section “Modes” in this chapter.

Return

[RETURNI

ICTRLI-M

The [RETURN| key works in one of two ways, depending on the setting of the auto-indent
mode toggle: 1) to move the cursor to column one of the next line; or 2) to place the cursor
on the first nonspace character in the next line, or, if the line is blank, beneath the first

nonspace character in the first nonblank line on the screen above the cursor. If the cursor is
on the last line on the screen, the screen scrolls down one line.

Screen Moves
-1 to G-9

The file is divided by the editor into 8 approximately equal sections. The screen-move
commands move the file to a boundary between one of these sections. The command G-1
jumps to the first character in the file, and 3-9 jumps to the last character in the file. The
other seven G-n commands cause screen jumps to evenly spaced intermediate points in the

file.

Scroll Down One Line

[ESCI C

The editor moves down one line in the file, causing all of the lines on the screen to move up
one line. The cursor remains in the same position on the screen. Scrolling can continue
past the last line in the file.

Scroll Down One Page

ESCl X

The screen scrolls down one screen’s height (for example, if the screen is 22 lines high,
then the screen scrolls down 22 lines). Scrolling can continue past the last line in the file.
Scroll Up One Line

IESCIE

The editor moves up one line in the file, causing all of the lines on the screen to move down

one line. The cursor remains in the same position on the screen. If the first line of the file
is already displayed on the screen, the command is ignored.

Beta Draft 5-12 8120186

Cortland Programmer's Workshop Chapter 5: Editor

Scroll Up One Page
[ESCl W

The screen scrolls up one screen’s height (for example, if the screen is 22 lines high, then
the screen scrolls up 22 lines). If the top line on the screen is less than one screen’s height
from the beginning of the file, the screen scrolls to the beginning of the file.

Search Down
G-L

This command allows you to search through a file for a character or string of characters.
When you execute this command, the prompt Search string appears at the bottom of
the screen. If you have previously entered a search string, the previous string appears after
the prompt as a default. Type in the string for which you wish to search, and press Return.
Searches are not case sensitive, and include all occurrences of the string, whether it is

imbedded in a longer string or not. For example, if you search for the string NOT, any of
the following strings could be found: _

not
Note
prothonotary

The following editing commands are active when you are entering the search string:

«— cursor left

- cursor right

B-> or G-, end of line

G-< or G-, beginning of line
Delete delete character left

G-Y or Control-Y delete to end of line

G-Z or Control-Z undo delete

G-E or Control E toggle insert mode

Esc exit without saving changes
Return search for the string

When you press Return, the editor looks from the cursor position toward the end of the file
for the search string. If the string is found, the screen is moved so that the next occurrence
of the string is on the top line. The cursor is placed on the first character of the target
string. The search stops at the end of the file; to search between the current cursor location
and the beginning of the file, use the Search Up command.

If the string is not found, the following message appears on the screen:

String Not Found

Beta Draft 5-13 8120186

Chapter §: Editor Cortland Programmer’'s Workshop

Search Up
G-K

This command operates exactly like Search Down, except that the editor looks for the
search string starting at the cursor and proceeding toward the beginning of the file. The
search stops at the beginning of the file; to search between the current cursor location and
the end of the file, use the Search Down command.

Search and Replace Down
a-J

This command allows you to search through a file for a character or string of characters,
and to replace the search string with a replacement string. When you execute this
command, the prompt Search string appears at the bottom of the screen. If you have
previously entered a search string, the previous string appears after the prompt as a default.
Type in the string for which you wish to search, and press Return. Searches are not case

sensitive, and include all occurrences of the string, whether it is imbedded in a longer string
or not.

When you enter the search string and press Return, the prompt Replace string
appears at the bottom of the screen. If you have previously entered a replacement string,
the previous string appears after the prompt as a default. Enter the string with which you
want to replace the search string, and press Return. The prompt

Auto or Manual (A M Q) ? appears.

A Type 2 and press Return to cause all occurrences of the search string from
the cursor position to the end of the file to be replaced automatically. The
cursor returns to the starting point when the replacement is done.

M If you type M and press Return, then when the search string is found, it is
highlighted on the top line of the screen and the prompt
Replace (Y N Q) ? appears at the bottom of the screen. Type Y Return
to replace the string and search for the next occurrence; N Return to leave
this occurrence of the string unchanged and search for the next occurrence;
or Q Return to leave the string unchanged and terminate the search and

replace operation. When the operation is finished, the cursor returns to its
starting point.

Q Terminate the search and replace operation and return to the file you are
editing.

The following editing commands are active when you are entering text in the Find What
and Replace With boxes.

Beta Draft 5-14 8120186

A

TN

Cortland Programmer’s Workshop Chapter 5: Editor

- cursor left

- cursor right

&-> or G-, end of line

G-< or G-, beginning of line
Delete delete character left

G-Y or Control-Y delete to end of line

G-Z or Control-Z undo delete

G-E or Control E toggle insert mode

Esc exit without saving changes
Return exit and save changes

When you enter a replacement string and type A Return or M Return, the editor looks from
the cursor position toward the end of the file for the search string. The search stops at the
end of the file; to search between the current cursor location and the beginning of the file,
use the Search and Replace Up command. If the string is not found, the following
message appears on the screen:

String Not Found

Search and Replace Up
¢-H

This command operates exactly like Search and Replace Down, except that the editor looks
for the search string starting at the cursor and proceeding toward the beginning of the file.
The search stops at the beginning of the file; to search between the current cursor location
and the end of the file, use the Search and Replace Down command.

Set and Clear Tabs
[CTRLI-G-1

If there is a tab stop in the same column as the cursor, it is éleared; if there is no tab stop in
the cursor column, one is set.

Start of Line

G'a
B-<

The cursor is placed in column one of the line it is in.

Beta Draft 5-15 8120186

Chapter 5: Editor Cortland Programmer’s Workshop

The cursor is moved to the next tab stop. If there are no more tab stops, then the cursor is
moved to the end of the line. If the editor is in overstrike mode, the tab acts only as a
cursor-control command; no characters are inserted between the last character on the line
and the tab stop. If you type a character at the tab stop, however, space characters are
inserted in the file berween the last character and the new character. In insert mode, space
characters are inserted from the cursor’s starting lecation to the tab stop; any characters to
the right of the cursor are moved to the right to make room.

Tab Left

ICTRLI-A
a-A

The cursor is moved to the previous tab stop, or to the beginning of the line if there are no

more tab stops to the left of the cursor. This command does not enter any characters in the
file.

Toggle Auto Indent Mode

ICTRLI-&-M

If the editor is set to put the cursor on column 1 when you press [RETURN], it is changed to
put the cursor on the first nonspace character; if set to the first nonspace character, it is

changed to put the cursor on column 1. Auto-indent mode is described in the section
“Modes” in this chapter.

Toggle Escape Mode

[ESCI

If the editor is in the edit mode, it is put in escape mode; if it is in escape mode, it is put in
edit mode. When you are in escape mode, pressing any character not specifically assigned
to an escape-mode command returns you to edit mode. Escape and edit modes are
described in the section “Modes” in this chapter.

Toggle Insert Mode

ICTRLI-E
3-E

If insert mode is active, the editor is changed to overstrike mode. If overstrike mode is
active, the editor is changed to insert mode. Insert and overstrike modes are described in
the section “Modes” in this chapter.

Toggle Select Mode
ICTRLI-B-X

BetaDraft 5-16 8120186

Cortland Programmer’s Workshop Chapter 5: Editor

If the editor is set to select text for the Cut, Copy, and Delete commands in units of one
line, it is changed to use individual characters instead; if it is set to character-oriented
selects, it is toggled to use whole lines. See the section “Modes” in this chapter for more
information on select mode.

Toggle Wrap Mode
ICTRLI-G-W

If the editor is set to stop at the end of a line and ignore addtional characters, it is changed
to insert a carriage return after the last full word in the line and continue entering text on the
next line. If it is set to wrap lines, it is changed to stop at the end of the line. The wrap
mode is described in the section “Modes” in this chapter.

Top of Screen
ICTRLI-T

The cursor moves to the first column in the first line on the screen.

Top of Screen / Page Up

ICTRLI-G-K
a-T

The cursor moves to the first visible line on the screen, preserving the cursor’s horizontal
position. If the cursor is already at the top of the screen, the screen scrolls up one screen’s
height (for example, if the screen is 22 lines high, then the screen scrolls up 22 lines). If
the cursor is at the top of the screen and less than one screen’s height from the beginning of
the file, then the screen scrolls to the beginning of the file.

Undo Delete

ICTRLI-Z
a3-Z

The last character or block of characters deleted using the Delete, Delete Character, Delete
Character Left, Delete Line, Delete to End of Line, or Delete Word commands is inserted at

the cursor position. If the cursor has not been moved, the file is restored to its state before
the delete.

The Undo buffer functions as a stack, so multiple undos are possible. For example,
suppose you delete the errors (shown in boldface) in the following text, in the order in
which they appear (that is, first the e, then the 1, and so on):

Ite woulld appear that an appppeal to reason would not go
undanswered.

Beta Draft 5-17 820186

Chapter 5. Editor Cortland Programmer’'s Workshop

When you execute the Undo command one time, the text deleted last is restored; in this
case, an a. If you execute a second Undo command, the text deleted before that, pp, is

restored, and so on. In this example, four Undo commands in a row would put the
following text on the screen:

Apple

A maximum of 1024 characters can be stored in the undo buffer. No warning is issued if
vou delete more than 1024 characters.

Word Left

G-~

ICTRLI-GS-H

The cursor is moved to the beginning of the next nonblank sequence of characters to the left
of its current position. If there are no more words on the line, the cursor is moved to the

last word in the previous line or, if it is blank, to the last word in the first nonblank line
preceding the cursor.

Word Right

G-—>
ICTRLI-G-U

The cursor is moved to the start of the next nonblank sequence of characters to the right of
its current position. If there are no more words on the line, the cursor is moved to the first
word in the next nonblank line.

Setting Editor Defaults

When you start the CPW Editor, it reads the file named SYSTABS (located in the CPW
system prefix), which contains the default settings for tab stops, return mode, and select
mode. The SYSTABS file is an ASCII text file that you can edit with the CPW Editor.

Each language recognized by CPW is assigned a language number. The SYSTABS file has
three lines associated with each language:

1. The language number.

2. The default settings for return, select, and word-wrapping modes.

3. The default tab and end-of-line-mark settings.

CPW languages are discussed in the section “Command Types and the Command Table” in
Chapter 4; a list of CPW languages and language numbers is given in Appendix A.

The first line of each set of lines in the SYSTABS file specifies the language that the next
two lines apply to. CPW languages can have numbers from O to 32767 (decimal). The

Beta Draft 5-18 8/20/86

Cortland Programmer’s Workshop . Chapter 5: Editor

language number must start in the first column; leading zeros are permitted and are not
significant, but leading spaces are not allowed.

The second line of each set of lines in the SYSTARS file sets the defaults for various editor
modes, as follows:

1. If the first column contains a zero, pressing JRETURNI in the editor causes the cursor
to go to column one in the next line; if it’s a one, pressing [RETURNI sends the cursor
to the first nonspace character in the next line (or, if the line is blank, beneath the
first nonspace character in the first nonblank line on the screen above the cursor).

2. If the second character is zero, the editor is set to line-oriented selects; if one, it is set
to character-oriented selects.

3. 1If the third character is zero, the cursor stops when it reaches the end of a line; if
one, the editor inserts a carriage return and wraps to the next line.

4, The fourth character is reserved for future enhancements.
5. The fifth character is reserved for future enhancements.

The third line of each set of lines in the SYSTABS file sets default tab stops. There are 80
zeros and ~nes in the first line of each pair, representing the 80 columns on the screen. The
ones indicate the positions of the tab stops. A two in any column of this line sets the end of
the line. The column containing the two then replaces column 80 as the default right
margin when the editor is set to that language.

For exarnple, the following lines define the defaults for CPW Assembly Language and
CPW C: ‘

003
00000

00000000010000010000000000000000000000001000000100000001000000010000000100000002
L0
111CC

30CCC00010000000100C000010000000100000001000000010000000100000001000000010000002

If no defaults are specified for a language (that is, there are no lines in the SYSTABS file
for that language), then the editor assumes the following defaults:

¢ |RETURNI sends the cursor to column one.
» Character-oriented selects.

+ The cursor stops at the end of the line.
 There is a tab stop every eighth column.
+ The end of the line is at column 80.

Note that you can change tabs and editing modes while in the editor.

Beta Draft 5-19 8120186

Chapter 5: Editor Cortland Programmer’'s Workshop

Beta Draft 5-20 8120186

Cortland Programmer’ s Workshop Chapter 7. Linker

Chapter 7

Linker

This chapter describes the CPW Linker, including its input, output, options, and
commands.

A linker is a program that locates individual machine-language program segments, resolves
references between segments, and combines them into a complete, executable program.
The CPW Linker is independent of source-code language. It is capable of extracting
specific code segments from libraries and programs on multiple disks, and can create
segmented load files. '

The linker works with any assembler or compiler that generates files conforming to the
Cortland object module format (OMF). The linker can join separate files produced by
Cortland-compatible assemblers and compilers, and convert them into the form needed by
the System Loader for loading into the computer. Together, these three components
(assembler or compiler, linker, and loader) provide a very powerful and flexible
programming facility.

The CPW Linker can be executed from a command line with a limited number of options,
or the full power of the linker can be exploited by compiling a file of linker commands.
CPW Linker command files, called LinkEd files, are described at the end of this chapter.
Operations you can perform through LinkEd commands include the following:

+ selecting specific segments from an object file

* assigning object-file segments to specific load-file segments
+ assigning load file segments as static or dynamic

. specifying the exact order in which to search libraries

« controling the diagnostic output of the linker

Most users will never need the options provided by LinkEd; the first several sections of this
chapter describe the linker functions available through a command-line command only.

The principal tasks of a linker are to assemble the segments needed for a program and to
resolve global references. Because most Cortland code is relocatable, however, the CPW
Linker must work together with the System Loader to resolve global references. The linker
provides the relocation information necessary for the loader to relocate all references after
loading. Much of the work of the linker therefore consists of constructing tables of

information for the loader to interpret, so it may load and relocate the linker’s output
correctly.

Beta Draft 7-1 - 8120186

Chapter 7: Linker Cortland Programmer’ s Workshop

Operation of The linker

This section describes
» The formats and types of input files (object files) to the linker
e The formats and types of output files (load files) that it produces
e The sequence in which the linker searches for object files
¢ The printed output from the linker

Object Files: Input to the linker

Object files are the output from an assembler or compiler, and are the input to a linker.
Object files conform to the Cortland object module format, and can be processed by the
linker. Only object-file information specifically related to the operation of the linker is
discussed in this chapter; see Chapter 9 for more detailed information on the Cortland
object module format.

Object files (ProDOS 16 filetype $B1) contain data or program code that has been translated
(assembled or compiled) into machine language, but which may contain unresolved
references to external subroutines or data. The linker processes object files, resolves
external references, and produces load files. Load files contain all the information
necessary to relocate external references, and are ready to be loaded into the computer by
the System Loader. (The filetype of the load files the linker creates is set by the CPW
CPW Shell FileType variable; the default filetype is $B5, shell load files. To change the
filetype of a load file, use the shell FILETYPE command; to change the default ﬁletype,
use the shell SET command.)

Each object file consists of segments. Each segment is a separate entity that contains all the
information necessary to link it with other segments. A segment consists of a header
followed by a body; the header contains name, size, type, and other information about the
segment, while the body consists of sequential records, each one of which consists of
either program code or information for the linker or loader. Segments are discussed in
Chapter 1 and fully described in Chapter 9.

Library Files

Library files (ProDOS 16 filetype $B2) contain object segments useful to many programs;
the linker can search library files to resolve references unresolved within the program
source code. Library files are normally kept in the CPW library prefix (normally
/CPW/LIBRARIES/); when you call the linker with a command-line command (as
opposed to a LinkEd file), it first links the source code, then automatically searches all files
in the library prefix to resolve references.

Library files differ from object files in that library-file segments are not aligned to 512-byte
boundaries, and each library file includes a segment called the library dictionary segment
(segment-type KIND = $08). The library dictionary segment contains the names and
locations of all segments in the library file. This information allows the linker to scan the
file quickly for needed segments. Library files are created from object files by the

Beta Draft 72 8/20/86

Cortland Programmer’s Workshop Chapter 7: Linker

MAKELIB utility program (described in Chapter 4). Each library file can be created from
any number of object files.

The order of subroutines within a library file is not important. If you use more than one
library file, however, you must be sure that a subroutine in one library file does not
reference a subroutine in another library file that comes before it in the directory.

Partial Assemblies and Filename Conventions

When you assemble or compile a program, you can use a KEEP directive (or equivalent) in
the source code or the KEEP parameter in the command line to specify a filename for the
output. If you are assembling or compiling the entire program, and the program consists of
more than one segment, then the first segment to be executed when the program is run is
placed in one file, and the remaining segments are placed in a second file. If the filename
you specify is MYPROG, then the first file is named MYPROG . ROOT and the second one is
named MYPROG. A.

There are two circumstances under which a file with a higher alphabetic suffix (. B, .C,
and so on) is created:

1. If the compile involves more than one language, then the first compiler or assembler

usually creates the .ROOT and . A files, the second compiler creates the . B file, and
so on.

2. If youinclude a NAMES parameter on the command line, then a partial assembly or
compile is performed. In this case, only the segments named are compiled, and are
placed in a file with the next available alphabetic extension. Partial assemblies are
described in the section ‘“Partial Assemblies or Compiles” in Chapter 4.

Note: You can use the CRUNCH command described in Chapter 4 to combine all
the alphabetic-extension files into one . A file.

For a link controlled from the command line, the linker selects the object files to process as
follows (for a link controlled from a LinkEd file, segments are processed in the order
specified by the LinkEd commands).

1. The linker first scans the output disk for a file name with the proper extension
(MYPROG . ROOT in this example). The object segment in that file will become the
first segment in the output (load) file.

2. The linker then looks for a . A file. If it finds one, the linker looks for a . B file, and
so on, until it locates the last object file created by finding the file (with name
MYPROG) with the alphabetically highest extension.

3. Tt takes subroutines from this file in the order encountered, links them and places
them in the load file.

4. The linker then looks at the file with the next-highest extension. If it finds a
subroutine that has not yet been linked, it adds it to the load file. Any subroutines
with the same labels as already-linked subroutines are assumed to be older versions,
and are ignored.

5. The linker continues in reverse alphabetical order through the files until they all have
been searched. If there are still unresolved references, the linker assumes that they
are references to library files.

Beta Draft 7-3 8120186

Chapter 7: Linker Cortland Programmer’ s Workshop

6. The linker automatically searches the library directory for library files. Each library
file is searched in the order in which it appears in the directory. Any library segment

that corresponds to an unresolved reference is extracted, processed, and placed in the
load file.

Important: Once a library file has been searched, it is not returned to by the CPW
Linker. Therefore, a reference in a library file cannot refer to a segment in a library
file that precedes it in the directory. You can use the MAKELIB program to
combine as many object files into a single library file as you choose, however, and

there are no restrictions on segments referencing each other within a single library
file.

Once all the necessary segments have been located, the linker proceeds to a second pass
through the file. The result of pass two is a load file (ProDOS 16 type $BS unless you

have set the shell FileType variable to another value), ready for loading by the System
Loader. Load files are described in the following section.

Load Files: Output From the linker

Load files (types $B3—-$BE) are the result of the processing of object files by the linker
(and, optionally, the shell FILETYPE command). They contain segments that are ready to
be loaded into memory by the System Loader. Load files conform to a subset of the
Cortland object module format, and do not contain any unresolved symbolic references.

Both object files and load files are segmented, but a load segment may contain more than
one object segment. In CPW Assembly Language, the object-segment name is in the label
field of a START or DATA directive, and the name of the load segment to which that object
segment is to be assigned is specified in the operand field of the directive. CPW C
provides the overlay function to allow you to assign subroutines to specific load
segments. As a default, most CPW compilers assign one load-segment name (a string of
zeros) to all code segments, and another (~GLOBAL) to all global variables.

When you call the linker by using a CPW Shell command, the linker assigns object-file
segments to load-file segments based on the load-segment names. All object-file segments
with the same load-segment name are collected into a single static load segment.

The linker may produce a single load file from a single object file or from several object

files, as described in the discussions of the LINK command in Chapter 4 and LinkEd
command files in this chapter.

For a complete description of load files and the function of the System Loader, see the
section “Object Module Format” in Chapter 9 and the description of the System Loader in
the Cortland Prodos 16 Reference manual.

Bera Draft 74 8120186

Cortland Programmer’s Workshop Chapter 7: Linker

Local and Global Symbols: The linker recognizes two types of symbols:
global and local. Global symbols are universally available, meaning that any
segment may access them. Global symbols include code or data segment names
(code segments are distinct from data segments in Cortland object module format),
and (for CPW Assembly-Language programs) symbols defined in an ENTRY or
GEQU directive. Local symbols, in this context, are labels that are defined only
within individual code or data segments.

Local labels (symbols) are normally accessible only within the segment in which
they appear. However, a segment may gain access to local symbols in another data
segment by issuing a USING assembler directive.

The linker never puts local symbols in the symbol table, with the excepuon of local
labels in a data segment named in a USING directive.

The CPW Linker maintains a single symbol table for the entire link session. Two
global symbols (or local symbols in data segments) with the same name cannot
appear anywhere in the program.

Diagnostic Output

In addition to the load file itself, the linker produces diagnostic output to show what it has
done and to aid debugging. Output is sent to standard output (usually the screen). Most of
the output can be suppressed, if desired, with command-line parameters. Each of the types
of information output by the linker is described in this section.

Error Messages

Error messages list the type of error, the name of the segment, and where in the segment
the error occurred. Pass two writes errors in the same way as pass one. Appendix B gives
a full listing of error messages and their meanings. Error messages are generated during
both pass one and pass two. Error messages cannot be suppressed.

Link Map and Source Listing

As the linker processes each segment or subroutine, it writes the starting address of the
segment, the length in bytes (hexadecimal) of the segment,the segment type (static code,
static data, dynamic code, or dynamic data), and the name of the segment. If the program
is relocatable, the starting address is listed assuming the program starts at $000000. To

suppress the link map, use the ~L command-line parameter (or the LinkEd LIST OFF
command).

If you call the linker from a LinkEd file, the LinkEd source code is written to standard

output. To suppress the source listing, use the —-L. command-line parameter or the LinkEd
SOURCE OFF command. A sample LinkEd output listing is shown in Figure 7.1.

Beta Draft 7-5 8/20/186

Chapter 7: Linker | Cortland Programmer’ s Workshop

Symbol Table

At the conclusion of pass two, an alphabetized global-symbol table is printed. The table
presents the following information for each symbol:

symbol name
assigned value (hexadecimal)
classification number

The classification number is a pair of hexadecimal digits. If it is $00, the symbol is a
global label or subroutine name; if it is nonzero, it is a data label and the value of the digitis
the number of the data segment that defined it.

To suppress the symbol table, use the —S command-line parameter (or the LinkEd SYMBOL
OFF command). A sample symbol table is shown in Figure 7.1.

Ending

When it finishes, the linker prints a message giving the number of errors detected (if any)
and the highest error level encountered (see Appendix B). The last line tells where the
program starts (if it is absolute code), and how many bytes long it is (in hexadecimal).

CPW Linker 4.1

1 KEEP LINKTEST

2 LINK/ALL /CPW/TEST

3 LIBRARY *
0 errors found in source file
00002000 00000012 Static Code: MAIN
00002012 0000001B Static Data: DATA

00002020 000000Q0F Static Code: SECOND
0000203C 00000003 Static Code: COUT

Global symbol table:

CouT 0000203C 00 DATA 00002012 01 MAIN 00002000 00
MSG1 00002012 01 MSG2 00002020 01 MsG3 00002020 01
MSG4 0000202D 01 SECOND 0000202D 00

Program starts at $00002000 and is $0000003F bytes long.

Figure 7.1. Sample Output of a LinkEd Command File

Linking From a Command Line

You can call the CPW Linker by executing a CPW Shell command; the following
commands call the linker without having to execute a LinkEd command file:

° ASML

Beta Draft 7-6 8120186

Cortland Programmer’s Workshop Chapter 7: Linker

¢ ASMLG
° CMPL

* CMPLG
¢ LINK

¢ RUN

The LINK command lets you specify more than one object file to be linked into a single
load file. The other commands call the linker only after a successful assembly or compile
has been completed. Any of these commands let you suppress the link map and symbol
table; however, for all but the LINK command, you can suppress the link map only if you
also suppress the source listing of the assembler or compiler. The LINK command lets you
specify a name for the load file; the other commands let you specify a root filename for the
object files, which is then also used as the name of the load file.

The following linker defaults are used when you execute one of these CPW Shell
comrmands:

» Load segment names are used to determine which object segments to put in which
load segments: all object segments with the same load-segment name are placed in the
same load segment. In CPW Assembly Language, you can specify the load segment
name as the operand of a START or DATA directive. Most CPW compilers use a
string of zeros for the load-segment name of all code segments, and put all global
label definitions and data in segments with the load-segment name ~GLOBAL.

+ Object segments are scanned in the sequence they appear in the object file. Load
segments are placed in the load file in the order of the load-segment name’s first
appearance in the object file.

+ The library files in the library prefix (normally /CPW/LIBRARIES/) are searched
for unresolved references; no other library files are searched.

+ The load address of absolute code must be specified in the source file; there is no
command-line parameter to set a load address.

+ No load file is saved to disk unless the KEEP parameter is used in the command line,

or the KEEP directive is used in the source file (the source file KEEP directive has no
effect on the LINK command).

If you need to have more control over the link, use a LinkEd file, as described in the
following section. All of the CPW Shell commands are described in the section
“Command Descriptions” in Chapter 4. The filetype of load files produced by the CPW
Linker is set by the FileType shell variable; the default is ProDOS 16 filetype $BS. You
can use the shell FILETYPE command to change the filetype of a load file, or the shell
SET command to change the default filetype.

Linking With a LinkEd Command File

You can control every aspect of a link by using a LinkEd command file. LinkEd files are
CPW source files with a language type of LINKED (see the section “Calling the Editor” in
Chapter 2 for instructions on assigning a language type to a source file). To execute a
LinkEd file, use one of the following CPW Shell commands (these are all aliases for the

Beta Draft 7-7 820186

Chapter 7: Linker Cortland Programmer’ s Workshop

same command, which checks the language type of the file and calls the linker for files with
language type LINKED):

¢ ALINK
e ASSEMBLE
e COMPILE

Alternatively, you can append the LinkEd file to the last source-code file; when the
compiler or assembler gets to the LinkEd file, it returns control to the CPW Shell, which
calls the CPW Linker. If you append the-LinkEd file to the last file of the source code, then
the file is linked automatically every time it is compiled or assembled. When the linker
finishes processing the file, it tells the CPW Shell not to call another compiler or the linker.
For this reason, you can use the ASML, ASMLG, CMPL, CMPLG, and RUN commands with
a LinkEd file without causing any errors. This also means, however, that LinkEd must be
the last language called. All of the CPW Shell commands are described in the section
“Command Descriptions” in Chapter 4.

LinkEd Command Descriptions

LinkEd source files consist only of LinkEd commands and comments. Each command
must be on a separate line. Comments consist of either blank lines or lines that start with

an asterisk (*) or semicolon (;). The following commands are recognized by the CPW
Linker.

APPEND - append a LinkEd source file
corpY copy a LinkEd source file
EJECT skip to a new page if printer is on
KEEP open a file for output

LIBRARY search a library

LINK link an object file

LIST control subroutine listing

OBJ set phantom program counter
OBJEND turn off previous OBJ

ORG set program counter

PRINTER control printed output

SEGMENT start load segment

SELECT choose specific object segments
SOURCE control LinkEd source program listing
SYMBOL control symbol table output

Note: LinkEd commands are case-insensitive. Any combination of uppercase and
lowercase letters may be used when writing commands. In the examples shown here
all commands are in uppercase, to help set them apart from comments and text.

Important: Some languages (such as C) are case sensitive; segment names for
such a language must be entered in LinkEd commands exactly as they are listed in
the source code, including case.

The linker produces diagnostic output to show what it has done and to aid debugging.
Output is sent to standard output (usually the screen). Most of the output can be

Beta Draft

78 8120186

Cortland Programmer’ s Workshop Chapter 7: Linker

suppressed, if desired, with LinkEd commands. Where conflicting command-line
parameters and LinkEd commands are used, the command line takes precedence.

The following notation is used to describe commands:

UPPERCASE

italics
prefix

filename

pathname

AR

Bera Draft

Uppercase letters indicate a command name or an option that must
be entered exactly as shown. LinkEd commands are not case
sensitive; that is, you can enter commands in any combination of
uppercase and lowercase letters.

Italics indicate a variable, such as a filename or address.

This parameter indicates any valid directory pathname or partial
pathname. It does not include a filename. If the volume name is
included, prefix must start with a slash (/); if prefix does not start
with a slash, then the current prefix is assumed. For example, if
you are copying a file to the subdirectory SUBDIRECTORY on the
volume VOLUME, then the prefix parameter would be:
/VOLUME/SUBDIRECTORY/. If the current prefix were
/VOLUME/, then you could use SUBDIRECTORY for pathname .

The device numbers .D1, .D2,Dncan be used for volume
names; if you use a device number, do not precede it with a slash.
For example, if the volume VOLUME in the above example were in
disk drive .D1, then you could enter the prefix parameter as
.D1/SUBDIRECTORY/.

This parameter indicates a filename, not including the prefix. The
unit names . CONSOLE and .PRINTER can be used as filenames.

This parameter indicates a full pathname, including the prefix and
filename, or a partial pathename, in which the current prefix is
assumed. For example, if a file is named FILE in the subdirectory
DIRECTORY on the volume VOLUME, then the pathname parameter
would be: /VOLUME/DIRECTORY/FILE. If the current prefix
were /VOLUME/, then you could use DIRECTORY/FILE for
pathname . A full pathname (including the volume name) must

begin with a slash (/); do not precede pathname with a slash if you
are using a partial pathname.

The unit names . CONSOLE and . PRINTER can be used as

filenames; the device numbers .D1, .D2,Dn can be used for
volume names.

A vertical bar indicates a choice. For example, LIST ON|OFF
indicates that the command can be entered as either LIST ON or as
LIST OFF.

An underlined choice is the default value.
Parameters enclosed in square brackets are optional.

Elipses indicate that a parameter or sequence of parameters can be
repeated as many times as you wish.

7-9 8/20/86

Chapter 7: Linker Cortland Programmer’s Workshop

APPEND

APPEND pathname

LinkEd appends the LinkEd file with the pathname pathname to the present LinkEd source
file. Any statements after the APPEND command in the present LinkEd file are ignored.
COPY

COPY pathname

LinkEd stops processing the present LinkEd file temporarily, and processes all statements
in the LinkEd file specified by parhname. 1t then resumes processing the present file at the
statement immediately following the COPY command.

Copied files can copy other files, with no fixed limit to the number of nested levels. The

only constraint is the amount of available memory; it is generally safe to assume that you
may copy eight levels deep.

EJECT
EJECT

This command controls printer output. If output is to a printer, EJECT causes the printer
to skip to the top of the next page. If output is to a CRT screen, EJECT has no effect.

KEEP
KEEP pathname

The typical output file produced by LinkEd is a relocatable load file, ready for loading and
executing at any free memory location. A load file may contain several segments (see the

SEGMENT command, below), each of which can be loaded independently and automatically
during program execution.

The KEEP command opens the output file (load file) specified by pathname. All segments
subsequently processed by LinkEd are placed in pathname, in the order in which they are
encountered. The KEEP command must be placed before the first statement that creates
output; that is, before the first SEGMENT, LINK, or LIBRARY command.

Caution: You cannot use a LinkEd KEEP command if you append the LinkEd file
to your source code, and the source code includes a KEEP directive (or equivalent).

The filetype of load files produced by the CPW Linker is set by the FileType shell
variable; the default is ProDOS 16 filetype $B5. You can use the shell FILETYPE

command to change the filetype of a load file, or the shell SET command to change the
default filetype.

Beta Draft 7-10 : 8/20/86

Cortland Programmer’s Workshop Chapter 7: Linker

LIBRARY
LIBRARY pathname

A library file is a file of ProDOS 16 filetype $B2 containing object segments, such as
general utilities, that may be called by other programs. The LIBRARY command causes the
library file specified by pathname to be searched for segments that have been referenced by
a source file; any that are found are included in the output load file. See the discussion of
the MAKEL IB utility in Chapter 4 for instructions on creating your own library files.

If an asterisk (*) is used for pathname, all the files in the current CPW library prefix
(ProDOS prefix 4, normally /CPW/LIBRARIES/) are scanned.

LINK
LINK[/ALL) pathname

This command causes the object file specified by pathname to be included in the output file.
All segments of the file specified by pathname not already included are added to the
program. If the LINK command follows a SEGMENT command, then all the object
segments in pathname are placed in the load segment defined by the SEGMENT command.
If the LINK command does not follow a SEGMENT command, then all object segments are
placed in the same load segment (named ***???***) LinkEd ignores source-code load-

segment names, such as those specified by the operand of a CPW Assembler START
directive.

Use the SELECT command to link individual object segments from a given file.

If you use the /ALL qualifier, all files with the root filename specified by pathname and
.ROOT or alphabetic filename extensions are searched to make sure the most recently-
assembled version of each file segment is included (see the section “Partial Assemblies and

File Name Conventions” in this chapter). For example, suppose you use the following
command:

LINK/ALL MYFILE

Then if files MYFILE.A and MYF ILE . B are in the current directory, then the linker first
searches MYFILE .ROOT, then MYFILE .B, and ﬁr;qally MYFILE,A.

If you do not include the /ALL qualifier, then you must specify the full pathname
(including filename extension, if any).

LIST

LIST ON|QFF

The LIST command controls the output of the link map (the list of segment names). LIST
ON causes all subsequent segment names to be sent to standard output; LIST OFF

suppresses output (unless an error occurs). This command is overridden by the L option in
the shell’s ASSEMBLE and COMP ILE command lines.

Beta Draft 7-11 8120186

Chapter 7: Linker Cortland Programmer’s Workshop

OBJ
OBJ val

OBUJ sets the value of the program counter (PC—a pseudo-address for the next line of
code), so that subsequent lines of code will be linked as if the sequence had started at the
address val. Unlike ORG, OBJ has no effect on the actual physical location where the code
is inidally loaded; it is used when part of a program must be moved (to va/l) before
execution.

Code produced in this way is not relocatable by the System Loader because references
within it are to absolute addresses, starting at val. However, it may be included in a

segment that is relocatable. Use the OBJEND command to end the effect of the OBJ
command.

Note: This command is provided for those programs that have their own routines
to move segments to specific absolute addresses. We strongly recommend that you
not use this command, but take advantage of the capabilites of the Cortand System
Loader and memory manager instead; programs that do their own loading and
memory management are very unlikely to work successfully with any other
Cortland routines.

OBJEND
OBJEND

OBJEND resets the program counter to the current physical address in the file. The

program counter and the physical address always match unless an OBJ command has been
given.

ORG val
ORG val

The ORG command sets the value of the program counter. Its 6peration depends on where
it is used, as follows:

 If the ORG command is used before any code segments in the current load segment
have been processed, the load segment is given a fixed start location equal to val/, and
all code is linked for execution starting at the address val.

 If the ORG command is used after a code segment has been processed, LinkEd inserts
zeros from the present location until the specified location is reached. If val is smaller
than the program-counter value at the start of the code segment, then an error is
returned. An ORG command cannot be used within a load segment unless another
ORG command was used at the beginning of the load segment.

Warning: If the source code segment starts with an ORG directive, a LinkEd ORG
command with a different value causes an error.

Beta Draft . 7-12 8/120/86

Cortland Programmer’s Workshop Chapter 7: Linker

Val can be specified in either decimal (for example, 126720) or hexadecimal (for example,
$01EF00) format.

Note: We strongly recommend that you not use this command, but take advantage
of the capabilites of the Cortand System Loader and memory manager instead;
programs that do their own loading and memory management are very unlikely to
work successfully with any other Cortland routines. Since most code for Cortland
is relocatable, the use of the ORG command should be restricted to specialized
segments, such as graphics images.

PRINTER
PRINTER ON |QFF

The PRINTER command controls output to the printer. PRINTER ON sends the LinkEd
source listing and symbol table to the printer; PRINTER OFF stops output. The default
value is OFF. This command overrides any output redirection used in the CPW Shell’s
ASSEMBLE, COMPILE, or ALINK command line.

SEGMENT
SEGMENT [/DYNAMIC] [/NUMBER=kind] segname

The SEGMENT command defines the beginning of a new load segment in the current load
file, and gives it the load-segment name segname. You can put any number of object
segments in a load segment. Load-file segments may be loaded independently by the
System Loader, as required.

Note: If the LINK or SELECT commands are used before any SEGMENT
command, then all object segments are placed in the same load segment. LinkEd
ignores any load-segment assignments in your source code.

Important: Some languages (such as C) are case sensitive; segment names for
such a language must be entered in LinkEd commands exactly as they are listed in
the source code, including case. If the language you are using is not case sensitive,
then segment names must be entered as all uppercase.

The linker automatically flags segments as static, so that they cannot be removed by the
System Loader when additional memory space is needed. However, adding the

/DYNAMIC qualifier to the SEGMENT command permits the loader to remove the segment
from memory when necessary.

Note: Dynamic segments are supported so that you can write programs that make
highly efficient use of memory. However, keep in mind that any code that is
needed at all times (or frequently) by the program cannot be dynamic. See the
following note on load segments.

The Cortland object module format defines several segment types in addition to static,

dynamic, code, and data. The segment type is specified in the KIND field of the segment
header. You can use the /NUMBER=kind qualifier to specify a special segment type for a

Beta Draft 7-13 820186

Chapter 7: Linker Cortland Programmer’s Workshop

load segment. See the section “Object Module Format” in Chapter 9 for a description of
segment types and the KIND field of the segment header.

Important: You cannot use both the /DYNAMIC and /NUMBER qualifiers in the
same SEGMENT command.
The end of a load segment is marked by
» another SEGMENT command
¢ the end of the source file

Load Segments: Each load file has at least one segment—the main
segment—which, along with all other static segments, is loaded first by the System
Loader and is never removed from memory. It is usually the first segment in the
file. Segments may directly access data in themselves and any static segment, but
they cannot directly access data in dynamic segments.

If a segment calls a subroutine in a dynamic segment, and that segment is not in
memory, then the System Loader loads that segment. If there is not enough
memory to hold the segment, the loader attempts to free memory by unloading
dynamic segments not presently being used (if this attempt fails a system error is
returned). Note that this means that the values of variables in dynamic segments
may not be preserved between calls. Intersegment calls must be made with a long
subroutine jump (JSL), which uses a 3-byte address, rather than the “regular”
subroutine jump (JSR), which uses a 2-byte address; because the loader may put a
segment into any bank of memory, the JSR instruction would be useless because it
can access only the current bank. For more information on segment loading and
dynamic segment referencing, see the Cortland ProDOS 16 Reference manual.

Both static and dynamic segments are automatically considered by the linker to be

relocatable, unless they contain an ORG assembler directive or are preceded by an ORG
LinkEd command.

SELECT
SELECT {/SCAN] pathname (segl{,seg2{,...11})

This command causes the named segment(s) (segl, seg2,...) from the file specified by
pathname to be included in the output file. The segments are added in the order listed in the
command. If the SELECT command follows a SEGMENT command, then the object
segments specified in pathname are placed in the load segment defined by the SEGMENT
command. If the SELECT command does not follow a SEGMENT command, then all
object segments are placed in the same load segment named ***?2?27%%*

Use the LINK command to link all the segments in a file.

Beta Draft 7-14 8120186

Cortland Programmer’s Workshop Chapter 7: Linker

If you include the / SCAN parameter, then all files with the root filename of the file
specified by pathname and . ROOT or alphabetic filename extensions are searched to make
sure the most recently-assembled version of each file segment is included (see the section
“Partial Assemblies and File Name Conventions” in this chapter). For example, suppose
you use the following command:

SELECT/SCAN MYFILE

If files MYFILE .ROOT, MYFILE.A, and MYFILE.B are in the current directory, then the
linker first searches MYFILE .ROOT, then MYFILE . B, and finally MYFILE.A.

If you do not use the /SCAN qualifier, then you must specify the full pathname (including
filename extension, if any).

SOURCE
SOURCE ON|QEE

This command controls the output of LinkEd source code. SOURCE ON causes all
subsequent lines of LinkEd source code to be sent to standard output. SOURCE OFF
suppresses output, unless an error is encountered. This command is overridden by the L

option in the shell’s ASSEMBLE and COMP ILE command lines, and by the LIST
assembler directive.

SYMBOL
SYMBOL ON|QEE

The SYMBOL command controls output of the symbol table and link map. The symbol
table is an alphabetical listing of all symbolic references (labels). The link map is a listing
of each segment, with its starting address and length. All segments share the same symbol
table. This command is overridden by the S option in the shell’s ASSEMBLE and

COMP ILE command lines.

Examples

The listings below are all valid LinkEd files. Here all commands are written in upper case
to follow the convention used in this book. Note that object-segment names should be
entered as all uppercase except for languages (such as C) that are case sensitive, in which
case segment names should be entered exactly as they are listed in the source code.

1. The following routine opens an output file called OUTF ILE, includes all files within
the current subdirectory that have the root filename MYFILE, and performs a library
search on the current system library. It is equivalent to calling the linker with the

CPW Shell command LINK MYFILE KEEP=OUTFILE, except that any source-
code load-segment names are ignored.

Beta Draft 7-15 8120186

Chapter 7: Linker Cortland Programmer’s Workshop

KEEP OUTFILE
LINK/ALL MYFILE
LIBRARY *

2. This routine creates an object file with three segments, one of which is dynamic.
The first load segment is created by the LINK statement that precedes the first
SEGMENT statement, and has the load segment name ***what?***The second

static load segment is created by the first SEGMENT command. The dynamic load
segment is created by the SEGMENT/DYNAMIC command.

KEEP MYPROG
LINK/ALL MAINSUBS
LIBRARY *

SEGMENT SEG1
LINK/ALL SUBS1
LIBRARY *

SEGMENT/DYNAMIC SEG2
LINK/ALL SUBS2
LIBRARY *

3. In this routine, both the library file MYFILE 2 and the system libraries are searched
for needed subroutines:

KEEP MYPROG
LINK MYFILE
LIBRARY MYFILEZ2
LIBRARY *

Beta Draft 7-16 8120186

Part I1I

Inside the Cortland Programmer's Wolrkshop

Cortland Programmer’s Workshop Chapter 8: Adding a Program

Chapter 8

Adding a Program to CPW

This chapter describes how to add a utility program or compiler to the Cortland
Programmer’s Workshop. None of the information in this chapter is essential for writing
programs that are independent of CPW.

Note that, when you add a utility or language to CPW, you should update the CPW
command table to include it. CPW will execute a program that is not listed in the command
table, but does not automatically search the utility or language prefix for the program if it is
not listed in the command table. The command table is described in the section “Command
Types and the Command Table” in Chapter 4, and a list of language numbers currently
assigned is given in Appendix A.

Compilers, Utilities, and Applications

ProDOS 16 supports two principal kinds of executable load files: ProDOS 16 filetype
$B3, and filetype $B5. These two filetypes have the following characteristics:

+ Programs of filetype $B3 take over complete control of the computer; they do not
operate under a shell program. CPW itself is an example of such a program. When a
program of filetype $B3 is called, the calling program executes a ProDOS 16 QUIT
call, shutting itself down and clearing the screen. When the program finishes and
executes a QUIT call, ProDOS 16 reboots the calling program.

 Programs of filetype $BS run under a shell program,; they do not remove the shell
from memory. The shell calls a program of filetype $BS in full native mode via a
JSL instruction; when the program terminates, it returns control to the shell via an
RTL, or via a ProDOS 16 QUIT call (that is intercepted by the shell).

CPW utility programs are programs of filetype $BS designed to be run under the CPW
Shell program. They perform operations too complex to be performed by the shell itself,
but appear to the user to be shell commands. CPW compilers and assemblers are also
programs of filetype $BS, and so are technically CPW utilities. Compilers and assemblers
make use of special CPW Shell calls described in Chapter 10 to pass parameters between
the shell and themselves. Since the requirements for compilers and assemblers are different
from those for ordinary utility programs, they are discussed separately in this chapter.

You can write a self-contained program of filetype $B3 intended to be used with CPW;
CPW executes any executable load file it finds on disk when you type in the program’s
pathname. Since CPW quits and ProDOS 16 clears the desktop when such a program is
called, however, there are no special requirements for the program (other than those
required by the Cortland system in general), and so these programs are not discussed in
this chapter. See the Programmer’s Guide to the Cortland for guidance in writing an event-
driven program for the Cortland computer.

Beta Draft 8-1 8120186

Chapter 8: Adding a Program Cortland Programmer’'s Workshop

CPW Utilities

CPW utilities are applications designed to run under the CPW Shell. They must have
ProDOS 16 filetype $BS. By following the guidelines described in this section, a utility
can be executed from the CPW Shell with CPW remaining resident in memory.

When you enter a CPW command, the CPW Shell looks for the command name in the
command table (see the section “Command Types and the Command Table” in Chapter 4).
If the command is listed in the command table as a utility, then the shell loads it from the
utility subdirectory (usually /CPW/UTILITIES/); if it is not in the command table, then
the shell looks for it in the current subdirectory. In either case, the shell strips any /O
redirection information from the command line, and places the command line in a buffer in
memory. It then places the address of command-line buffer in the X and Y registers, with
the X register holding the most significant word of the address, and the Y register holding
the least significant word. (All utility calls are made with the Cortland in full native mode,
so both the X and Y registers are two bytes long.) The shell requests a user ID for the
program from the User ID manager, and places it in the accumulator.

Important: The command-line buffer is within the shell, and is subject to being
overwritten, so it should be read immediately if there are parameters that may have
been passed to the utlity.

If the utlity program does not have a direct-page/stack segment, then when the CPW Shell
calls the program, it provides a 1024-byte memory block in bank 00 for the utility to use
for its direct page and stack. The shell places the address of the start of the memory block
. in the direct-page (D) register and sets the stack pointer (S register) to point to the last byte
of the block. If it finds a direct-page/stack segment, the shell sets the D register to point to
its first byte, and the stack pointer to its last.

Before the CPW Shell calls a utility program, the shell performs a checksum on itself; after
the utility returns control to the shell, the shell performs the checksum again. If the two
checksums do not match, the shell assumes it was corrupted by the utility and terminates
execution with a system error.

Any utility must obey the following rules in order to execute successfully under the CPW
Shell.

Warning: If a program with ProDOS 16 filetype $BS does not obey the following
rules, you must quit CPW before calling it. Executing such a program from the
CPW Shell can cause the system to crash.

+ The utility must be designed to be called in full native mode via a JSL instruction.

* As soon as the utility is called, it should check the X and Y registers for the addresé
of the command-line buffer, which contains the following information:

1. An 8-byte ASCII string containing the CPW Shell identifier string BYTEWRKS.
The utility should check this identifier to make sure that it has been launched by
the CPW shell, so that the environment it needs is in place. If the shell
identifier is not correct, the shell load file should write an error message to
standard error output (normally the screen), and exit with a ProDOS QUIT
call.

2 A null-terminated ASCII string containing the input line for the utility. The
CPW Shell strips any 1/O redirection or pipeline commands from the input line,

Bera Draft 82 8/20/186

.

Cortland Programmer’s Workshop Chapter 8: Adding a Program

since those commands are intended for the shell itself, but passes on the
command name and all input parameters intended for the utility.

 All input must come from standard input, which provides a sequential character
_ stream. Standard input is discussed in the section “Redirecting Input and Output” in
Chapter 4. You can use Cortland Text Toolset calls to read the next input character,
to check to see if any more input is available, and to check to see if the input strearn
has been closed. Tool calls are described in the Cortland Toolbox Reference manual.

Standard input can also be read as if it were a file by opening and reading a file named
.CONSOLE. If input is coming from the keyboard, the shell echos the input
characters at the current cursor location on the screen.

Important: Your utility should not read the keyboard directly, because in that
case the shell input redirection command would not work, contrary to the
expectations of the user. ‘

 All output must go to standard output, which appears to the program as a sequential,
write-only ASCII output device. Standard output is discussed in the section
“Redirecting Input and Output” in Chapter 4. You can use Cortland Text Toolset calls
to send output to standard output, or you can open and write to a file named
.CONSOLE.

¢ The utility must handle its own errors. The preferred method is for the utility to open
an attention box that reports the error, and take any additional action that is
appropriate. Use the shell’s Attention call, described in Chapter 10, to open the
attention box. The utility should place an error-condition code in the accumulator
before returning control. If no error has occurred, the error code should be $0000;
otherwise, the code should be $FFFF. When the program returns control to an Exec
file, the error code is placed in the {status} variable. If {exit} is non-null, then
the Exec file terminates. Exec files are discussed in the section “Exec Files™ in
Chapter 4.

+ The utility must use the Memory Manager to request memory; since several programs
can be open on the desktop at one time, there is no way to predict what areas of
memory will be free for the utility to use.

 The utility should use the CPW Shell calls described in Chapter 10 whenever possible
to perform a necessary operation; for example, use the Execute call to pass a

command on to the shell command interpreter rather than duplicating the function in
your program.

Important: If your utility uses CPW Shell calls, it will not run if called by
ProDOS or another shell.

+ If the utility launches another program, it must request a user ID from the User ID
manager. Then utility is then responsible for intercepting ProDOS QUIT calls and
system resets, so that it can remove from memory all memory buffers with that user
ID before passing control back to the CPW Shell.

A utlity should use the following procedure to quit:

1. If the udlity has requested any user ID’s, it must release all memory buffers
with those user ID’s.

2. The utility must place an error code in the accumulator. If no error occurred,
the error code should be $0000; otherwise, the code should be $FFFF.

Beta Draft. 83 8120156

Chapter 8: Adding a Program Cortland Programmer’s Workshop

3. The utility should execute an RTL or a ProDOS 16 QUIT call. The CPW Shell

intercepts the QUIT call and releases all memory buffers associated with the
utility.

When you add a utility program to CPW, you should provide a help file to go with it. Help
files are ASCII text files (CPW language-type PRODOS) that have the same name as the

command, and that are kept in the /CPW/UTILTIES/HELP/ subdirectory. To.see an
example of a help file for a CPW utility, enter the following command:

HELP MAKELIB

Compilers and Assemblers

Compilers, assemblers, and interpreters are implerhcnted in nearly identical ways in CPW.
In this section, the term compiler is used generically to include compilers, assemblers, and
interpreters, unless an explicit distinction is made.

Source File Format

Your compiler must be capable of accepting files that conform to the Cortland text-file
format, as specified in Chapter 9. In this format, lines are separated by carriage return
characters ($0D). The form-feed character ($0C) should be accepted, and used to generate
a form feed in printed output. When you use standard output to send data to the printer, the
printer driver converts form-feed characters to the appropriate amount of line feeds for
printers that do not accept form-feed characters. Your compiler should handle tabs as
discussed in Chapter 9.

All source-text lines in CPW are assumed to be 255 characters long.

Identifying the Language Type

Each language used by the Cortland Programmer’s Workshop has a unique language
number. Language numbers are discussed in the section “Command Types and the
Command Table” in Chapter 4, and a list of the language numbers currently assigned is
given in Appendix A. If you need a new language number for your compiler, contact the
Apple Developer Technical Support department. Each source file must have one of these
language numbers as the first byte of the aux_type field in the file entry of the volume
directory. The CPW Editor automatically includes this language number when it writes a
file to disk; if the program is written with a different editor, the user must use the CPW
Shell CHANGE command to assign the appropriate language type to the file. The format of
directory entries is described in the ProDOS 16 Reference manual.

The language number must be the fourth and fifth bytes of your compiler. Knowledgable
users may change this number; for example, to avoid confilicts between two versions of the
same compiler. Your compiler should include a command that corresponds to the CPW
Assembler APPEND directive; this command transfers control from the file being processed
to a new file. When this command is used, your compiler must compare the language type
of the new file with the fourth and fifth bytes of the compiler; if the language types do not

Beta Draft 84 8/20/186

Cortland Programmer’s Workshop Chapter 8: Adding a Program

match, the compiler must close the object file it is generating, and transfer control back to
the shell by executing a Set_LInfo call (described in Chapter 10).

Entry and Exit

Compilers and assemblers that operate under CPW should have ProDOS 16 filetype $BS.
When a user enters the COMP ILE command (or one of its aliases), the shell checks the
language type of the source file and uses a JSL instruction to pass control to the appropriate
compller The first thing the compiler should do is to execute a Get LInfo call
(described in Chapter 10) to read the input parameters. Upon completion, the compiler
should execute a Set LInfo call, and return control to the CPW Shell via an RTL or a

ProDOS QUIT call. The system is in full native mode when it calls the compiler; it should
be in full native mode when control is returned to the shell.

The compiler is responsible for reading and using the parameters passed to it via the
Get_LInfo call, updating any values that have changes, and returning them via the

Set LInfo call when the compile is complete. These parameters are all described in
Chapter 10; comments on some of them follow.

« If the compile completes with a non-fatal error, the compiler should return the error
number in the merrf field of the Set_LInfo call. In this case the shell stops

processing the program, even if CMPL, CMPLG, or an equivalent command was used.
Use the following error levels for non-fatal errors:

$02 Waming. Code may execute successfully

$04 Error. The compiler may be able to correct this error. Examples may be
misspellings or omitted keywords.

$08 Error. The compiler cannot correct the error, but knows how much space to
leave. This error level is usually restricted to assemblers.

$10 Error. The compiler cannot correct the error, but only the segment containing
the error is affected. An example would be an undeclared local variable.

$20 Syntax error. The entire result of the compile is suspect. An example would be
when a syntax checker had to skip symbols in an attempt to resynchronize with
the code stream. In some languages, such as Fortran, the syntax checker can
resynchronize with the beginning of the next line, and this type of syntax error
should never occur. In free-format languages, such as Pascal, an entire
subroutine could be discarded before the compiler resynchronizes; in this case,
a syntax error should be flagged.

« If the compile terminates prematurely due to a fatal error, the compiler should return a
$FF in the merrf field of the Set LInfo call, and place in the org field the
d1sp1accmcnt into the source file of the last line processed. When the CPW Shell
receives a value over $7F for merrf£, it calls the CPW Editor, which displays the

source file; the line containing the error (as indicated by the displacement in the org
field) is placed at the top of the screen.

» The least significant bit (bit 0) of the operations- ﬂags (Lops) field in the
Get_LInfo callis always set (1) when a compiler is called; this bit indicates that a
compile is to be performed. If the next bit (bit 1) is set, it indicates that a link should
be performed after a successful compile; if bit 2 is also set, it indicates that the
finished program is to be executed immediately after the link.

Beta Draft 85 8/20/86

Chapter 8: Adding a Program Cortland Programmer’s Workshop

o If the compile completes normally, the compiler should clear the least significant bit of
the lops field.

« If a compile completes with a nonfatal error, or terminates prematurely with a fatal
error, then no further processing is done regardless of the setting of the operations
flags.

 If the compile stops because a file was appended that had a language type different
from the language type of the compiler, then the compiler should not clear the least
significant bit of the Lops field; this indicates to the shell that the compile is not
complete, and it can then call the compiler appropriate to the new file.

o The kflag parameter is used by the compiler to determine the names and number of

output files to generate. The kflag parameter is discussed in detail in the following
section, “Ouput Files.”

 If any segment names are listed in the buffer pointed to by the parms parameter, then
a partial compile is to be performed. Partial compiles are discussed in detail in the
section “Partial Compiles” in this chapter.

 Your compiler can read any special parameters passed to it in the buffer pointed to by
the istring field of the Get_LInfo call. There is no need to pass those
parameters back to the shell when your compiler exits via a Set_LInfo call.

Command Precedence

If your compiler includes source-file commands that control functions that can also be
controlled from the command line, then the command-line input should take precedence.
For example, if the source code includes a command that suppresses a listing of the source

file, but the user requests a listing by specifying +L on the command line, then a listing
should be generated.

Output Files

Every compiler under CPW must be capable of producing one or more object files that
conform to CPW object module format (described in Chapter 9). These files are then
processed by the CPW Linker to produce an executable load file.

Both object files and load files are segmented, but a load segment can contain more than
one object segment. In CPW Assembly Language, the object-segment name is in the label
field of a START or DATA directive, and the name of the load segment to which that object
segment is to be assigned is specified in the operand field of the directive. Most CPW
compilers assign one load-segment name (a string of zeros) to all code segments, and
another (~GLOBAL) to all global variables. The CPW Linker normally assigns all object
segments with the same load-segment name to the same load segment. The user has the

option of using a LinkEd file to instruct the linker to place any object segment in any load
segment.

To maintain consistency between compilers, we recommend that your compiler assign all
global variables to a load segment with the name ~GLOBAL. The ~GLOBAL load segment
should obey the following conventions. See the section “Object Module Format™ in
Chapter 9 for a description of segments, segment types, and segment headers.

Beta Draft 86 8120186

Cortland Programmer’s Workshop Chapter 8: Adding a Program

« It should contain only variables. Your compiler should place global names and
symbols in this segment; it can place data segments, code segments, global variables,
local variables or private variables in the ~GLOBAL load segment, as you see fit, but
variables only.

 If your compiler has some restriction on the maximum size of the ~GLOBAL load
segment, it should specify this fact by setting the code or data alignment factor in the
segment header (that is, the BANKSIZE field).

» The load segment name should be ~GLOBAL (all uppercase); you can use any names
you like for the object segments that go into this segment. The object segment name
goes in the SEGNAME field of the segment header; the load segment name goes in the
LOADNAME field of the segment header.

When the CMPL, CMPLG, or COMPILE command (or alias) is executed, the user can
specify the name of the output file with the KEEP parameter. The compiler must check the
directory for filenames that match the KEEP filename, excluding extensions, and set the
kflag parameter in the Get_LInfo call accordmgly The shell places the KEEP filename
in a buffer, and puts the address of the buffer in the df i 1e parameter of the Get _LInfo
call. The kflag parameter can be equal to 0, 1, 2, or 3, as follows:

0. If kflag =0, no KEEP parameter was used in the command line. If a KEEP
directive (or the equivalent) was used in the source code, then the compiler must
perform its own check for filenames that match the KEEP filename. If no KEEP
directive was used, do not save the output.

1. If kflag =1, no output files have been previously generated with this filename.
The compiler should place the first segment to be executed in a file with the filename
specified with the KEEP parameter, and with the extension .ROOT. For example, if
the COMP ILE command included the parameter KEEP=MYFILE, and kflag=1,
then the compiler should place the first segment to be executed in a file named
MYFILE.ROOT. If there are additional segments in the source file, they should be
put in a file named MYFILE.A.

Note: The purpose of the . ROOT file is to hold the first code segment to be
executed. In many languages, such as assembly language or BASIC, the first
subroutine compiled is the first one to be executed. In some languagcs, such as
C and Pascal, however, this is not the case. For such languages, the compiler
can open the . A file immediately, and open the .ROOT file when the main
program segment is compiled. Alteernatively, the compiler can use the .ROOT
file to hold its standard initialization code (that is, the code that the compiler uses
to initialize every program).

2. Ifkflag =2, then a file with the KEEP filenanie and the extension . ROOT already
exists. In this case, the compiler should start by creating a file with the extension
.A. If the main program segment was written in assembly language and a
subroutine was written in C, for example, then the assembler would create the
.ROOT file, and the C compiler would create the . A file.

3. Ifkflag =3, then files with the KEEP filename and the extensions . ROOT and . A
already exist. In this case, files with other alphabetic extensions might also exist;
these files are created by partial compiles, as discussed in the followmg section. The
compiler should start by searching the directory of the KEEP filename to determine
the highest alphabetic suffix on the disk, and use the next one. For example, if the
files MYFILE.ROOT, MYFILE.A, and MYFILE . B all exist, the compiler should

Beta Draft 87 ' 8120186

Chapter 8: Adding a Program Cortland Programmer’'s Workshop

start with the filename MYFILE.C. Multiple output files can be created by a multi-
language compile (the first language creates the .ROOT and . A files, the second
language the . B file, and so on) or by partial assemblies.

Note: The paradigm followed by the CPW Assembler is to first look for the
.RQOT file, then the . A file, then the . B file, and so on. The search is
terminated as soon as one file in the sequence is not found. Therefore, if the
files MYFILE.A, MYFILE.B, and MYFILE.D are in the subdirectory, but
MYFILE.C is not, then the assembler never finds MYFILE.D. The next file
created by the assembler, then, would be MYFILE.C. The user must be careful
not to let such a case occur, because (in this example) the linker would start the
link with the file MYFILE.D.

Y our compiler must follow certain conventions when writing names to object files:

» If the source language is case insensitive, always use uppercase letters in identifiers.
If the source language is case sensitive, retain the case of all characters. The linker
retains the case of labels.

» For fixed-length names (as specified by the LABLEN field in the OMF segment
header), pad extra characters with space characters ($20).

Partial Compiles

The Cortland object module format, System Loader, and Memory Manager are all designed
to support program code that is organized in segments that can be loaded independently. If
your compiler is going to work well in the Cortland Programmer’s Workshop
environment, it should be capable of creating segments that can be linked to segments
output by other compilers, and of using segments created by other compilers. The use of
segmented code provides two additional benefits: it facilitates the use of libraries, since the
entire library file need not be linked to each program; and it allows for partial compiles.

In a partial compile, a list of segments to be compiled is passed to the compiler by the
Get_LInfo call; the compiler searches through the source code for the named segments,
and compiles them. Other segments are not compiled. Any segments compiled (other than
the first segment to be executed when the program is run) are placed in a file w1th the next
available alphabetic suffix, as discussed in the previous section, “Output Files.” If one of
the segments compiled is the first code segment that will be executed when the program is
run, then the compiler deletes the old . ROOT file and creates a new one.

When the linker links the program, it uses the following procedure:
1. It starts with the .ROOT file, and links that segment.

2. Itlooks fora .A file. If it finds one, the linker looks for a .B file, and so on.

3. It links the file with the highest alphabetic suffix it has found.

4. Tt works its way back through the alphabet to the . A file, ignoring any segments
with names identical to those it has already found, and linking the rest.

For example, suppose you have compiled a program that has four segments, SEG1, SEG2,
SEG3, and SEG4. SEGL1 is the first segment that will be executed when the program is
run. The compiler places SEG1 in the file MYPROG .ROOT, and the remaining three

Beta Draft 88 : 812086

Cortland Programmer’s Workshop Chapter 8: Adding a Program

segments in the file MYPROG. A. In testing the program, you have to make changes to
segments SEG2 and SEG4, so you perform a partial compile; the compiler places segments
SEG2 and SEG4 in the file MYPROG.B. To fix the one remaining bug in the program,
you do another partial compile on SEG2; the compiler places the latest version of SEG2 in
the file MYPROG .C. Now when you link the program, the linker operates as follows:

It finds MYPROG . ROOT, and links it.

2. It finds MYPROG. 3, then finds MYPROG. B, then MYPROG . C. It does not find
MYPROG.D, so it links MYPROG. C.

3. It searches MYPROG. B, and finds that it has already linked SEG2, so it ignores the
SEG2 in MYPROG. B and links SEGA4.

4. Tt searches MYPROG. A, and finds that it has already linked SEG2 and SEG4; it
ignores those two segments and links SEG3.

Important: Keep in mind that, for partial compiles to work, the order in which
segments are linked must not be significant.

Note: You can use the CRUNCH command, described in Chapter 4, to combine all
of the alphabetic-extension files for a program into a single . A file. The CRUNCH

command uses the same algorithm as the linker to scan the files for the latest.
version of each segment.

The following algorithm illustrates the partial-compile procedure:

while not defining a procedure do
normal compiler functions;
compile_the_ procedure_header;
{does not produce code—only stuff for the symbol table}
if the_procedure_is_in_the_partial compile_list then
compile the procedure
else

skip; (skips to the next procedure heading}

Suppose you have a simple C compiler that defines a new code segment for each function
definition. This compiler has a function called next_token that returns a token. The skip

procedure can be illustrated as follows (leftbracket and rightbracket refer to begin and
end statements):

procedure skip;

count: integer; -

“begin
count := 0;
while (token <> leftbracket) and not end of_file do next_token;
repeat
if token = leftbracket then count := count+l
else if token = rightbracket then count := count-1;

next token;
until (count = 0) or end_of_file;
if not end_of file then next_token
end;

Beta Draft 89 8120186

Chapter 8: Adding a Program Cortland Programmer’' s Workshop

Help Files

When you add a new language to CPW, you should provide a help file to go with it. Help
files are ASCII text files (CPW language-type PRODOS) that have the same name as the
command, and that are kept in the CPW/UTILTIES/HELP/ subdirectory. To see an
example of a help file for a CPW language, enter the following command:

HELP ASM65816

If your language includes language-specific parameters for the COMPILE, CMPL, and

CMP LG commands, then you should provide replacement HELP files for those commands
(and their aliases) as well.

Interpreters
Installing an interpreter under CPW is almost identical to installing a compiler, with the
following exceptions:

+ Interpreted code is not linked; an interpreter cannot make calls to code compiled by a
compiler, since the linker cannot be used to combine interpreted and compiled code.

 An interpreter should clear all three operations flags of the Lops parameter in the
Set_LInfo call when returning control to the shell. Since the interpreter executes
the program, linking and separate execution are not needed.

Beta Draft 8-10 8120186

Cortland Programmer’s Workshop Chapter 9: File Formats

Chapter 9

File Formats

This chapter describes and defines the Cortland text-file format, which is used for standard
ASCI text files and program source files by all CPW programs; and the object-module
format, which is used for all CPW object files, library files, and load files. The Cortland
System Loader also requires that a load file conform to object module format.

Text File Format

Under ProDOS 8, each application defines its own format for text and data files. On
Cortland, there is a standard format for text files, so that any program that conforms to the
standard can read text files written by any other standard program. This format does not
preclude the use of files in other formats by these programs; however, to be considered a
standard application on Cortland it is required that a program be capable of reading and
writing files in the standard text file format.

A Cortland text file contains ASCII codes representing printable characters, plus a few
specific control characters. When displayed on a screen or printed out, a text file can be
read by humans; that is, there are no binary codes that specify printing formats, printer
controls, graphics patterns, and so forth. Related file types, such as word processor files
that contain representations of ASCII text but include formatting information, should be
assigned unique file types.

Text File Specifications

A Cortland text file has the following attributes:
It consists of zero or more /ines.
 Each line consists of zero or more ASCII character codes in the range $00 to $FF.

 Each line ends with the ASCII code $0D (carriage return); every time the character

code $0D appears, it indicates the end of a line. Even the last line of the file must end
with $0D.

» There are no gaps in the file; every character code is part of a line.

» The end of a text file is determined by the ProDOS 16 EOF pointer. EOF is part of
the file descriptor maintained by ProDOS 16, not part of the file itself.

A line with zero characters contains only the end-of-line code, $0D. A text file of length
zero contains no lines, characters, carriage returns, or anything else.

The following characters require special handling:

Beta Draft : 9.1 812086

Chapter 9: File Formats Cortland Programmer’s Workshop

HT ($09) Horizontal Tab. A program reading the file should interpret HT as a field
delimiter, where the definition of field delimiter is left to the individual application. A
field delimiter usually denotes a definite separation between characters, whether or not there
are space characters between the characters or white space when the line is printed out. A
program writing out a line that contains an HT character should insert enough spaces to get
to the next tab stop before writing out subsequent characters. The definition of tab stop is
left to the individual application.

LF ($0A) Line Feed. A program writing out a line that contains a line-feed character
should move the cursor to the next line without changing its horizontal position. A
carriage-return—line-feed sequence should be handled on the screen like a carriage return:
the cursor should be moved to the beginning of the next line.

CR ($0D) Camage Return. The carnage -return character indicates the end of a line. A
program writing out a line that contains a CR character should move the cursor to the
beginning of the next line. When a CR character is sent to a printer, it may or may not also

cause a line feed, depending on the printer and the settings of dip switches and printer
options.

FF ($12) Form Feed. The form-feed character usually causes a printer to scroll to the

beginning of the next page. When writing a line to the screen, your program can treat a FF
like a camage return, or can add blank lines to fill out the page of text; if your program has

a convention to indicate page breaks, the FF character should be interpreted as a page
break.

SP ($20) Space. A character that prints as a blank space.

High ASCII ($80—S$FF) These codes are used by some programs on Cortland for
special characters, such as greek letters and block graphics (depending on the character font
in use). Your program can display these characters on the screen in any way you choose.
If you elect to strip the high bit, be sure to handle characters $80—3$9F and $FF carefully,
because the low-ASCII equivalents of these codes (J00—$1F and 7F) represent special
codes to some programs and printers.

Other characters Other characters have no specific interpretation in this specification. It
is recommended that you limit text files to printable characters ($21—7E, 80—FF) plus
CR, LF,FF, HT, and SP.

This file format includes no provision for file compression or for including descriptive
information about the file. Information about the file can be encoded in publicly available
file descriptor fields or in another file associated with the given file. For example, a text

editor might store the tab stop values for the file TEXTFILE in the associated file
TEXTFILE.TABS. Such file associations must be defined by the individual application.

Examples

Let the symbols [and] represent the beginning and end of the file, respectively. Then the
following text files store the specified text:

Text consisting of no characters:

Beta Draft 9-2 8/20/186

Cortland Programmer’s Workshop

(]

Text consisting of one line with no characters:

[SOD]

Text consisting of two lines with no characters in either line:
[$0D $0D]

Text consisting of the line Hi there!:

[$48 $69 $20 $74 $68 $65 $72 $65 $21 $0D]
Text consisting of the two lines

Hi
there!:

[$48 $69 SOD $20 $74 $68 $65 872 $65 $21 $0D]

Beta Draft 9-3

Chapter 9: File Formats

8120186

Chapter 9: File Formats Cortland Programmer’'s Workshop

Object Module Format

Under ProDOS 8 on the Apple Ile and Apple IIc there is only one loadable file format,
called the binary file format, which consists of one absolute memory image along with its
destination address. ProDOS 8 does not have a relocating loader, so that even if you write
relocatable code, you must specify the memory location at which the file is to be loaded.
The Cortland uses a more general format that allows dynamic loading and unloading of file
segments while a program is running, and supports the various needs of many languages
and assemblers. The CPW Linker and System Loader fully support relocatable code; in
general, you do not specify a load address for a Cortland program, but let the loader and
Memory Manager determine where to load the program.

The Cortland object module format (OMF) supports language, CPW Linker, library, and
System Loader requirements, and is extremely flexible, easy to generate, and fast to load.

This section defines four kinds of files: object files, library files, load files, and run-time
library files.

o QObject files are the output from an assembler or compiler, and are the input to a
linker. Object files must be fast to process, easy to create, independent of the source
language, and able to support libraries in a convenient way. In the Cortland
development environment, object files also support segmentation of code and partial
assemblies and compiles. They support both absolute and relocatable program
segments, which can be either static or dynamic, and they support position-
independent (moveable) program segments.

e Library files contain general object segments that a linker can find and extract to
resolve references unresolved in the source code. Only the code needed during the
link process is extracted from the library file.

» Load files are the output of a linker and contain memory images that a loader loads
into memory. Load files must be very fast to process. Cortland load files contain
load segments that can be relocatable, moveable, dynamically loadable, or have any
combination of these attributes. Shell load files are load files that can be run from a
shell program without requiring the shell to shut down. Starmup load files are load
files that ProDOS 16 loads during its startup.

* Run-time library files are load files containing general utilities that can be shared
between applications. The utilities are contained in file segments that can be loaded as
needed by the System Loader, and purged from memory when they are no longer
needed. Run-time library files are not currently supported by the System Loader, but
are defined in the OMF to allow for future enhancements to the system.

All four types of files consist of individual components called segments. Each file type
uses a subset of the full object module format. Each compiler or assembler uses a subset of
the format depending on the requirements and complexity of the language.

The ProDOS 16 file types used by CPW are as follows:

Beta Draft 94 : 8120186

Cortland Programmer’ s Workshop Chapter 9: File Formats

$B0O Source (SRC)
$B1 Object (OBJ)
$B2 Library (LIB)
$B3 Load (s16)
$B4 Run-time library (RTL)
$B5 Shell load (EXE)
$B6 Startup load (STR)

$B7-$BE other load filetypes

A CPW source file has an auxiliary type that represents the programming language for
which it is to be used.

General Format for OMF Files

Each object module format (OMF) file contains one or more segments. Figure 9.1
represents the structure of an OMF file. Each segment in an object file is a separate entity
that contains all the information needed to link it with other segments (and to relocate it if it
is relocatable code). Each segment in a load file is a separate (usually) relocatable entity
that contains all the information needed to load it into memory.

Segment 1 Header

Segment 1

Segment 2 Header

Segment 2
. . .
® © []

Segment n Header

Segment n

Figure 9.1. OMF File

Each segment contains a set of records that indicate relocation information or contain code
or data. If the file is an object file, the linker processes each record and generates a load file
containing load segments. Object code includes the information the linker needs to generate
a relocatable load segment. Load files consist of a memory image followed by a relocation
dictionary; the System Loader loads the memory image and then processes the information
in the relocation dictionary. Relocation dictionaries are discussed in the section “Load
Files” in this chapter.

Beta Draft 9-5 8120186

Chapter 9: File Formats Cortland Programmer’s Workshop

Segments in object files can be combined by the linker into one or more segments in the
load file (see the discussion of the LOADNAME field in the section “Segment Header” in this
chapter). For instance, each subroutine in a program can be placed in a separate code
segment and compiled independently; then the linker can be told to place all the code
segments into one load segment.

Segment Types and Attributes
Each OMF segment has a segment type, and can have up to three attributes. The following
segment types are defined by the object module format:
+ code
» data
* jump table segment
e pathname segment
¢ library dictionary segment
e initialization segment
* absolute-bank segment
 zero-page/stack segment

The following segment attributes are defined by the object module format:
* static or dynamic
 position independent
* private
Code and data segments are provided to support languages that distinguish program

code from data. A segment specified by using a START assembler directive is flagged as a
code segment; if you use a DATA directive instead, it is a data segment.

Jump table segments and pathname segments facilitate the dynamic loading of
segments; they are described in the section “Load Files” in this chapter.

Library dictionary segments allow the linker to quickly scan the library file for needed
segments; they are described in the section “Library Files” in this chapter.

Initialization segments are optional parts of load files; if used, they are loaded and
executed immediately when they are found by the System Loader; they are used to perform
any initialization required by the application during an inital load. Initialization segments
are described in the section “Load Files” in this chapter.

Absolute-bank segments are restricted to a specified bank, but can be relocated within
that bank.

Direct-page/stack segments are used to preset the zero page and stack registers for an
application. See the section “Direct-Page/Stack Segments” in this chapter for more
information.

Beta Draft 96 820186

Cortland Programmer’s Workshop Chapter 9. File Formats

Static segments are loaded at program execution time, and are not unloaded during
execution; dynamic segments are loaded and unloaded during program execution as
needed. A segment can be designated as dynamic with the /DYNAMIC qualifier to the
SEGMENT command in a LinkEd file. If you do not use a LinkEd file, then all segments in
your program are static

Position-independent segments can be moved during program execution.

A private code segment is a segment in an object file whose name is available only to
other object-code segments within the same object file. (The labels within a code segment
are local to that segment.)

A private data segment is a segment in an object file whose labels are available only to
object-code segments in the same object file.

A segment can have only one segment type but can have any combination of attributes
(static and dynamic are mutually exclusive—together they comprise a single attribute). If
more than one object segment is placed in a given load segment by the linker, then the load
segment is flagged as code or data according to the /ast segment linked. The segment types
and attributes are specified in the segment header by the KIND segment-header field,
described in the next section.

Segment Header

Each segment in an OMF file has a header that contains general information about the
segment, such as its name and length. Segment headers make it easy for the linker to scan
an object file for the desired segments, and allow the System Loader to load individual load
segments. The format of the segment header is illustrated in Figure 9.2. Following the
figure is a detailed description of each of the fields in the segment header.

Important: In future versions of the OMF, additional fields may be added to the
segment header between the DISPDATA and LOADNAME fields. Always use
DISPNAME and DISPDATA instead of absolute offsets when referencing
LOADNAME, SEGNAME, and the start of the segment body in order to insure that
future expansion of the segment header does not affect your program.

Beta Draft 9-7 8120186

Chapter 9: File Formats Cortland Programmer’s Workshop

s00 = =
- BLKCNT/BYTECNT -
s04 [= =
L RESSPC -
$08]
- LENGTH Z
soc TR
LABLEN
NUMLEN
VERSION
$10 [—
L BANKSIZE -
$14 I _
= undefined =
$18 = ‘ -
- ORG -
}_ =
sic = =
L ALIGN .
320 NUMSE X
LUSAINK
- SEGNUM -
s24 [~]
- ENTRY -
s28 | DISPNAME -
- DISPDATA .
é é
A &
DISPNAME |~ -
- LOADNAME 3
DISPNAME + $0A |~ -
D 4
7 SEGNAME ‘
DISPDATA

Figure 9.2. Segment Header

BLKCNT/BYTECNT: For object files and load files, BLKCNT is a 4-byte field
containing the number of blocks in the file that the segment requires. Each block is 512
bytes. The segment header is part of the first block of the segment. Segments in an object
file or load file start on block boundaries. For library files (ProDOS 16 filetype $B2), this
field is BYTECNT, indicating the number of bytes in the segment. Library- ﬁle segments
are not aligned to block boundaries.

Beta Draft 98 8120/86

Cortland Programmer’s Workshop Chapter 9: File Formats

RESSPC: A 4-byte field containing the number of zero bytes to add to the end of the
segment. This field can be used in an object segment instead of a large block of zeros at the
end of the segment. Using this field can thus significantly reduce the block size of an
object segment when the source code ends with a DS that reserves a large block of
memory.

LENGTH: A 4-byte field containing the memory size that the segment will require when
loaded. It includes the extra memory specified by RESSPC.

KIND: A 1-bytefield specif ying the type and attributes of the segment. The bits are
defined as follows:

Bit Meaning Where Described
0—4 Segment Type
$00 code Segment Types and Attributes
$01 data Segment Types and Attributes
$02 jump table segment Load Files
$04 pathname segment Segment Types and Attributes
$08 library dictionary segment Library Files
$10 initialization segment Load Files
$11 absolute-bank segment Segment Types and Attributes
$12 direct-page/stack segment Direct-Page/Stack Segments
5—7 Segment Attribute
5 I=position independent Segment Types and Attributes
6 1=private Segment Types and Attributes
7 =static; 1=dynamic Segment Types and Adttributes

A segment can have only one type but any combination of attributes. For example, a
position-independent dynamic data segment has KIND=($A1).

LABLEN: A 1-byte field indicating how long each name or label record in the segment
body is in bytes. If LABLEN is 0, it indicates that the length of each name or label is
specified in the first byte of the record (that is, the first byte of the record specifies how
many bytes follow). LABLEN also specifies the length of the SEGNAME field of the
segment header. (The LOADNAME field always has a length of 10 bytes.) Fixed-length
labels are always left-justified and padded with spaces.

NUMLEN: A 1-byte field indicating how long each number field in the segment body is in
bytes. This field is 4 for Cortland.

VERSION: A l-byte field indicating the version number of the object module format with
which the segment is compatible. This field is 1 for the initial specification of the object
module format.

BANKSIZE: A 4-byte binary number indicating the maximum memory-bank size for the
segment. If the segment is in an object file, the linker assures that the segment is not larger
than this value (the linker returns an error if the segment’s too large). If the segment is in a
load file, the linker assures that the segment is loaded into a memory block that does not
cross this boundary. For Cortland code segments, this field must be $00010000,
indicating a 64K bank size. A value of 0 in this field indicates that the segment can cross

Beta Draft 9-9 8/20/86

Chapter 9: File Formats Cortland Programmer’ s Workshop

- bank boundaries. Cortland data segments can use any number from $00 to $00010000 for
BANKSIZE.

BANKSIZE is followed by four undefined bytes, reserved for future changes to the
segment header specification.

ORG: A 4-byte field indicating the absolute address at which this segment is to be loaded
in memory. A value of 0 indicates that this segment is relocatable and can be loaded
anywhere in memory. A value of 0 is normal for the Cortland.

ALIGN: A 4-byte binary number indicating the boundary on which this segment must be
aligned. For example, if the segment is to be aligned on a page boundary, this field is
$00000100; if the segment is to be aligned on a bank boundary, this field is $00010000. A
value of 0 indicates that no alignment is needed. For the Cortland, this field must be a
power of 2, less than or equal to $00010000.

NUMSEX: A 1-byte field indicating the order of the bytes in a number field. If this field is
0, the least significant byte is first. If this field is 1, the most significant byte is first. This
field is O for the Cortland.

LCBANK: A l-byte field indicating the bank of the language card into which the segment
is to be loaded: if 0, bank 1; if 1, bank 2. LCBANK is meaningful only if the ORG field
contains an address in the language card area ($D000—$E000) of banks 0, 1, EO, or E1.
The System Loader does not support the loading of segments into alternate banks of the

language card. The language card and bank-switched ROM are described in the Corrland
Hardware Reference manual.

SEGNUM: A 2-byte field specifying the segment number. The segment number
corresponds to the relative position of the segment in the file (starting with 1). This field is
used by the System Loader as a check while searching for a specific segment in a load file.

ENTRY: A 4-byte field indicating the offset into the segment that corresponds to the entry
point of the segment.

DISPNAME: A 2-byte field indicating the displacement of the LOADNAME field within
the segment header. Currently, DISPNAME = 44, DISPNAME is provided to allow for
future additions to the segment header; any new fields will be added between DISPDATA

and LOADNAME. DISPNAME allows you to reference LOADNAME and SEGNAME no
matter what the actual size of the header.

DISPDATA: A 2-byte field indicating the displacement from the start of the segment
header to the start of the segment body. Currently, DISPDATA = 54 + LABLEN.
DISPDATA is provided to allow for future addtions to the segment header; any new fields
will be added between DISPDATA and LOADNAME. DISPDATA allows you to reference
the start of the segment body no matter what the actual size of the header.

LOADNAME: A 10-byte field specifying the name of the load segment that will contain the
code generated by the linker for this segment. More than one segment in an object file can
be merged by the linker into a single segment in the load file. This field is unused in a load
segment. The position of LOADNAME may change in future revisions of the OMF;
therefore, you should always use DISPNAME to reference LOADNAME.

Beta Draft ' 9-10 812086

Cortland Programmer’ s Workshop Chapter 9. File Formats

SEGNAME: A field LABLEN bytes long, specifying the name of the segment. The
position of SEGNAME may change in future revisions of the OMF, therefore, you should
always use DISPNAME to reference SEGNAME.

Segment Body

The body of each segment is composed of sequential records, each of which starts with a
1-byte operation code. Each record contains either program code or information for the
linker or System Loader. All names and labels included in these records are LABLEN bytes
long, while all numbers and addresses are NUMLEN bytes long (unless otherwise specified
in the following definitions). For the Cortland, the least significant byte of each number
field is first, as specified by NUMSEX. Several of the object module format records contain
expressions that have to be evaluated by the linker. The operation and syntax of
expressions are described in the next section, “Expressions.” The operation codes and
segment records are described in this section, listed in order of the opcodes. Table 9.1
provides an alphabetical cross reference between segment record types and opcodes.

Table 9.1. Segment-Body Record Types

Record Op Code
Type
ALIGN $EO0
BEXPR $ED
CONST $01—$DF
DS $F1
END $00
ENTRY $F4
EQU $FO
EXPR $EB
GEQU $E7
GLOBAL $E6
INTERSEG $E3
LCONST $F2
LEXPR $F3
LOCAL $EF
MEM $E8
ORG $E1
RELEXPR $EE
RELOC $E2
STRONG $ES
USING $E4
ZEXPR $EC
Record Op Code Description
Type
END $00 This record indicates the end of the segment

Beta Draft 9-11 8120186

Chapter 9: File Formats

CONST $01—3$DF
ALIGN $EO

ORG $E1

Beta Draft

Cortland Programmer's Workshop

This record contains absolute data that needs no relocation.
The operation code specifies how many bytes of data follow.

This record contains a number that indicates an alignment
factor. The linker inserts as many zero bytes as necessary to
move to the memory boundary indicated by this factor. The
value of this factor is in the same format as the ALIGN field
in the segment header, and can not have a value greater than
that in the ALIGN field. ALIGN mustequal a power of 2.

This record contains a number that is used to increment or
decrement the location counter. If the location counter is
incremented (ORG is positive), zeros are inserted to get to the
new address. If the location counter is decremented (ORG is
a twos complement negative number), then the location

counter is decremented and subsequent code overwrites the
old code.

9-12 . 8120186

Cortland Programmer’s Workshop Chapter 9: File Formats

RELOC

Beta Draft

$E2

This is a relocation record, used in the relocation dictionary
of a load segment. It is used to patch an address in a load
segment with a reference to another address in the same load
segment. It contains two 1-byte counts followed by two
offsets. The first count is the number of bytes to be
relocated, and the second count is a bit-shift operator, telling
how many times to shift the relocated address before
inserting the result into memory. If the bit-shift operator is
positive, then the number is shifted to the left, filling vacated
bit positions with 0’s (logical shift left). If the bit-shift
operator is (twos complement) negative, then the number is
shifted right (logical shift right).

The first offset gives the location, (relative to the start of the
segment) of the (first byte of the) number that is to be
patched (relocated). The second offset is the location of the
reference relative to the start of the segment; that is, it is the
value that the number would have if the segment it’s in
started at address $000000. For example, suppose the
segment includes the following lines:

35 LABEL - - -

L]

400 LDA LABEL+4

LABEL is a local reference to a location 53 ($35) bytes after
the start of the segment. When this segment is loaded into
memory, the value of LABEL+4 depends on the starting
location of the segment, so the linker creates a RELOC record
in the relocation dictionary for this value. LABEL+4 is two
bytes long; that is, the number of bytes to be relocated is 2.
No bit-shift operation is needed. The number to be
calculated during relocation is 1025 ($401) bytes after the
start of the segment (immediately after the LDA, which is one
byte). The value of LABEL+4 would be $39 if the segment
started at address $000000. The RELOC record for the
number to be loaded into the A register by this statement
would therefore look like this: (note that the values are stored
low-byte first, as specified by NUMSEX):

E2020001 04000039 000000

which corresponds to the following values:

$E2 operation code :
$02 number of bytes to be relocated
$00 bit-shift operator

$00000401 offset of value from start of segment
$00000039 value if segment started at $000000

9-13 8120186

Chapter 9: File Formats

Beta Draft

Cortland Programmer’s Workshop

Note: Certain types of arithmetic expressions are illegal
in a relocatable segment: specifically, any expression that
cannot be evaluated (relative to the start of the segment)
by the assembler cannot be used. The expression

LAB | 4 can be evaluated, for example, since the RELOC
record includes a bit-shift operator; however LAB | 4+4
cannot be used, because the assembler would have to
know the absolute value of LAB in order to perform the
bit-shift operation before adding 4 to it. Similarly, the
value of LAB* 4 depends on the absolute value of LAB,
and cannot be evaluated relative to the start of the
segment, so multiplication is illegal in expressions in
relocatable segments.

9-14 8120186

Cortland Programmer’s Workshop Chapter 9: File Formats

INTERSEG

Beta Draft

$E3

This record is used in the relocation dictionary of a load
segment, and contains a patch to a long call to an external
reference. The INTERSEG record is used to patch an
address in a load segment with a reference to another address
in a different load segment. It contains two 1-byte counts
followed by an offset, a 2-byte file number, a 2-byte
segment number, and a second offset. The first count is the
number of bytes to be relocated, and the second count is a
bit-shift operator, telling how many times to shift the
relocated address before inserting the result into memory. If
the bit-shift operator is positive, then the number is shifted to
the left, filling vacated bit positions with 0’s (logical shift
left). If the bit-shift operator is (twos complement) negative,
then the number is shifted right (logical shift right).

The first offset is the location (relative to the start of the
segment) of the (first byte of the) number that is to be
relocated. If the reference is to a static segment, then the
file number, segment number, and second offset
correspond to the subroutine referenced. (The linker assigns
a file number to each load file in a program. This feature is
provided primarily to support run-time libraries. In the ,
normal case of a one-load-file program, the file number is 1.
The load segments in a load file are numbered by their
relative location in the load file, where the first load segment
is number 1.) If the reference is to a dynamic segment, then
the file and segment numbers correspond to the jump table
segment, and the second offset corresponds to the call to the
System Loader for that reference.

For example, suppose the segment includes an instruction
like this:

JSL EXT

where the label EXT is an external reference to a location in a
static segment. If this instruction is at relative address $720
within its segment and EXT is at relative address $345 in
segment $000A in file $0001, then the linker creates an
INTERSEG record in the relocation dictionary that looks like
this (note that the values are stored low-byte first, as
specified by NUMSEX):

E3030020 07000001 000A0045 030000

which corresponds to the following values:

$E3 operation code

$03 number of bytes to be relocated
$00 bit-shift operator

$00000720 offset of instruction

$0001 - file number

$000A segment number

$00000345 offset of subroutine referenced
9-15 8120/86

Chapter 9: File Formats Cortland Programmer’ s Workshop

When the loader processes the relocation dictionary, it uses
the second offset to find the JSL, and patches in the address
corresponding to the file number, segment number, and
offset of the referenced subroutine.

If the JSL is to an external reference in a dynamic segment,
the INTERSEG records refer to the file number, segment
number, and offset of the call to the System Loader in the
jump table segment.

If the jump table segment is in segment 6 of file 1, and the
call to the System Loader is at relative location $2A45 in the
jump table segment, then the INTERSEG record looks like
this (note that the values are stored low-byte first, as
specified by NUMSEX):

E3030020 07000001 00060045 2A0000

which corresponds to the following values:

$E3 operation code :

$03 number of bytes to be relocated
$00 bit-shift operator

$00000720 offset of instruction

$0001 file number of jump table segment
$0006 segment number of jump table seg

$00002A45 offset of call to System Loader

The jump table segment entry that corresponds to the
external reference EXT contains the following values:

User ID

$0001 file number

$0005 segment number
$00000200 offset of instruction
Call to System Loader

INTERSEG records are used for any long-address reference
to a static segment.

See the section “Jump Table Segment” in this chapter for a
discussion of the function of the jump table segment.

USING $E4 This record contains the name of a data segment; after this
record is encountered, local labels from that data segment
can be used in the current segment.

STRONG $ES This record contains the name of a segment that must be

included during linking even if no external references have
been made to it.

Bera Draft : 9-16 8120186

Cortland Programmer’ s Workshop Chapter 9: File Formats

GLOBAL

GEQU

MEM

Beta Draft

$E6

$E7

$ES8

This record contains the name of a global label followed by
three 1-byte attribute fields. The label is assigned the current
value of the location counter. The first attribute byte gives
the number of bytes generated by the line that defined the
label. The second attribute byte specifies the type of
operation in the line that defined the label; the following type
attributes are defined:

Address-type DC statement
Boolean-type DC statement
Character-type DC statement

Double precision floating-point-type DC statement
Floating-point-type DC statement
EQU or GEQU statement
Hexadecimal-type DC statement
Integer-type DC statement
Reference-address-type DC statement
Soft-reference-type DC statement
Instruction

Assembler directive

ORG statement

ALIGN statement

DS statement

Arithmetic symbolic parameter
Boolean symbolic parameter
Character symbolic parameter

NKXNUYOZREREERHIDO™MUOQW WP

The third attribute byte is the private flag (1=private).
This flag is used to designate a code or data segment as
private (see the section “Segment Types and Attributes” in
this chapter for a definition of private segments).

This record contains the name of a global label followed by
three 1-byte attribute fields and an expression. The label is
given the value of the expression. The first attribute byte
gives the number of bytes generated by the line that defined
the label. The second attribute byte specifies the type of
operation in the line that defined the label, as listed in the
discussion of the GLOBAL record. The third attribute byte is
the private flag (1=private). This flag is used to designate a
code or data segment as private (see the section “Segment
Types and Attributes” in this chapter for a definition of
private segments).

This record contains two numbers that represent the starting
and ending addresses of a range of memory that must be
reserved. .

9-17 - 8120186

Chapter 9: File Formats

EXPR $EB
ZEXPR $EC
BEXPR $ED

RELEXPR $EE

- LOCAL SEF

Beta Draft

Cortland Programmer’s Workshop

This record contains a 1-byte count followed by an
expression. The expression is evaluated, and its value is
truncated to the number of bytes specified in the count. The
order of the truncation is from most significant to least
significant.

This record contains a 1-byte count followed by an
expression. ZEXPR is identical to EXPR, except that any
bytes truncated must be all zeros. If the bytes are not zeros,
the record is flagged as an error.

This record contains a 1-byte count followed by an
expression. BEXPR is identical to EXPR, except that any
bytes truncated must match the corresponding bytes of the
location counter. If the bytes don’t match, the record is
flagged as an error. This record allows the linker to make
sure that an expression evaluates to an address in the current
memory bank.

This record contains a 1-byte length followed by an offset
and an expression. The offset is NUMLEN bytes long.
RELEXPR is used to generate a relative branch value that
involves an external location, The length indicates how
many bytes to generate for the instruction, the offset
indicates where the origin of the branch is relative to the
current location counter, and the expression is evaluated to
yield the destination of the branch. For example, a BNE LOC
instruction where LOC is external generates this record. For
the 6502 and 65816 microprocessors, the offset is 1.

This record contains the name of a local label followed by
three 1-byte attribute fields. The label is assigned the value
of the current location counter. The first attribute byte gives
the number of bytes generated by the line that defined the
label. The second attribute byte specifies the type of
operation in the line that defined the label, as listed in the
discussion of the GLOBAL record. The third attribute byte is
the private flag (1=private). This flag is used to
designate a code or data segment as private (see the section
“Segment Types and Attributes” in this chapter for a
definition of private segments). Note that the linker ignores
local labels from code segments, and recognizes local labels

from other data segments only if a USING record was

processed; see the discussion of the USING statement.

9-18 - 8120186

Cortland Programmer’s Workshop Chapter 9: File Formats

EQU

DS

LCONST

LEXPR

ENTRY

cRELOC

Beta Draft

$FO

$F1

$F2

$F3

$F4

$F5

This record contains the name of a local label followed by
three 1-byte attribute fields and an expression. The label is
given the value of the expression. The first attribute byte
gives the number of bytes generated by the line that defined
the label. The second attribute byte specifies the type of
operation in the line that defined the label, as listed in the
discussion of the GLOBAL record. The third attribute byte is
the private flag (1=private). This flag is used to
designate a code or data segment as private (see the section
“Segment Types and Attributes” in this chapter for a
definition of private segments).

This record contains a number indicating how many bytes of
0’s to insert at the current location counter.

This record contains a 4-byte count followed by absolute
code or data. The count indicates the number of bytes of
data. LCONST is similar to CONST except that it allows for a
much greater number of data bytes. Each relocatable
segment consists of LCONST records, DS records, and a
relocation dictionary. See the discussions on INTERSEG
records, RELOC records, and the relocation dictionary for
more information.

This record contains a 1-byte count followed by an
expression. The expression is evaluated, and its value is
truncated to the number of bytes specified in the count. The
order of the truncation is from most significant to least
significant. If the expression evaluates to a single label with
a fixed, constant offset, and the label is in another segment,
and that segment is a dynamic code segment, then the linker
is allowed to create an entry for that label in the jump table
segment. (The jump table segment provides a mechanism to
allow dynamic loading of segments as they are needed—see
the section “Load Files” in this chapter.) Only a JSL
instruction should generate an LEXPR record.

This record is used in the run-time-library entry dictionary; it
contains a 2-byte number and an offset followed by a label.
The number is the segment number. The label is a code-
segment name or entry and the offset is the relative location
within the load segment of the label. Run-time-library entry
dictionaries are described in the section “Run-Time Library
Files” in this chapter.

This record is the compressed version of the RELOC record.
It is identical to the RELOC record, except that the offsets are
2 bytes long rather than 4 bytes. The cRELOC record can be
used only if both offsets are less than $FFFF (65535).

9-19 8120186

Chapter 9: File Formats : Cortland Programmer’ s Workshop

cINTERSEG $F6 This record is the compressed version of the INTERSEG
record. Itisidentical to the INTERSEG record, except that
the offsets are 2 bytes long rather than 4 bytes, and it does
not include the 2-byte file number. The cINTERSEG record
can be used only if both offsets are less than $FFFF (65535)
and the file number associated with the reference is 1 (that is,
the initial load file). References to segments in run-time-
library files must use INTERSEG records rather than
cINTERSEG records.

Expressions

Several of the object module format records contain expressions. Expressions form an
extremely flexible reverse-polish stack language that can be evaluated by the linker to yield
numeric values such as addresses and labels. Each expression consists of a series of
operators and operands together with the values on which they act.

An operator takes one or two values from the evaluation stack, performs some
mathematical or logical operation on them, and places a new value onto the evaluation
stack. The final value on the evaluation stack is used as if it were a single value in the
record. Note that this evaluation stack is purely a programming concept, and does not
relate to any hardware stack in the computer. Each operation is stored in the object module
file in postfix form; that is, the value or values come first, followed by the operator. For
example, a binary operation is stored as Valuel Value2 Operator; the operation

Numl — Num2 is stored as '

NumlNum2—
The operators are as follows.
Binary Math Operators: These operators take two numbers as twos-complement
signed integers from the top of the evaluation stack, perform the specified operation, and

place the single-integer result back on the evaluation stack. The binary math operators
include

$01 Addition (+)
$02 Subtraction (=)
$03 Multplication (*)
$04 Division /)
$05 Integer Remainder (MOD)

$07 Bit Shift

The subtraction operator subtracts the second number from the first number. The division
operator divides the first number by the second number. The integer-remainder operator
divides the first number by the second number and returns the unsigned integer remainder
to the stack. The bit-shift operator shifts the first number by the number of bit positions
specified by the second number. If the second number is positive, then the first number is
shifted to the left, filling vacated bit positions with O’s (logical shift left). If the second

number is negative, then the first number is shifted right, preserving the sign bit (arithmetic
shift right).

Beta Draft ‘ 9-20 8120186

Cortland Programmer's Workshop Chapter 9: File Formats

Unary Math Operator: A unary math operator takes a number as a twos-complement
signed integer from the top of the evaluation stack, performs the operation on it, and places
the integer result back on the evaluation stack. The only unary math operator-currently
available is

$06 Negation (=)

Comparison Operators: These operators take two numbers as twos-complement
signed integers from the top of the evaluation stack, perform the comparison, and place the
single-integer result back on the evaluation stack. Each operator compares the second
number in the stack (TOS-1) with the number at the top of the stack (TOS). If the
comparison is true, a 1 is placed on the stack; if false, a 0 is placed on the stack. The
comparison operators include

$0C Less than or equal to (<=)
$0D Greater thanorequalto (>=) -

$O0E Not equal (<>or !=)
$OF Less than (<)

$10 Greater than)

$11 Equalto (=or==

Binary Logical Operators: These operators take two numbers as boolean values from
the top of the evaluation stack, perform the operation, and place the single boolean result
back on the stack. Boolean values are defined as being FALSE for the number 0, and
TRUE for any other number. Logical operators always return a 1 for true. The binary
logical operators include

$08 AND (Logical AND)
$09 O©OR (Inclusive OR)
$0A EOR (Exclusive OR)

Unary Logical Operator: A unary logical operator takes a number as a boolean value
from the top of the evaluation stack, performs the operation on it, and places the boolean
result back on the stack. The only unary logical operator currently available is

$0B NOT (Complement)

Binary Bit Operators: These operators take two numbers as binary values from the top
of the evaluation stack, perform the operation, and place the single binary result back on the
stack. The operations are performed on a bit-by-bit basis. The binary bit operators
include: ‘

$12 Bit AND (Logical AND)
$13 BitOR (Inclusive OR)
$14 Bit EOR (Exclusive OR)

Unary Bit Operator: This operator takes a number as a binary value from the top of the
evaluation stack, performs the operation on it, and places the binary result back on the
stack. The unary bit operator is

$15 BitNOT (Complement)

Beta Draft 921 820186

Chapter 9: File Formats Cortland Programmer’ s Workshop

Termination Operator: All expressions end with the termination operator $00.

An operand causes some value, such as a constant or a label, to be loaded onto the
evaluation stack. The operands are as follows.

Location Counter Operand ($80): This operand loads the value of the current
location counter onto the top of the stack. The location counter is loaded before the bytes
from the expression are placed into the code stream, so this is the value of the location
counter before the expression is evaluated.

Constant Operand ($81): This operand is followed by a number that is loaded on the
top of the stack.

Label Reference Operands ($82-$86): Each of these operand codes is followed by
the name of a label, and acted on as follows:

$82 Weak reference (see note).

$83. The value assigned to the label is placed on the top of the stack.

$84 The length attribute of the label is placed on the top of the stack.

$85 The type attribute of the label is placed on the top of the stack. (Type attributes

are listed in the discussion of the GLOBAL record in the section “Segment
Body” in this chapter).

$86 The count attribute is placed on the top of the stack. The count attribute is 1 if
the label is defined and O if it is not.

Note: The operand code $82 is referred to as the weak reference. The weak reference
is an instruction to the linker that asks for the value of a label if it exists. Itis notan
error if the linker cannot find the label. However, the linker does not load a segment
from a library if only weak references to it exist. If a label does not exist, a O is loaded
onto the top of the stack. This operand is generally used for creating jump tables to
library routines that may or may not be needed in a particular program.

-{elative Offset Operand ($87): This operand is followed by a number that is treated

as a displacement from the start of the segment. Its value is added to the value that the

location counter had when the segment started, and the result is loaded on the top of the
stack.

Example

Assume your assembiy-language program contains the following line:
IDX #MSG4-MSG3

This line would be assembled into two OMF recdrds:

CONST ($01) A2 ‘
EXPR (SEB) 01 : MSG4 MSG3 -

In hexadecimal format, these records appear as follows:

01A2EBO1 83044D53 47348304 4D534733| "k MSG4 MSG3

Beta Draft 9-22 8120186

Cortland Programmer’s Workshop Chapter 9: File Formats

0200 I

The initial $01 is the OMF opcode for a 1-byte constant; the $A2 is the 65816 opcode for -
the LDX instruction. The $EB is the OMF op code for an EXPR record, which is followed
by a 1-byte count indicating the number of bytes to which the expression is to be truncated
(301 in this case). The next number, $83, is a label-reference operand for the first label in
the expression, indicating that the value assigned to the label (MSG4) is to be placed on top
of the evaluation stack. Next is a length byte ($04), and MSG4 is spelled out in ASCII
codes.

The next sequence of codes, starting with $83, places the value of MSG3 on the evaluation
stack. Finally, the expression-operator code $02 indicates that a subtraction is to be
performed, and the termination operator ($00) indicates the end of the expression.

Note: You can use the DUMPOBJ utility program to examine the contents of any
OMF file. DUMPOBJ can list the header contents of each segment, and can list the
body of each segment in OMF format, 65816-disassembly format, or as
hexademical codes. DUMPOBJ is described in the section “Command Descriptions”
in Chapter 4.

Direct-Page/Stack Segments

The Corltand stack can be located anywhere in the lower 48K bytes of bank $00, and can
be any size up to 48K bytes. The direct page is the Corltand equivalent of the zero page of
8-bit Apple II's; the direct page can also be located anywhere in the lower 48K bytes of
bank $00, and be up to 48K bytes in length. Since more than one application can be loaded
in memory at one time on the Cortland, however, there may be more than one stack and
one direct page in bank $00. Furthermore, some applications may place some of their code
in bank $00. A given program should therefore probably not use more than about 4K
bytes for stack and direct page.

When an instruction uses one of the direct-page addressing modes, the effective address is
calculated by adding the value of the operand of the instruction to the value in the direct-
page register. The stack pointer, on the other hand, is decremented each time a stack-push
instruction is executed. The convention used on the Cortland, therefore, is to allocate a
single block of memory to the direct page and stack; the direct page occupies the lower part
of the allocated space, and the stack grows downward from the top of the space.

Important: ProDOS 16 provides no mechanism for detecting stack overflow or
underflow, or collision of the stack with the direct page. Your program must be
carefully designed to make sure those conditions cannot occur.

If you do not define a direct-page/stack segment in your program, ProDOS 16 assigns a
1024-byte direct page/stack when the System Loader INITIAL LOAD or RESTART call is

executed. To specify the size and contents of the direct-page/stack space, use the following
procedure:

1. Create a data segment in your source file with the size and contents you want for
your initial direct-page and stack. Start the segment with a DATA directive, use DS

and DC directives to define the contents of the segment, and end it with an END
statement.

Beta Draft 9-23 8120186

Chapter 9: File Formats Cortland Programmer’'s Workshop

2. Assemble the program.

3. Use a LinkEd file to link the program. Place the direct-page/stack segment in a load
segment by itself, and specify the segment-type KIND=$12 for the segment. For
example, suppose you have created the data segment DEFPAGE, and assembled it so
that it is now in the object file MYOBJ . A. To make that segment a direct page/stack

segment with the load-segment name DIRSTACK in the load file MYPROG, use the
following LinkEd commands:

KEEP MYPROG
SEGMENT /NUMBER=$12 DIRSTACK
SELECT MYOBJ.A (DEFPAGE)

LinkEd is described in Chapter 7.

Library Files

Library files (ProDOS 16 filetype $B2) contain object segments that the linker can search
for external references. Usually, these files contain general routines that can be used by
more than one application. Any object segment that contains a global definition that was
referenced during the link process is extracted from the library file; this segment is then
added to the load segment that the linker is currently creating.

Library files differ from object files in that library-file segments are not aligned to 512-byte
boundaries, and each library file includes a segment called the library dictionary segment
(segment-type KIND = $08). The library dictionary segment contains the names and
locations of all segments in the library file. This information allows the linker to scan the
file quickly for needed segments. Library files are created from object files by the

MAKELIB utility program (described in Chapter 4). The format of the library dictionary
segment is illustrated in Figure 9.3.

Beta Draft 9-24 8/20/186

Cortland Programmer’s Workshop Chapter 9: File Formats

37
~ BLKCNT/BYTECNT] - COUNT 7
7 v - Name o

7 / = Displacement -

= 'I S
- . ~ Oblect FileNumber 1 -
C SEGNAME 3 n PRIVATE 1]
= Segment -
== Displacement 1 =
S Header - =)
- COUNT . ' .
-] N Name
- Flenumber } = o Displacementn -
Hename Tengih | [~ 1
2 4 \ = Object FlleNumber n =1
7
I 4 F"encme 'l % Flle NOmeS = PR|VATE n]
'1? = S » Segment -
° . ° - Displacement n o=t
- Fllenumber n - Symbol
tlenome teagthn Table
a ¥ N
/ '
Filenamen]
£ - COUNT .
Symbol Syrmbol Name Length 1
Key: Names - 3
, / Symbol Name 1 /
J/ Indeterminate number of
,(bytes omitted from diagram E -{
¢ Sequence repeated ° o m. e .
« [ndeterminate number of times 020.00me Leng

~\
ST

Symbol Name n

Hal \H

a

Figure 9.3. Library Dictionary Segment

The library dictionary segment begins with a segment header, which is identical in form to
other segment headers except that it contains a BYTECNT field instead of the BLKCNT field.
The BYTECNT field indicates the number of bytes in the library dictionary segment,

including the header. The body of the library dictionary segment consists of three LCONST
records, as follows:

1. Filenames
2. Symbol table
3. Symbol names

Beta Draft 9-25 8120186

Chapter 9: File Formats Cortland Programmer’ s Workshop

The filenames record consists of one or more subrecords, each consisting of a 2-byte file
number followed by a filename. The filename is in Pascal-string format; that is, a length
byte indicating the number of characters, followed by an ASCII string. The filenames are
the full pathnames of the object files from which the segments in this library file were
extracted. The file numbers are assigned by the MAKELIB program, and are used only
within the library file; these file numbers are not related to the load-file numbers in the
pathname table.

The symbol table record consists of a cross reference between the symbol names in the
symbol-names record and the object segments in which the symbol names occur. For each
global symbol in the library file, the symbol table record contains the following:

1. A 4-byte displacement into the symbol names record indicating the start of the
symbol name.

2. The 2-byte file number of the file that the name occurred in. This is the filenumber

assigned by the MAKELIB utility, and used in the filenames record of this library
dictionary segment. ,

3. A2-byteflag, the Private flag. If this flag =1, then the symbol name is valid
only in the object file in which it occurred (that is, it was in a private segment). If
this flag = 0, then the symbol name is not private.

4. A 4-byte displacement into the library file indicating the beginning of the object
segment in which the symbol occurs. The displacement is to the beginning of the
segment even if the symbol occurs inside the segment; the location within the
segment is resolved by the linker.

The symbol names record consists of a series of symbol names; each name consists of a
length byte followed by up to 255 ASCII characters. All global symbols that appear in an
object segment, including entry points and global equates, are placed in the library
dictionary segment. Duplicate symbols are not allowed.

Library dictionary segments are created by the MAKELIB utility program ,which also
changes the file type of the file from $B1 to $B2 (see Chapter 4 for a discussion of the
MAKELIB utility). "

Load Files

Load files (ProDOS 16 file types $B3-$BE) contain the load segments that are moved into
memory by the System Loader. They conform to the object module format, but are
restricted to a small subset of that format. Because the segments must be quickly relocated
and loaded, they cannot contain any unresolved symbolic information. This section
discusses the following components of load files:

¢+ The format of each load segment is a loadable binary memory image that is followed
by a relocation dictionary. The memory image consists of long constant
(LCONST) records and define-storage (DS) records that can be located anywhere in
memory. The relocation dictionary contains relocation (RELOC) records and
intersegment (INTERSEG) records only; these records provide the information
needed to modify the memory image according to its location in memory.

* The jump table segment, when used, is the segment of a load file that contains the
calls to the System Loader to load dynamic segments. Each time the linker comes
across a statement that references a label in a dynamic segment, it generates an entry

Beta Draft 9-26 8120186

Cortland Programmer’s Workshop Chapter 9: File Formats

in the jump table segment for that label (it also creates an entry in the relocation
dictionary). The jump-table-segment entry contains the file number, segment
number, and offset of the reference in the dynamic segment, and a call to the System
Loader to load the segment. The relocation-dictionary entry provides the information
the loader needs to patch a call to the jump-table segment into the memory image.

« The pathname segment, when used, is the segment of a load file that contains a
cross reference between file numbers and pathnames that the System Loader needs in
order to reference load segments.

» Aninitialization segment, when used, is executed by the System Loader to
perform any initialization required by the application.

The load segments in a load file are numbered by their relative location in the load file,
where the first load segment is number 1. The segment number is used by the System
Loader to find a specific segment in a load file.

Memory Image and Relocation Dictionary

Each load segment consists of two parts:

1. A memory image consisting of LCONST records and DS records containing all of the
code and data that do not change with load address (with space reserved for location-
dependent addresses). The DS records are inserted by the linker (in response to DS
records in the object file) to reserve large blocks of space, rather than putting large
blocks of zeros in the load file.

2. A relocation dictionary that provides the information necessary to patch the LCONST
records at load time.

When the segment is loaded into memory, each LCONST record or DS record is loaded in
one piece, and then the relocation dictionary is processed. The relocation dictionary
includes RELOC and INTERSEG records only: the RELOC records provide the information
necessary to recalculate the values of location-dependent local references, and the
INTERSEG records provide the information necessary to transfer control to external
references. See the discussions of the RELOC and INTERSEG records in the section
“Segment Body” in this chapter for more information. The sequence of events that occurs
when a JSL to an external dynamic segment is executed is described in detail in the
“System Loader” chapter of the Cortland ProDOS 16 Technical Reference manual.

Jump Table Segment

The jump table segment is a segment in a load file that is created by the linker to allow
dynamic loading of code segments as they are needed during program execution. The
segment type of the jump table segment is KIND = $02. There is one jump table segment
per load file; it is a static segment, and is loaded into memory at program boot time at a
location determined by the Memory Manager at that time. The System Loader maintains a
list, called the jump table list (or just jump table), of the jump table segments in memory.

Each entry in the jump table segment corresponds to a call to an external (inter-segment)
routine in a dynamic segment. The jump table segment initially contains entries in the
unloaded state. When the external call is encountered during program execution, a jump to
the jump table segment occurs. The code in the jump table segment entry in turn jumps to

Beta Draft 9-27 8/20/86

Chapter 9: File Formats Cortland Programmer’'s Workshop

the System Loader. The System Loader figures out which segment is referenced and loads
it. Next, the System Loader changes the entry in the jump table segment to the loaded
state. The entry stays in the loaded state as long as the corresponding segment is in
memory. If the System Loader unloads a segment, all jump table segment entries that
reference that segment are changed to their unloaded states.

Unloaded State

The unloaded state of a jump table segment entry contains the code that calls the System
Loader to load the needed segment. An entry contains the following fields:

User ID (2 bytes)

Load file number (2 bytes)

Load segment number (2 bytes)

Load segment offset (4 bytes)

JSL to jump-table load function (4 bytes)

The user ID field is reserved for the identification number assigned to the program by the
UserID Manager; until initial load time, this field is 0. The load-file number, segment
number, and segment offset refer to the location of the external reference. The rest of the
entry is a call to the Systern Loader jump-table load function. The user ID and the address
of the load function are patched by the System Loader during initial load. See the Cortland
ProDOS 16 Reference manual for information on the jump-table load function. A load-file
number of 0 indicates that there are no more entries in this jump table segment (there may

be other jump table segments for this program—each load file that is part of a program has
its own jump table segment).

Loaded State

The loaded state of a jump table segment entry is identical to the unloaded state except that
the JSL to the System Loader jump-table load function is replaced by a JML to the external
reference.. A loaded entry contains the following fields:

User ID (2 bytes)

Load file number (2 bytes)

Load segment number (2 bytes)
Load segment offset (4 bytes)
JML to external reference (4 bytes)

Pathname Segment

The pathname segment is a segment in a load file that is created by the linker to help the
System Loader find the load segments of run-time library files that must be loaded
dynamically. It provides a cross reference between file numbers and file pathnames. The
segment type of the pathname segment is KIND = $04. When the loader processes the load
file, it adds the information in the pathname segment to the pathname table that it maintains
in memory. Pathname tables are described in the Cortland ProDOS 16 Reference manual.

The pathname segment contains one entry for each load file and run-time library file
referenced in the load file. The format of each entry is:

Bera Draft 9-28 8/20/86

Cortland Programmer’s Workshop Chapter 9: File Formats

File number (2 bytes)

File date (2 bytes)

File time (2 bytes)

File pathname (length byte and ASCII string)

File number: A number assigned by the linker to a specific load file. File number 1 is
reserved for the load file in which the pathname segment resides (usually the load file of the
application program). A file number of 0 indicates that there are no more entries in this
pathname segment.

File date and file time: ProDOS 16 directory items retrieved by the linker during the
link process. The System Loader compares these values with the ProDOS 16 directory of
the run-time library file at run time. If they are not the same, then the System Loader does
not load the requested load segment, thus ensuring that the run-time library file used at link
time is the same as the one loaded at execution time.

File pathname: The pathname of the load file. The pathname is listed as a Pascal-type
string; that is, a length byte followed by an ASCII string. A pathname segment created by
the linker may contain partial pathnames. A partial pathname begins with one of the 8
prefixes supported by ProDOS 16; these prefixes have the form n/, where » is a number
from O to 7. The first three prefixes have fixed definitions, as follows:

0/ System prefu{ (initially the volume from which ProDOS 16 was booted).

1/ Application subdirectory (the subdirectory out of which the application is
running).

2/ System library subdirectory (initially /boot_volume/SYSTEM/LIBS/).
ProDOS 16 prefixes are described in the Cortland ProDOS 16 Reference manual.

Currently, run-time library files and multiple load files are not supported by the linker and

the System Loader; the pathname segment is created, but contains only one pathname (that
of the single load file).

Initialization Segment

The initialization segment is an optional segment in a load file. When the System Loader
encounters an initialization segment during the initial loading of segments, it transfers
control to the initialization segment. After the initialization segment returns control to the
System Loader, the loader continues the normal initial load of the remaining segments in
the load file. The segment type of the initialization segment is KIND = $10.

An example of use of the initialization segment is to initialize the graphics environment used
by an application and to display a “splash screen” (such as a copyright message and
company logo) for the duration of the program load.

The initialization segment must obey the following rules:

+ It must not reference any other segments (that is, no INTERSEG records can be
used).

» It must exit with an RTL instruction.

Beta Draft 9-29 8120186

Chapter 9: File Formats Cortland Programmer’ s Workshop

Run-Time Library Files

Run-time library files (ProDOS 16 file type $B4) contain dynamic load segments that the
System Loader can load when they are referenced through the jump table. Usually, these
files contain general routines that can be used by more than one application.

Run-time library files are scanned by the linker during the link process. When the linker
finds a referenced segment in the run-time library file, it generates an INTERSEG reference
to the segment in the relocation dictionary, and adds an entry to the jump table segment for
that file. It does not extract the segment from the file and place it in the file that referenced
it, as it does for ordinary library files. In other words, references to segments in run-time
library files are treated like references to dynamic segments in any other load file.

The last load segment of the run-time library file contains all the information the linker
needs in order to find referenced segments; it is not necessary for the linker to scan through
every subroutine in every segment each time a subroutine is referenced. The last segment
contains a table of ENTRY records, each one corresponding to a segment name or global
reference in the run-time library file.

Run-time library files are created from corresponding object files. When you create a run-
time library file, you specify the location of the source file and the pathname at which the
run-time library file will be located at load time. The location of the run-time library file is
stored in the pathname segment in the load file of the application program. At load time,
the run-time library file must reside in the specified subdirectory.

Currently, run-time library files are not supported by the linker or System Loader; this
specification is provided to allow for future enhancements to the system.

Shell Load Files

Shell load files (ProDOS 16 file type $B5) are executable load files that are run under a
shell program, such as the CPW Shell. The shell calls the System Loader’s Initial Load
function, and transfers control to the shell load file by means of a JSL instruction, rather
than launching the program through the ProDOS 16 QUIT function. Therefore, the shell
does not shut down, so that the program can use shell facilities during execution. The
program returns control to the shell with a ProDOS 16 QUIT call, which the shell must
intercept and act on. Shell load files should use standard Text Toolkit calls for all I/O; the
shell program is responsible for initializing the text toolkit routines.

Note: A load file of file type $BS5 can be launched by ProDOS via the QUIT call if
it requires no support other than standard input from the keyboard and output to the
screen. ProDOS initializes the text toolkit to use the Pascal I/O drivers (see the
Cortland Toolbox Reference) for the keyboard and 80-column screen. A program
launched in this way does not operate under a shell.

As soon as a shell load file is launched, it should check the X and Y registers for a pointer
to the shell-identifier string and input line. The X register holds the high word and the Y
register holds the low word of this pointer. The shell program is responsible for loading

this pointer into the index registers, and for placing the following information in the area
pointed to:

Beta Draft 9-30 8120186

Cortland Programmer’s Workshop Chapter 9: File Formats

1. An 8-byte ASCII string containing an identifier for the shell (the identifier for the
CPW Shell, for example, is BYTEWRKS). The shell load file should check this
identifier to make sure that it has been launched by the correct shell, so that the
environment it needs is in place. If the shell identifier is not correct, the shell load
file should write an error message to standard error output (normally the screen), and
exit with a ProDOS QUIT call.

2 A null-terminated ASCII string containing the input line for the shell load file. The
shell program can strip any I/O redirection or pipeline commands from the input line,
since those commands are intended for the shell itself, but must pass on all input
parameters intended for the shell load file.

The shell program must request a user ID for the shell load file; the user ID is passed in the
accumulator, If the shell load file does not include a direct-page/stack segment, the shell
must set up a direct page and stack area for the shell load file. The shell should follow the
same conventions used by ProDOS 16 for default direct page/stack allocation; see the
section “Direct-Page/Stack Segments” in this chapter, and the Cortland ProDOS 16
Reference manual for more information on direct page and stack allocation.

Note: ProDOS 16 does not support the identifier string or input line. If the shell
load file is launched by ProDOS 16, the X and Y registers contain zeros.

Some shell load files may launch other programs; for example, a shell nested within
another shell would have ProDOS 16 filetype $BS. When a shell load file requests a user
ID for a program, the calling program is responsible for intercepting ProDOS QUIT calls
and system resets, so that it can remove from memory all memory buffers with that user ID
before passing control to the shell.

A shell load file should use the following procedure to quit:

1. If the shell load file has requested any user ID’s, it must release all memory buffers
with those user ID’s. ‘

2. The shell load file must place an error code in the accumulator. If no error occurred,
the error code should be $0000. The error code $FFFF is used as a general (non-
specific) error code. You can define any other error codes you want to use for a
shell program you write, and can handle them in any way you wish.

3. The shell load file should execute a ProDOS 16 QUIT call. The shell program that
launched the shell load file is responsible for intercepting the QUIT call, releasing all
memory buffers associated with that shell load file, and performing any other system
tasks normally done by ProDOS 16 in response to a QUIT.

Important: When a shell launches a shell load file, the address of the shell
program is not pushed onto the ProDOS 16 QUIT stack; therefore the shell must
handle the shell load file’s QUIT call itself, or control is not returned to the shell.
In order to do this, the shell program must intercept a// ProDOS 16 calls. The shell

may pass any other ProDOS 16 calls on to ProDOS, but it must handle QUIT calls
itself.

Beta Draft 9-31 8120186

Chapter 9. File Formats Cortland Programmer’s Workshop

Beta Draft 9-32 8120156

Cortland Programmer’s Workshop Chapter 10: Shell Calls

Chapter 10

Shell Calls

The Cortland Progammer’s Workshop Shell acts as an interface and extension to ProDOS
16. The shell provides several functions not provided by ProDOS 16; these functions are
called exactly like ProDOS 16 functions. Every time a program running under the CPW
Shell issues a ProDOS 16-like call, the shell intercepts the call; if it is a shell call, the shell
interprets it and acts on it. If it is a ProDOS 16 call, the shell passes it on to ProDOS 16.
This chapter describes all of the shell’s ProDOS 16-like calls, here referred to as shell
calls.

The shell calls that are provided are listed in Table 10-1.
Table 10-1. Shell Calls

Call Name Call Use
(Number
Get LInfo ($0101) Passes parameters from the shell to a program
Set_LInfo ($0102) Passes parameters from a program to the shell
Get_Lang ($0103) Reads the current language number
Set Lang (30104) Sets the current language number
Error (30105) Prints error message for a Cortland tool call
Set ($0106) Sets the value of a shell variable
Init Wildcard ($0109) Provides a filename that includes a wildcard character
to the shell

Next_Wildcard ($010A) Causes the shell to find the next filename that matches
the wildcard filename

Read ($010B) Reads the value of a shell variable
Execute ($010D) Sends a command or list of commands to the shell
command interpreter

Switch_Window ($010E) Returns control to the shell when the mouse is clicked
in a window owned by another program

Redirect ($0110) Sets device and file for I/O redirection
Is_Window (30112) Determines whether a file is open as a window on the
‘ desktop
Stop (30113) Detects a request for an early termination of the
program

Read_Indexed (307?7) Reads variable table

Beta Draft 10-1 8120186

Chapter 10: Shell Calls Cortland Programmer’s Workshop

Making a Shell Call

An assembly-language calling program makes a shell call by executing a set of instructions
and directives referred to as a shell-call block. The shell-call block contains a pointer to
a parameter block. The parameter block is used for passing information between the
calling program and the shell; additional information for some calls is passed in hardware
registers. In practice, the shell-call block is normally executed by an assembler macro.
This section discusses these aspects of shell calls.

Important: Although shell calls are called exactly like ProDOS 16 calls, this
section does not provide all of the information relevant to ProDOS 16 calls.
ProDOS 16 calls are described in the Cortland ProDOS 16 Reference manual.

Note: This chapter assumes that you are using the CPW Assembler to make shell
calls. See the Cortland Programmer’s Workshop Assembler Reference for more
information on the CPW Assembler. If you want to access shell calls from a
program written in another language, you will probably have to integrate an
assembly-language routine into that program. Some languages provide their own
assembly-language interface; if the language you are using does not, you can use
the techniques illustrated in Chapter 3 of this manual to combine an assembly-
language subroutine with routines written in another language.

The Call Block

A shell-call block consists of a JSR (jump to subroutine) or a JSL (long jump to
subroutine) to the ProDOS 16 entry point***is that right?***, followed by a 2-byte
system call number and a 4-byte parameter block pointer. The CPW Shell intercepts the
call and determines whether it is a CPW Shell call or ProDOS 16 call. If a shell call, it
performs the requested function, if possible, and returns execution to the instruction

immediately following the call block. If a ProDOS 16 call, the shell passes it on to
ProDOS 16.

When making the call, the the processor must be in full native mode. The call block looks
like this:

JSL PRODOS ; Dispatch call to ProDOS 16 entry
DC I2'CALLNUM® ; 2=byte call number

[oleg I4'PARMBLOCK! ; 4-byte parameter block pointer
BCS ERROR ; If carry set, go to error handler

; otherwise, continue. .
ERROR ; error handler

PARMBLOCK - ; parameter block
The call block itself consists of only the JSL instruction and the DC assembler directives.

The BCS instruction in this example is a conditional branch to an error handler called
ERROR.

Beta Draft 102 8/20/86

Cortland Programmer’s Workshop ‘ Chapter 10: Shell Calls

A JSL rather than a JSR is required because the JSL uses a 3-byte address, allowing a
caller to make the call from anywhere in memory. The JSR instruction uses only a 2-byte
address, restricting it to jumps and returns within the current (64K) bank of memory.

Shell-Call Macros

For each call listed in Table 10-1, there is a CPW Assembler macro that you can use to
make the call. The macro call consists of the name of the call (as shown in Table 10-1),
with the address of the parameter block in the operand field. For example, to call the
Get_LInfo function, use the following sequence:

MCOPY MY .MACROS ; Make the macro file available
GET_LINFO PARMBLOCK ; The macro call
BCS ERROR ; If carry set, go to error handler

; otherwise, continue, .

ERROR ; error handler

PARMBLOCK ; parameter block

The Parameter Block

A parameter block is a specifically-formatted table that occupies a set of contiguous bytes in
memory. It consists of a number of fields that hold information that the calling program
supplies to the shell, as well as information returned by the shell to the caller.

Every shell call requires a valid parameter block (PARMBLOCK in the above examples),
referenced by a 4-byte pointer in the call block or by the operand of the macro call. You are
responsible for constructing the parameter block for each call you make; the block may be
anywhere in memory. Formats for individual parameter blocks accompany the detailed
system call descriptions in this chapter.

Types of Parameters

Each field in a parameter block contains a single parameter. There are three types of
parameters used by the shell: values, results, and pointers. Each is either an input to the
shell from the caller, or an output from the shell to the caller.

e A value is a numeric quantity, 1 or more words long, that the caller passes to the
shell through the parameter block. It is an input parameter.

* A result is a numeric quantity, 1 or more words long, that the shell places into the
parameter block for the caller to use. It is an output parameter.

Beta Draft 10-3 8/20/186

Chapter 10: Shell Calls Cortland Programmer’s Workshop

» A pointer is the 4-byte address of a location containing data, code, an address, or
buffer space in which the shell can receive or place data. The pointer itself is an
input; the data it points to may be either input or output.

A parameter may be both a value and a result. Also, a pointer may designate a location that
contains a value, a result, or both.

Strings: Unless noted otherwise, each string in a parameter block or pointed to by
a parameter block consists of a length byte, which is a binary number indicating the
number of characters in the string, followed by ASCII characters.

Setting up a Parameter Block in Memory
Each CPW Shell call references a parameter block, which may be anywhere in memory.

All applications must obtain needed memory from the Memory Manager, and therefore

cannot know in advance where the memory segment holding such a parameter block will
be.

There are two ways to set up a parameter block in memory:

1. Code the block directly into the program, referencing it with a label. The parameter
block will always have the same relative location in the program code.

2. Use Memory Manager and System Loader calls to place the block in memory:
The first method is by far the simplest and most typical way to do it. For instructions on
using the second method, see the Cortland ProDOS 16 Reference manual.
Register Values
There are no register requirements on entry to a shell call. The CPW Shell saves and
restores all registers except the accumulator (A) and the processor status register (P); those

two registers store information on the success or failure of the call. On exit,the registers
have these values:

A zero if call successful; if nonzero, number is the error code
X unchanged

Y unchanged

S unchanged

D unchanged

P {see below)

DB unchanged

PB unchanged

PC address of location following the parameter block pointer

Unchanged means that CPW initially saves, and then restores when finished, the value the
register had just before the shell call.

Beta Draft 104 8120186

Cortland Programmer’s Workshop Chapter 10: Shell Calls

On exit, the processor status register (P) bits are

undefined

undefined

unchanged

unchanged

unchanged

unchanged

undefined

zero if call successfull, 1 if not
undefined

(DON""D-NB<»’3

Call Descriptions

This section lists each of the shell calls, describes its use, and describes the contents of its
parameter block. The possible errors returned by a call are listed at the end of each call
description. The calls are listed in alphabetical order. Table 10-1 lists all of the calls in
order of their call numbers.

Direction ($010F)

A program can use this function to find out whether command-line I/O redirection has
occurred. This function can be used by a program to determine whether to send form feeds
to standard output, for example. -

Parameter List:

0
: - device o
2 .
direct .
3
Offset Label Parameter Name Size and Type
[range of values]
$00-301 device Device number 2-byte value

[$0000-$0002]

This parameter indicates which type of input or output has been
redirected, as follows:

$0000 Standard input

$0001 Standard output
$0002 Error output

$02-$03 direct Direction 2-byte value
[$0000-$0002]

Beta Draft 10-5 8120186

Chapter 10: Shell Calls Cortland Programmer’s Workshop

This parameter indicates the type of redirection that has occurred,
as follows:

$0000 Console

$0001 Printer

$0002 Disk file

Possible Errors

$53 Parameter out of range

Beta Draft 106 8120186 .

R

Cortland Programmer’s Workshop Chapter 10: Shell Calls

Error ($0105) -

When a Cortland tool call returns an error, your program can use this function to print out
the name of the tool and the appropriate error message. This function makes it
unneccessary for your program to store a complete table of error messages for tool calls.
The error number is placed in the accumulator by the tool; you need only store the
accumulator value in the parameter block and execute this call to print the error message to
standard error output.

Parameter List;

0

o efrror b
1
Offset Label Parameter Name Size and Type
[range of values]
$00-$01 error Error number 2-byte value

[$0000-$FFFF]

This parameter specifies the error number returned by the tool
call.

Possible Errors

None

Beta Draft 10-7 ‘ 8/120/186

Chapter 10: Shell Calls) Cortland Programmer’s Workshop

Execute ($010D)

This function sends a command or list of commands to the CPW Shell command
interpreter. ***Do I need to say something about the Shell EXECUTE

command or the local variable table? Has the echo parameter been
eliminated?***

Parameter List:

0

s echo =

2

o -

- comm e

4

e -4
Offset Label Parameter Name Size and Type

[range of values]

$00-$01 echo Echo command flag 2-byte value

[$0000-$0001]

has this parameter been eliminated?If you set this
flag to 1 (binary), then the commands being executed are sent to
standard output (unless the variable {echo} is null). This flag
should be set to O for interactive-level commands, and to 1 for
Exec files. Exec files and variables are described in the section
“Exec Files” in Chapter 4.

$02-$05 comm Address of command string 4-byte pointer
[$OOOO 0000-$00FF FFFF]

The address of the buffer in which you place the commands. If
you include more than one command, separate the commands
with semicolons (;) or carriage return characters ($0D).
Terminate the command string with a null character ($00). Any
output is sent to standard output.

If the variable {exit} is not null and any command returns a
non-zero error code, then any remaining commands are ignored.
Error codes and variables are described in the section “Exec
Files” in Chapter 4.

Possible Errors

A Memory manager errors for allocate memory, lock, unlock calls
others Error returned by the last command executed
$30 Error on exit from an Exec file (command returned a non-zero error code)

#*4%97s there such an error?***

Beta Draft 108 8120186 -

Cortland Programmer’s Workshop Chapter 10: Shell Calls

Get_Lang ($0103)

This function reads the current language number. Language numbers are described in the
section “Command Types and the Command Table” in Chapter 4, and are listed in
Appendix A.

Parameter List:

- lang -
Offset Label Parameter Name Size and Type
[range of values]

$00-$01 lang Language number 2-byte result
. [$0000-$7FFF]

The current CPW language number. The current language
number is set by the CPW Editor when it opens an existing file,
or by the user with a CPW Shell command.

Possible Errors

None

Beta Draft 10-9 ‘ 8/20/86

Chapter 10: Shell Calls Cortland Programmer’s Workshop

Get_LInfo ($0101)

This function is used by an assembler, compiler, linker, or editor to read the parameters
that are passed to it. When you make this call, you reserve the specified amount of space
for each parameter in the parameter block; when the CPW Shell returns control to your
program, you can then read the parameter block to obtain the information you need.

Use the Set_LInfo call when your program is finished before executing an RTL or
ProDOS 16 QUIT call to return control to the shell.

Parameter List:

0
W\]
2 o sfile -
- -
4
5 p .
- dfile -
6
e o]
8
of -
A parms -
ol -
g
o | -
e istring =
- -
10 merr
1 merrt
12 lops
13 kflag
14
5] 7
e mflags et
AN T
18
0l 7
Al pflags -
[7
1C
0f B
el org -
38 n

Beta Draft S 10-10 8120186

Cortland Programmer’s Workshop Chapter 10: Shell Calls

Offset Label

$00-$03 sfile

$04-$07 dfile

$08-0B parms

$0C-30F istring

$10 merr

$11 merrf

Beta Draft

Parameter Name , Size and Type
[range of values]

Address of source filename 4-byte pointer
[$0000 0000-$00FF FFFF]

The address of a 65-byte-long buffer containing the filename of
the source file; that is, the file that the compiler or assembler is to
process. The filename can be any valid ProDOS 16 filename, and
can be a partial or full pathname.

Address of output filename 4-byte pointer
[$0000 0000-$00FF FFFF]

The address of a 65-byte-long buffer containing the filename of
the output file (if any); that is, the file that the compiler or
assembler writes to. The filename can be any valid ProDOS 16
filename, and can be a partial or full pathname.

Address of parameter list 4-byte pointer
[$0000 0000-$00FF FFFF]

The.address of a 256-byte-long buffer containing the list of
names from the NAME S= parameter list in the CPW Shell
command that called the assembler or compiler. If there was no

NAMES parameter list, the buffer pointed to by parms begins
with $00.

Address of input strings 4-byte result
[$0000 0000-SO0FF FFFF]

The address of a 256-byte-long buffer containing the string of
commands to be passed on to a specific language compiler. For
example, if the COMP ILE command includes the parameter
C=(-I/CINCLUDES/), then the string enclosed in parentheses
is found in that buffer when the C compiler is called.

Maximum error level allowed 1-byte result
[$00-$10]

If the maximum error level found by the assembler, compiler, or
linker (merrf) is greater than merzx, then the CPW Shell does
not call the next program in the processing sequence. For
example, if you use the ASML command to assemble and link a

‘program, but the assembler finds an error level of 8 when merr

equals 2, then the linker is not called when the assembly is
complete.

Maximum error level found 1-byte result
[$00-$FF]

10-11 : 8/20/56

Chapter 10: Shell Calls Cortland Programmer’s Workshop

This field is used by the Set LInfo call to return the maximum

error level found. This field is undefined for the Get_LInfo
call.

$12 lops Operations flags 1-byte result
[$00-$10]

This field is used to keep track of the operations that are to be
performed by the system. The format of this byte is as follows:

Bit: [7 |s 5[4 |3|2]|1]0
Vajue: |0 |0 | O0fO O I|EI|L]| C

where C = Compile
L =Link
E = Execute

When a bit is set (1), the indicated operation is to be done. For
example, the COMP ILE command sets bit 0, while the CMPLG
command sets bits 0, 1, and 2. When a compiler finishes its
operation and returns control to the CPW Shell, it clears bit O
unless a file with another language is appended to the source.

$13 kflag Keep flag 1-byte result
($00-303]

This flag indicates what should be done with the output of a
compiler, assembler, or linker, as follows:

Beta Draft C o 10-12 8120186

Cortland Programmer’ s Workshop Chapter 10: Shell Calls

$14-317 mflags

$18-31B pflags

" $1C-$1F org

Beta Draft

Kflag Meaning

Value

$00 Do not save output.

$01 Save to an object file with the root filename

pointed to by dfile (compilers and assemblers
only). For example, if the output filename
pointed to by dfile is PROG, then the first
segment to be executed should be put in
PROG . ROOT, and the remaining segments
should be put in PROG . A. For linkers, save to a
load file with the name pointed to by dfile (for
example, PROG).

$02 The .ROOT file has already been created (by
another language compiler, for example). In this
case, the first file created by the compiler or
assembler should end in the . A extension.

$03 At least one alphabetic suffix has already been
used. In this case, the compiler or assembler
must search the directory for the highest
alphabetic suffix that has been used, and then use
the next one. For example, if PROG.ROOT,
PROG.A, and PROG. B already exist, the
compiler should put its output in PROG. C.

See the section “Compilers and Assemblers” in Chapter 8 for
more information on object-file naming conventions.

Flags with a minus sign 4-byte result
[binary string]

This parameter passes command-line-option flags such as ~L or
—C. The first 26 bits of these four bytes represent the letters
A-Z. For each flag set with a minus sign, the corresponding bit
is set to 1. See the discussions of the ALINK and ASML
commands in Chapter 4 for descriptions of these option flags.

Flags with a plus sign 4-byte result
[binary string]

This parameter passes command-line-option flags such as +L or
+C. The first 26 bits of these four bytes represent the letters
A-Z. For each flag set with a minus sign, the corresponding bit
is set to 1. See the discussions of the ALINK and ASML
commands in Chapter 4 for descriptions of these option flags.

Origin 4-byte result
[$0000 0000-$FFFF FFFF]

The start address of the load file. The origin is used only by the
linker. This field is also used on entry to an editor to provide a

10-13 8120186

Chapter 10: Shell Calls

Possible Errors

None

Beta Draft

Cortland Programmer's Workshop

displacement into the file. The editor can then place at the top of
the screen the line that corresponds to this displacement.

10-14

820186

Cortland Programmer’s Workshop Chapter 10: Shell Calls

Init Wildcard

($0109)

This function provides to the CPW Shell a filename that can include a wildcard character.
The shell can then search for filenames matching the filename you specified when it
receives a Next_Wildcard command. This function accepts any filename, whether it
includes a wildcard or not, so you can call this function every time you want to search for a

filename.

Parameter List:

Offset Label

$00-$03 file

Possible Errors

0
e -]
L w_file -

2

S -
Parameter Name Size and Type

[range of values]

Address of filename. 4-byte pointer ***2 bytes??***

[$0000 0000-$00FF FFFF]

The address of a buffer containing a filename that includes a
wildcard character. Examples of such filenames are:

A.—.
/CPW/MYPROGS/ 7 .ROOT

When you execute a Next_Wildcard call, the shell finds the
next filename that matches the filename pointed to by file. If
the wildcard character you specified was a question mark (?),
then the filename is written to standard output and you are
prompted for confirmation before the file is acted on or the next
filename is found. The use of wildcard characters is described in
the section “Wildcards” in Chapter 2.

Errors for the following ProDOS 16 and Memory Manager calls. See the Cortland
ProDOS 16 Reference manual and the Cortland Toolbox Reference manual for
descriptions of these errors. ***Is this list correct? Complete?***

Open

Read

Close

Dispose
Get_Info

Get end of file
Lock

Allocate new memory

Beta Draft

10-15 8/20/86

Chapter 10: Shell Calls Cortland Programmer’s Workshop

Is Window ($0112)

Use this function to find out if a file is open as a window on the desktop, and to get a
pointer to the start of the file if it is open as a window. If the file is open on the desktop,
this function also returns the length of the file in bytes.

Parameter List:

0
- | -
o window -
N -
4
sk -
o wbuffer -
6
o -
8
of -
A flength -
ol -
Offset Label Parameter Name Size and Type
[range of values]
$00-$03 window Pointer to file name 4-byte pointer

[$0000 0000-$00FF FFFF]

The address of a buffer containing the name of the file that you
want information about.

$04-307 wbuffer Pointer to file buffer 4-byte pointer
[$0000 0000-$OOFF FFFF]

If the file is open as a window on the desktop, the shell returns
the address of the start of the file. If the file is not open, the shell
returns a zero in this field.

Note: Since windows have not yet been implemented in
the Cortland Programmer”’s Workshop, this call always
returns a 0 in the wbuffer field.

$08-$0B flength Length of file 4-byte result
[$0000 0000-$O0FF FFFF]

If the file is open as a window on the desktop, the shell returns
the length of the file in bytes. If the file is not open on the
desktop, this field is undefined. .

Possible Errors

$40 Invalid pathname syntax

Beta Draft 10-16 8/20/186

Cortland Programmer’s Workshop Chapter 10: Shell Calls

Next Wildcard ($010A)

Once a filename that includes a wildcard has been suppled to the shell with an

Init Wildcard call, the Next Wildcard call causes the shell to find the next
filename that matches the wildcard filename. For example, if the wildcard filename
specified in Init Wildcard were /CPW/UTILITY/XREF . ?, then the firSt filename
returned by the shell in response to a Next_Wildcard call rmght be
/CPW/UTILITY/XREF ,ASM65816.

Parameter List:

== nextfile e

w N - O

Offset Label Parameter Name Size and Type
[range of values]

$00-$03 nextfile Address of next filename 4-byte pointer
[$0000 0000-$00FF FFFF]

The address of the buffer to which the shell has returned the next
filename that matches a wildcard filename. The wildcard filename
is the last one specified with an Init_Wildcard call. If there
are no more matching filenames, or if Init Wi ldcard has not
been called, then the shell returns a null string (that is, a string
with length zero). See also the description of
Init_Wildcard.

Possible Errors

None

Beta Draft 10-17 8120186

Chapter 10: Shell Calls Cortland Programmer’s Workshop

Read ($010B)

This function reads the string associated with a variable (that is, the value of the variable).
The value returned is the one valid for the currently-executing Exec file and any Exec files
called from that file, or for the interactive command interpreter and all Exec files called from
the command interpreter (if that is the command level in use). Variables and Exec files are
described in the section “Exec Files” in Chapter 4. Use the Set call to set the value of a
variable.

Parameter List:

0
1 =1
= Var_name ==
2
N -
4 L
5
oo value e
6
= -
Offset Label Parameter Name Size and Type

[range of values]

$00-$03 var name Pointer to name of variable 4-byte pointer
[$0000 0000-$O0FF FFFF]

This is a pointer to a 256-byte buffer that contains the name of the
variable whose value you wish to read. The variable name
consists of a length byte and a string of ASCII characters.

$04-307 value Pointer to value of variable 4-byte pointer
[$0000 0000-$00FF FFFF]

This is a pointer to a 256-byte buffer into which the shell places
the value of the variable. The value consists of a length byte and
a string of ASCII characters. The value consists of a null string
(that is, the length byte is $00) for an undefined variable.
***who writes this pointer—you or the shell? is the
buffer in the shell's space or your program’s?#***

Possible Errors

None

Beta Draft | 10-18 820186

Cortland Programmer’s Workshop Chapter 10: Shell Calls

Read Indexed ($0172?2)***292%%x*

You can use this function to read the contents of the variable table for the command level at
which the call is made. You repeat this call, incrementing the index number by 1 each time,
until the entire contents of the variable table have been returned. The CPW Shell’s SET
command executes this command when it is executed with no parameters, for

example. ***is that true?***

Parameter List:

0
N -
var_name =
2
N -
4
o -
- value -
6
7
8
= index =t
9
Offset Label Parameter Name Size and Type

[range of values]

$00-$03 var_name Pointer to name of variable 4-byte pointer
[$0000 0000-$00FF FFFF]

This is a pointer to a 256-byte buffer in which the shell places the
name of the next variable in the variable table. The variable name
consists of a length byte and a string of ASCII characters. A null
string is returned when the index number exceeds the number of
variables in the variable table.

$04-307 value Pointer to value of variable 4-byte pointer
[$0000 0000--$00FF FFFF]

This is a pointer to a 256-byte buffer into which the shell places
the value of the variable. The value consists of a length byte and
a string of ASCII characters. The value consists of a null string
(that is, the length byte is $00) for an undefined variable.

$08-309 index Index number 2-byte value
[$0000-$FFFF]

This is an index number that you provide. Start with $01 and
increment the number by 1 with each successive

Read Indexed call until there are no more values in the
variable table.

Possible Errors

Beta Draft 10-19 8120186

Chapter 10: Shell Calls Cortland Programmer’'s Workshop

Errors for the following Memory Manager calls. See the Cortland Toolbox
Reference manual for descriptions of these errors. ***Is this list correct?
Complete?***

Lock
Unlock

Beta Draft 10-20 8120186

R

Cortland Programmer’ s Workshop Chaprer 10: Shell Calls

Redirect ($0110)

This function instructs the shell to redirect input or output to the printer, console, or a disk
file.***]s there no Redirect Error call?*##

Parameter List:

0 .
s device =
2 append
N ppen -
4 = g
5
o file L
6
. -
Offset Label Parameter Name Size and Type
[range of values]
$00-$01 device Device number 2-byte value
[$0000-$FFFF]

This parameter indicates the number of the device to or from
which I/O is to be redirected.

$02-%03 append Append flag 2-byte value
[$0000-$FFFF]

This flag indicates whether redirected output should be appended
to an existing file with the same filename, or the existing file
should be deleted first. If append is 0, the file is deleted, if it is
any other value, the output is appended to the file.

$04-307 file Address of filename 4-byte pointer
[$0000 0000-$00FF FFFF]

The address of a 65-byte-long buffer containing the filename of
the file to or from which output is to be redirected. The filename

can be any valid ProDOS 16 filename, a partial or full pathname,
or the device names .PRINTER or .CONSOLE.

Possible Errors
$53 Parameter out of range
Errors for the following ProDOS 16 calls. See the Cortland ProDOS 16 Reference
manual and the Cortland Toolbox Reference manual for descriptions of these
errors. ***Is this list correct? Complete?***
Open
Close

Beta Draft 10-21 v 8/120/186

Chapter 10: Shell Calls Cortland Programmer’s Workshop

Read
Write
Get end of file

Bera Draft 10-22 - 820186

Cortland Programmer’s Workshop Chapter 10: Shell Calls

Set ($0106)

This function sets the value of a variable. If the variable has not been previously defined,
this function defines it. The value is valid for the currently-executing Exec file and any
Exec files called from that file, or for the interactive command interpreter and all Exec files
called from the command interpreter (if that is the command level in use). Variables and
Exec files are described in the section “Exec Files” in Chapter 4. Use the Read call to read
the current value of a variable and the Read Indexed call to read a variable table.

Parameter List:

0
e -
ot var_name o
2 !
i N
4
s 7
- value el
6 -
- !
Offset Label Parameter Name Size and Type

[range of values]

$00-$03 var_name Pointer to name of variable 4-byte pointer
[$0000 0000-$00FF FFFF]

This is a pointer to a buffer. The buffer contains the name of the
variable whose value you wish to change. The name consists of
a length byte and a string of ASCII characters.***how long
are the buffers? Does it matter?***

$04-307 wvalue Pointer to value of variable 4-byte pointer
[$0000 0000-$00FF FFFF]

This is a pointer to a buffer. The buffer contains the value to
which the variable is to be set. The value is an ASCII string.

Possible Errors
$54 Out of memory
Errors for the following Memory Manager calls. See the Cortland Toolbox
Reference manual for descriptions of these errors. ***Is this list correct?
Complete?***
Lock
Unlock

Grow
New

Beta Draft ' 10-23 8120186

Chapter 10: Shell Calls _ Cortland Programmer’s Workshop

Set Lang ($0104)

This function sets the current language number. Language numbers are described in the
section “Command Types and the Command Table” in Chapter 4, and are listed in
Appendix A.

Parameter List:

0 lan
1 g 7
Offset Label Parameter Name Size and Type
[range of values]
$00-$01 1lang Language number 2-byte value

[$0000-$7FFF]
The CPW language number to which the current CPW language
should be set. If the language specified is not installed (that is,
not listed in the command table), then the “language not available”
error is returned..

Possible Errors

$80 Language not available

BetaDraft 10-24 8/20/86

Cortland Programmer’ s Workshop Chapter 10: Shell Calls

Set_LInfo ($0102)

This function is used by an assembler, compiler, linker, or editor to pass parameters to the
CPW Shell before executing an RTL or ProDOS 16 QUIT call to return conirol to the shell.

Use the Get _LInfo call to read parameters passed to your assembler, compiler, linker, or
editor.

Parameter List:

0
N -
2—- sfile -
N -
4
o]
o dfite -
- -
8
s -
'm parms -
An -
g
+ - -
€ - istring]
i -
10 mefrr
11 merrf
12 lops
13 kfiag
14
5[7]
ol mftags o
7 7
18
ol N
Al pflags =
8| N
IC
[N
e[°r _
IF 7
Offset Label Parameter Name Size and Type

[range of values]

Beta Draft 10-25 8120186

Chapter 10: Shell Calls

$00-%03 sfile

$04-$07 dfile

$08-0B parms

$0C-$0F istring

$10 merr

$11 merrf

Beta Draft

Cortland Programmer’s Workshop

Address of source filename 4-byte pointer
[$OOOO 0000—-$00FF FFFF]

The address of a buffer containing the filename of the source file;
that is, the next file that a compiler or assembler is to process.
The filename can be any valid ProDOS 16 filename, and can be a
partial or full pathname.

Address of output filename 4-byte pointer
[$0000 0000-$00FF FFFF]

The address of a buffer containing the filename of the output file
(if any); that is, the file that the compiler or assembler writes to.
The filename can be any valid ProDOS 16 filename, and can be a
partial or full pathname.

Address of parameter list 4-byte pointer
[$0000 0000--$00FF FFFE]

The address of a buffer containing the list of names from the

NAME S= parameter list in the CPW Shell command that called the
assembler or compiler.

Address of input strings 4-byte pointer
[$0000 0000-$00FF FFFF]

A placeholder for the address of a buffer containing the string of
commands passed to the compiler. This command string is not
reused by the shell, so it is not necessary to pass it back to the
shell with the Set_LInfo call

Maximum error level allowed 1-byte value
[$00-$10]

If the maximum error level found by the assembler, compiler, or
linker is greater than merr, then the shell does not call the next
program in the processing sequence. For example, if you use the
ASML command to assemble and link a program, but the
assembler finds an error level of 8 when merr equals 2, then the
linker is not called when the assembly is complete.

Maximum error level found 1-byte value
[$00-$FF]

This field is used by the Set _LInfo call to return the maximum
error level found. If merrf is greater than merr, then no
further processing is done by the shell. If the high bit of merxr £
is set, then merx£ is considered to be negative; a negative value
of merrf indicates a fatal error (normally, all fatal errors are
flagged as merr£=3FF). In this case, processing terminates
immediately and control is passed by the shell to the CPW Editor.
See also the discussion of the org parameter.

10-26 | 8120186

Cortland Programmer’s Workshop Chapter 10: Shell Calls

$12 lops

$13 kflag

$14-317 mflags

Beta Draft

Operations flags 1-byte value
[$00-$10]

This field is used to keep track of the operations that have been
performed by the system. The format of this byte is as follows:

Bit: |71l |54 |3]2]11]0
Value: {0 |0] OO0 {0 }E |L

‘where C = Compile
L = Link
E = Execute

When a bit is set (1), the indicated operation is to be done. When
a compiler finishes its operation and returns control to the shell, it
clears bit O unless a file with another language is appended to the
source. When a linker returns control to the shell, it clears bit 1.
When you execute the CPW Linker by compiling a LinkEd file,
the linker clears bits 0 and 1.

Keep flag ' 1-byte value
[$00-$03]

This flag indicates what files have been created by a compiler or
assembler, as follows:

Kflag Meaning

Value

$00 Do not save output.

$01 No file has been created. This would be the case

if a fatal error had been found or merrf were
greater than merr. ***Byte Works: I have
a question on this, too long to put in

here. ***

$02 Only the . ROOT file has been created. This
would be the case if only one segment were
compiled.

$03 At least one alphabetic suffix has been used.

When the compiler or assembler passes control back to the shell,
it should reset k£ 1lag to indicate which object files it has written,
for example, if it found only one segment and created a . ROOT
file but no . A file, then kf1ag should be $02 in the
Set_LInfo call. See the section “Compilers and Assemblers”
in Chapter 8 for more information on object-file naming
conventions.

Flags with a minus sign 4-byte value
[binary string]

10-27 8120186

Chapter 10: Shell Calls

$18-$1B pflags

$1C-$1F org

Possible Errors

None

Beta Draft

Cortland Programmer’s Workshop

This parameter passes command-line-option flags such as ~L or
-C. The first 26 bits of these four bytes represent the letters
A-Z. For each flag set with a minus sign, the corresponding bit
is set to 1. See the discussions of the ALINK and ASML
commands in Chapter 4 for descriptions of these option flags.

Flags with a plus sign 4-byte result
[binary string]

This parameter passes command-line-option flags such as +L or
+C. The first 26 bits of these four bytes represent the letters
A-Z. For each flag set with a plus sign, the corresponding bit is
set to 1. See the discussions of the ALINK and ASML commands
in Chapter 4 for descriptions of these option flags.

Origin 4-byte value
[$0000 0000-$FFFF FFFF]

The start address of the load file. The origin is used only by the
linker. When a compile or assembly terminates with a fatal error
(merr£=8$FF), the compiler or editor should put the
displacement of the line containing the error into the org field.
The editor can then place that line at the top of the screen.

10-28 820186

Cortland Programmer’ s Workshop Chapter 10: Shell Calls

Stop ($0113)

This function lets your application detect a request for an early termination of the program.
The stop flag is set when the keyboard buffer is read after the user presses G-, (APPLE-
PERIOD). '

Parameter List:

0
e stop b
1
Offset Label Parameter Name Size and Type
[range of values]
$00-$01 stop Stop flag 2-byte result

[$0000-$0001]

This flag is set ($0001) by the shell when it finds a G-. in the
keyboard buffer. When a CPW utility reads from the keyboard
as standard input, the shell reads the keyboard buffer and passes
the keys on to the utility. When standard input is not from the
keyboard, the shell still checks the keyboard buffer for &-.
whenever a Stop call is executed. The flag is cleared (30000)
when the St op call is executed, when the utility program is
terminated, or when windows are switched so that the utility
program is no longer active.

Possible Errors

None

Beta Draft 10-29 8120186

Chapter 10: Shell Calls Cortland Programmer’s Workshop

Switch_Window ($010E)

When a CPW utility program detects a mouse-down event in a window that it does not
own, it uses this function to return control to the CPW Shell. When the shell needs to
return to the utility, it executes a JSL to one of the vectors that you provide in the

Switch Window call. The shell saves the contents of the direct page and stack when you
execute the Switch_ Window call, and restores them when it reenters the utility.

Note: This call has no effect at present, since windows have not yet been added to
the CPW interface.

Parameter List:

0
L dat i
= upaare =
) P
- -
4
N -
e select -
6
- -
8
9
f shutdown —
Al
B
g
o N
fe= declare e
E
F
Offset Label Parameter Name Size and Type

[range of values]

$00-%$03 update Reentry vector for window 4-byte value
updates [$0000 0000-$00FF FFFF]

If the window must be updated but has not been selected, enter
the utility through this vector. This vector should point to a
routine that repaints the window on the screen, as when another
window is moved from in front of it.

$04-307 select Reentry vector when 4-byte value
window is selected [$0000 0000-$00FF FFFF]

If the window has been selected, enter the utility through this
vector. This vector should point to a restart routine that
reactivates the program without having to reload it. Use the
window declaration record (see the declare parameter) to
determine which window has been selected.

Beta Draft 10-30 8120186

PN

Cortland Programmer’s Workshop Chapter 10: Shell Calls

$08-80B shutdown Reentry vector for shut- 4-byte value

$0C-30F declare

Possible Errors

None

Beta Draft

downs [$0000 0000-$00FF FFFF]

If a system shutdown is in progress, enter the utility through this
vector. This vector should point to a routine that closes all
windows owned by the utility, saves files and opens attention
boxes as necessary, terminates the utility, and returns control to
the shell.

Pointer to window 4-byte pointer
declaration record [$0000 0000-$00FF FFFF]

This parameter points to the window manager’s window
declaration record. When the user clicks the mouse inside a
window, this record indicates which window it was. The
windoa\lv manager is described in the Cortland Toolbox Reference
manu

10-31 8120186

FOOLISH NOTIONS

Appendixes

Cortland Programmer’s Workshop Appendix A: Command Summary

Appendix A

Command Summary

This appendix lists the currently-defined CPW language types, and summarizes the
commands used in the CPW Shell, Exec files, CPW Editor, CPW Debugger, and LinkEd

files.

The following notation is used to describe commands:

UPPERCASE

italics
prefix

filename

pathname

AlR

Beta Draft

Uppercase letters indicate a command name or an option that must
be spelled exactly as shown. The Shell is not case sensitive; that is,
you can enter commands in any combination of uppercase and
lowercase letters.

Italics indicate a variable, such as a filename or address.

This parameter indicates any valid directory pathname or partial
pathname. It does not include a filename. If the volume name is
included, prefix must start with a slash (/); if prefix does not start
with a slash, then the current prefix is assumed. For example, if
you are copying a file to the subdirectory SUBDIRECTORY on the
volume VOLUME, then the prefix parameter would be:
/VOLUME/SUBDIRECTORY/. If the current prefix were
/VOLUME/, then you could use SUBDIRECTORY for pathname .

The device numbers .D1, .D2,Dn can be used for volume
names; if you use a device number, do not precede it with a slash.
For example, if the volume VOLUME in the above example were in
disk drive . D1, then you could enter the prefix parameter as
.D1/SUBDIRECTOCRY/.

This parameter indicates a filename, not including the prefix. The
unit names . CONSOLE and.PRINTER can be used as filenames.

This parameter indicates a full pathname, including the prefix and
filename, or a partial pathename, in which the current prefix is
assumed. For example, if a file is named FILE in the subdirectory
DIRECTORY on the volume VOLUME, then the pathname parameter
would be: /VOLUME/DIRECTORY/FILE. If the current prefix
were /VOLUME/, then you could use DIRECTORY/FILE for
pathname . A full pathname (including the volume name) must

begin with a slash (/); do not precede pathname with a slash if you
are using a partial pathname.

The unit names . CONSOLE and . PRINTER can be used as

filenames; the device numbers .D1, .D2,Dncan be used for
volume names.

A vertical bar indicates a choice. For example, +L | =L indicates
that the command can be entered as either +L or as ~L.

An underlined choice is the default value.

A-] 8120186

Appendix A: Command Summary Cortland Programmer’s Workshop

[1 Parameters enclosed in square brackets are optional.

Elipses indicate that a parameter or sequence of parameters can be
repeated as many times as you wish.

Vertical elipses indicate that any number of commands can be
. inserted between the two commands shown.

Language Types

The following language types are currently assigned. The inclusion of a language on this
list does not necessarily imply that the language compiler exists or ever will exist for CPW.

LanguageNumber Use

ASM6502 2 6502 Assembler

ASM65816 3 65816 Assembler

BASIC 4 CPW BASIC

BWBASIC 9 Byte Works BASIC

BWC 8 Byte Works C

BWPASCAL 5 Byte Works Pascal

C 10 CPW C

COMMAND 12 CPW command-processor window
EXEC 6 Command file

LINKED 13 CPW Linker command language
PASCAL 11 CPW Pascal

PRODOS 0 ProDOS 16 text file (ProDOS 16 filetype $04)
SMALLC 7 Byte works small C

TEXT 1 CPW text file

" Beta Draft A-2 820186

Cortland Programmer’'s Workshop Appendix A: Command Summary

Shell

ALINK [+L|=L] [+S|=8] sourcefile [KEEP=outfile]
Compile a linker command file

ASM65816
Change default language to 65816 Assembly Language

ASML [+L|=L] [+S|=S]sourcefile [KEEP=outfile]
[NAMES= (segl [seg2[..11)] [languagel= (option ...)
[language2= (option ...) ...]]

Assemble and link the program

ASMLG [+L|-L] [+S|-S]lsourcefile [KEEP=outfile]
[NAMES= (segl [seg2[..11)] [languagel= (option ...)
llanguage2= (option ...) ...]]

Assemble, link, and go (run the program)

ASSEMBLE [+L|-L] ([+S|=S]lsourcefile [KEEP=outfile)
[NAMES=(segl [seg2[..11)] [languagel= (option ...)
{language2= (option ...) ...]1]

Assemble the program

C
Change default language to CPW C

CATALOG [prefix]
CATALOG [pathname]

Beta Draft A-3 : 8/20/86

Appendix A: Command Summary Cortland Programmer’ s Workshop

List the disk directory

CHANGE pathname language
Change the language type of an existing source file

CMPL [+L|=L] [+S|=S]sourcefile [KEEP=outfile]
[NAMES= (segl [seg2[..]11)] [languagel= (option ...)
[language2= (option ...) ...]]

Compile and link the program

CMPLG [+L|=L] [+S|=S]sourcefile [KEEP=outfile]
[NAMES= (segl [,seg2[,..11)] [languagel= (option ...)
[language2= (option ...) ...]]

Compile, link, and go (run the program)

COMMANDS pathname
Read the command table

COMPILE [+L|=L] {+S|=Slsourcefile [KEEP=outfile]
[NAMES= (segl [, seg2(,..]11)] [languagel= (option ...)
[languagel= (option ...) ...]]

Compile the program

COMPRESS A|CI|A C [prefix(/]1]
Compress and/or alphabetize the disk directory

COPY [-C] pathnamel [prefix2/] [filename2]
Copy afile

COPY prefixl prefix2
Copy a directory

COPY volumel volume2
Copy a volume

CREATE prefix(/]
Create a new subdirectory

CRUNCH rootname
Combine object modules formed by partial compiles or assemblies into a single file

DEBUG
Execute the CPW Debugger program

DELETE pathname
Delete a file

* DISABLE D|NI|B|WI|R pathname
Disable file attributes

Beta Draft A4 8/20/86

Cortland Programmer’' s Workshop Appendix A: Command Summary

DUMPOBJ ([option ...] pathame [NAMES= (segl seg2 ..)]
List the contents of an OMF file to standard output

EDIT pathname
Edit an existing file, or open a new file

ENABLE D|N|B|W|R pathname
Enable file attributes

EXEC
Change default language to EXEC command language

EXECUTE pathname [paramlist]
Execute an Exec file at present command level

FILETYPE pathname filetype
Change filetype to type specified

HELT [commandname]
Provide on-screen help for commands, or list all available commands

INIT device [name)
Initialize a disk

LINK [+L[=L) (+S|=S] objectfile [KEEP=outfile]
LINK [+L|=L] [+S|=S8] (objectfilel objectfile2 ..) [KEEP=outfile)

Beta Draft A-5 8120186

Appendix A: Command Summary Cortland Programmer’s Workshop

Link an object module

LINKED
Change default language to the LinkEd command language

MACGEN [+C|-C] infile outfile macrofilel [macrofile2 ...]
Generate a macro library for a specific program

MAKELIB [~F] (-D] libfile (+|~|~objectfilel +|-|~objectfile2 . ..]
Generate a library file from an object module

MOVE (-C] pathnamel "[prefix/] (filename2)
Move a file to another directory or volume

PREFIX [n] prefix[/]
Change the default prefixes

PRODOS
Change default language to ProDOS 16 text

QUIT
Quit CPW

RENAME pathnamel pathname2
Change a filename

RUN [+L|-L] [+S|-S]sourcefile [KEEP=outfile]
[NAMES= (segl [,seg2(,..1]1) 1 [languagel= (option ...)
llanguage2= (option ...) .11

Same as ASMLG or CMPLG

SHOW LANGUAGE| LANGUAGES| PREFIX n}| TIME| UNITS
Show languages, system default language, prefixes, time, volumes on line

SWITCH pathnamel pathname2
Change the positions of two files in a directory

TEXT
Change default language to TEXT

TYPE (+N] pathnamel [startlinel [endlinel])
(pathname? [startline2 [endline2]]...]

Type a file to standard output

EXEC Files

BREAK

Beta Draft A6 8120186

Cortland Programmer’ s Workshop Appendix A: Command Summary

Terminates the innermost FOR, LOOP, or IF statement currently executing

CONTINUE
Causes control to skip over following statements to the next END statement

ECHO string
Writes messages to the screen

EXECUTE pathname [paramlist]
Executes an Exec file at present command level

EXIT [number)
Terminates execution of the Exec file

EXPORT ([variable ...]

Makes the listed variables available to Exec files called by the current exec file ***Can
more than one variable be listed, as in MPW, or not?**#*

FOR variable [Il(“} valuel value2 ...]

END
Creates a loop that is executed once for each parameter-value listed

IF expression

[ELSE IF expression]

[ELSE]

END
Provides conditional branching in Exec files

LOOP

END
Defines a loop that repeats continuously until a BREAK command is encountered

SET [variable [value]]
Assigns a value to a variable name

UNSET variable

BetaDraft A7 8120186

Appendix A: Command Summary Cortland Programmer’s Workshop

Deletes the definition of a variable

Beta Draft A8 8120156

AN

Cortland Programmer’s Workshop

Editor
Beep the Speaker

Bottom of Screen

Bottom of Screen / Page Down

Change
Clear

Copy

Cursor Down
Cursor Left
Cursor Right
Cursor Up
Cut

Define Macros

Delete

Delete Character

Delete Character Left

Delete Line

Delete to EOL

Delete Word

Beta Draft

ICTRLI-G
ICTRLI-B

ICTRLI-B3-J
G-

See Search and Replace.

See Delete.

ICTRLI-C
3-C

ICTRLI-J

/l

ICTRLI-H

ICTRLI-X
3-X

G-ESC|
G-|DELETE!

ICTRLI-F
G-F
[ESCI G

|DELETE!
ICTRLI-D

[ESClY

ICTRLI-Y
a-Y

|ESC! IDELETE!

Appendix A: Command Summary

8120186

Appendix A: Command Summary

End of Line

Find

Help

Insert Line
Insert Space

‘ Paste
Quit
Remove Blanks

Repeat Count

Retumn

Screen Moves

Scroll Down One Line
Scroll Down One Page
Scroll Up One Line

Scroll Up One Page
Search Down

Search Up

Search and Replace Down

Search and Replace Up
Set and Clear Tabs

Start of Line’

Tab

Beta Draft

4@_

&>
See Search.

3-7
a-/

[ESCI B
[ESCI H

ICTRLI-V
3-v

ICTRLI-Q
3-Q

ICTRLI-R
3-R

1 to 32767

IRETURNI
ICTRLI-M

3-1to 3-9
[ESCI C
[ESCI X
[ESCIE
IESCI W

A-10

Cortland Programmer’s Workshop

8120186

Cortland Programmer’s Workshop

Tab Left

Toggle Auto Indent Mode
Toggle Escape Mode

Toggle Insert Mode

Toggle Select Mode

Toggle Wrap Mode

Top of Screen

Top of Screen / Page Up

Undo Delete

Word Left

Word Right

Beta Draft

ICTRLI-A
3-A

ICTRLI-G3-M
[ESC]

ICTRLI-E
G-E

ICTRLI-G-X
ICTRLI-G3-W
ICTRLI-T

ICTRLI-33-K
S-T

ClcRuZ U

3-Z

B-e
ICTRLI-3-H

3-—
ICTRLI-G3-U

A-11

Appendix A: Command Summary

8120156

Appendix A: Command Summary Cortland Programmer’s Workshop

Debugger

This section lists all of the commands that you can use in the CPW Debugger.

Keystroke Modifier

If the command filter is in effect, you must hold down a keystroke-modifier key in order to
pass commands on to the debugger. The keystroke modifier setting is shown in the Key
field of the register subdisplay. To set the keystoke modifier, use the following command:

KEY=keynum Each bit of the binary number represented by-the hexadecimal
number keynum specifies one key to be used as a keystroke
modifier; set that bit to 1 to make that key a keystroke modifier. The
bits are assigned as follows:

B {71654]|3]2]1]0
Key:|A]O RICLI C| s
Hex Value: | 80} 40{ 20| 10| 08] 04|02 |O1
Where:
S ISHIFTI
C ICTRLI
CL ICAPS LOCK!

R REPEAT (hold the key down until it repeats)

K Any key on an external keypad (not on the Cortland keyboard)
O |QPTIONI
a Qg

Selecting a Display

Help Screen ? IRETURNI.

Memory address : |IRETURNI.

Direct Page D IRETURNL.

Application OFF [RETURNI .

Display Mode To change the display mode of your application, use the following

commands (these commands work while in single step or trace
modes only):

1 text page 1
2 text page 2

Beta Draft A-12 8/120/186

Cortland Programmer’s Workshop Appendix A: Command Summary

YL T elerTakde T LR

40-column screen
80-column screen

text mode

full-screen graphics
mixed text and graphics
low-resolution graphics

" Hi-Res graphics

Double Hi-Res graphics

black-and-white (for Double-Hi-Res graphics)
color (for Double-Hi-Res graphics)

Super Hi-Res graphics

Monitor MON [RETURNI

Master Display In direct-page or memory display, press [ESCl.
If your application is being displayed, type ON [RETURNI.

From the Cortland Monitor, press |CTRLI|-Y IRETURNI to return to the
master display.

Editing the Master Display

Use the following commands to alter the contents or setup of the master display.

Display Setup

SET Adjust stack-pointer highlight and number of instructions below
highlight in disassembly subscreen.

-
>
7
\J

Disassembly Subdisplay

Move the stack pointer up one line.
Move the stack pointer down one line.
Move the current instruction up one line.

Move the current instruction down one line.

addressL Disassemble the contents of memory starting at address and display
the next 19 lines of code.

L Disassemble the contents of memory starﬁng at the current address
and display the next 19 lines of code.

address:instruction ~ Assemble the instruction instruction and place the opcode and
operand in memory at address. Simultaneously, the instruction is
placed on the last line of the disassembly subscreen.

Beta Draft

A-13 8/20/86

Appendix A: Command Summary Cortland Programmer’s Workshop

ASM Clear the disassembly subdisplay, such as to prepare for entering a
sequence of instructions using the address:instruction command.

RAM subdisplay

[RETURNI Move to next address down.

\! Move to next address down.

T Move to next address up.

address: Display the contents of memory starting at address.

H Display the contents of the cell as hex and ASCIL

P : Display the contents of the cell and next cell as a 2-byte address.

L Display the contents of the cell and next two cells a a long (3-byte)
address.

? Display a help screen. Press any key except [ESC| to return to the
RAM subdisplay.

IESC| Return to the command line.

Breakpoints Subdisplay

[RETURNI Move to the next address down.

oo Move to the next address down.

T Move to the next address up.

— Move left to the address. Type in the starting address of the

instruction at which you want the debugger to suspend execution.

- Move right to the trigger value. Type in a one-byte hexadecimal
number to indicate the number of times the debugger should execute
this instruction before suspending execution.

IDELETEI Delete the currently hlghhghted breakpoint and increase the number
of memory protection lines by one.

o

Display a help screen. Press any key except [ESC! to return to the
breakpoint subdisplay.

[ESCI Return to command line.

The following breakpoint commands can be entered from the master-display command line:

Beta Draft A-14 8/20/86

Cortland Programmer’s Workshop Appendix A: Command Summary

CLR

IN

ouT

Zero all breakpoints to 00/0000-00-00.

Insert real breakpoints.

Note: You cannot edit the breakpoint subdisplay when real
breakpoints are in.

Remove real breakpoints.

Memory Protection Subdisplay

[RETURNI

\J
T

T

W

|DELETE|

[ESC

Move to the next address down.
Move to the next address down,
Move to the next address up.

Move left to the starting address. Type in the starmng address of the
code-trace or code-window range.

I

Move right to the ending address. Type in the ending address of the
code-trace or code-window range. Do not include a bank value; the
bank must be the same as that of the starting address.

Set this line as a code-trace range.

Set this line as a code-window range.

Delete the current memory-protection line and increase the number
of breakpoint lines by one.

Display a help screen. Press any key except [ESC| to return to the
memory protection subdisplay.

Return to the command line.

Command Line Commands

These commands are used on or entered from the debugger command line. Press Return to
execute these commands.

Command-Editing Commands

These commands are used for editing commands that you are typing on the command line.

ICTRLI-E

—

Beta Draft

Toggle insert/replace mode.

Move the cursor one character to the left.

A-15 8120186

Appendix A: Command Summary Cortland Programmer’s Workshop

—_

ICTRLI-D
DELETEI

ICTRLI-F

ICTRLI-Y

ICTRLI-X
[ESC!

ICTRLI-Z
[RETURNI

Move the cursor one character to the right.

Delete the character to the left of the cursor.

Delete the character that the cursor is on.
Delete from the cursor position to the end of line.

Delete the entire line.

Restore the last command typed.

Execute the command on the line. The entire line is sent to the
command interpreter; the line is not truncated at the cursor position.

Setting Registers and Memory Values

e

register=value

address:value

address: " string

address. ' string

address: | character

address:instruction

Breakpoints

CLR

Beta Draft

Toggle the e flag: if it’s set to 1, change it to O; if it’s set to O,

- changeitto 1.

Toggle the x flag: if it’s set to 1, change it to 0; if it’s set to O,
change it to 1. This command works only if e=0.

Toggle the m flag: if it’s set to 1, change it to 0; if it’s set to 0,
change it to 1. This command works only if e=0.

Set the register specified by register to the value specified by value.
The values for all registers are given as hexadecimal numbers,
except for the processor-status bits, which can be either 1 or 0.

- Register names are case sensitive.

Place the hexadecimal value value in memory starting at address.

Place values corresponding to string , with the high bit of each byte
set, in memory starting at address.

Place values corresponding to szring with the high bit of each byte
cleared in memory at address.

Place a value corresponding to character with the high bit of the byte
cleared in memory at address.

Assemble instruction and place the opcode and operand in memory
starting at address.

Zero all breakpoints to 00/0000-00-00.

A-16 8120/86

TN

Cortland Programmer’s Workshop

IN

ouT

Appendix A: Command Summary

Insert real breakpoints.

Note: You cannot edit the breakpoint subdisplay when real
breakpoints are in.

Remove real breakpoints.

Hexdecimal—Decimal Conversion

value=

Svalue=

+value=

-value=

Convert value from hexadecimal to decimal. This command is
identical to the $value command.

Convert value from hexadecimal to decimal. This command is
identical to the value command.

Convert value from decimal to hexadecimal.

Convert value from decimal to hexadecimal. A negative decimal
value is converted to a two-byte twos complement hexadecimal
equivalent. For example, —10 = $FFF6. (Note that, if you put in -
$FFF6, you get 65526, not -10.) '

Saving Display Configurations

CSAVE pathname

CLOAD pathname

Printing

Pnum

Saves the current display configuration on disk to the file specified
by pathname.

Restore a previously-saved display configuration from the disk file
specified by pathname.

Print the current text screen; num is the slot number for the prmter
If you omit num, slot 1 is used.

Loading and Running Your Program

LOAD pathname.
S

addresss

T

addressT

Beta Draft

Load the program to debug.

Enter single-step mode at the current instruction.
Enter single-step mode at address address.
Enter trace mode at the current instruction

Enter trace mode at address address.

A-17 8120186

Appendix A: Command Summary Cortland Programmer’s Workshop

addressG

addressJ

JSL directly to code at address address . If you omit address, then
the current K/PC address is used. The debugger automatically turns
off the master display before executing this command.

JML directly to code at address address . If you omit address, then
the current K/PC address is used. The debugger automatically turns
off the master display before executing this command.

Other Command-Line Commands

KEY=keynum

Each bit of the binary number represented by the hexadecimal
number keynum specifies one key to be used as a keystroke
modifier; set that bit to 1 to make that key a keystroke modifier. The
bits assignments are described in the section “Keystroke Modifier”
in this appendix.

PREFIX n pathname Change ProDOS 16 prefix Prefix n to pathname.

v

MON

Display the current version number and copyright of the CPW
Debugger.

Enter the Cortland Monitor. From the Monitor, type ICTRLI-Y
IRETURNI to return to the debugger.

Exit debugger.

Trace and Single-Step Mode Commands

[ESCI
ISPACE
IRETURNI

R

J

Beta Draft

Terminate trace or single-step mode and return to the command;line.
Single-step one instruction.

Start continuous tracing.

Trace until the next RTS, RTI, or RTL.

If the current instruction (the next to be executed) is a JSI, execute

in real ime until an RTL or RTI. If the next instruction is not a
JSL, the command is ignored.

Skip the next instruction.

Toggle the sound on or off. If the sound is on, the speaker beeps
each time an instruction is executed.

Change the display to text page 1. Use this command when in 40-
column text mode or mixed text and graphics mode.

Change the display to text page 2. Use this command when in 40-
column text mode or mixed text and graphics mode.

A-18 { 8120186

Cortland Programmer’s Workshop Appendix A: Command Summary

4 Change the display to a 40-column screen. Use this command when
in text mode.

8 Change the display to a 80-column screen. Use this command when
in text mode.

T Change the display to text mode.

| F Change the display to full-screen graphics mode.

M Change the display to mixed text and graphics mode.

L Change the display to low-resolution graphics mode.

H Change the display to high-resolution graphics mode.

D Change the display to double-high-resolution graphics mode.

S Change the display to super-high-resolution graphics. This is the
normal Cortland display mode.

B Change the display to black and white double-high-resolution
graphics.

C Change the display to color double high-resolution graphics.

— Change to the slow trace rate. |

- Change to the fast trace rate.

3 Pause the trace until the G key is released.

Beta Draft A-19 8120186

Appendix A: Command Summary

LinkEd

APPEND pathname
Append a LinkEd source file

COPY pathname
Copy a LinkEd source file

EJECT
Skip to a new page if printer is on

KEEP pathname
Open a file for output

LIBRARY pathname
Search a library

LINK[/ALL] pathname
Link an object file

LIST ON|QEFE
Control subroutine listing

OBJ val
Set phantom program counter

OBJEND
Turn off previous OBJ

ORG val
Set program counter

PRINTER ON|QFF
Control printed output

SEGMENT (/DYNAMIC] [/NUMBER=kind] segname

Start load segment

SELECT {/SCAN] pathname (segl [,seg2 [, .

Choose specific object segments

SQURCE ON|QFFE

Control LinkEd source program listing

SYMBOL ON|QFFE
Control symbol table output

Beta Draft

2o 11)

1
|
|
i
|
Cortland Programmer’s Workshop !, 1

8120186

Cortland Programmer’s Workshop Appendix B Error Messages

Appendix B

Error Messages

***This appendix will contain information about all error messages you can
get when running CPW and the Debugger, when that information is
available. Meanwhile, I have included the error-messages section from the
Linker Preliminary Notes ***

In producing object modules, compilers and assemblers are incapable of detecting certain
programming errors, particularly those involving conflicts among global labels, missing
global labels, and incorrect memory allocation. It is the responsibility of the linker to find
and report those errors. '

This appendix lists and describes the error messages returned by the CPW Linker. They
are divided into two groups: recoverable (the linker continues processing), and fata/ (the

linker stops). For recoverable errors, the linker also returns an error-level number as an
indication of the severity of the problem that caused the error.

Recoverable Errors

When the linker detects a recoverable error, it prints
1. The name of the segment that contained the error
2. How far into the segment (in bytes) the error point lies

3. A text error message, with the error level number in brackets immediately to the right
of the message

The following error level numbers are recognized. Refer to individual error message
listings for further illustration of the significance of error levels.

Level Meaning

2 General warning. There may be a problem, but no corrective action has
been taken.

4 Corrected error. The linker detected an error, and has corrected it according

to its own interpretation (Check the results of this correction carefully!)

8 Uncorrected error. The linker detected an error that it could not correct, but
it understood enough about it to leave the proper space for correction.

Beta Draft . B-1 8120186

Appendix B: Error Messages Cortland Programmer’s Workshop

16 Uncorrected error. The linker detected an error and could not even tell how
much space to leave. Reassembly will be required when the problem is
corrected.

The following errors are recoverable. The error message as it appears on the screen is
printed in boldface, followed by the error level;, an explanation and advice for correcting
the error follow in normal text. The listing is in alphabetical order by the first word of the
message.

Addressing Error [16]:
A label could not be placed at the same location on pass 2 as it was on pass 1.

This error is almost always accompanied by another error, which caused this one to
occur; correcting the other error will correct this one. If there is no accompanying
error, check for disk errors by doing a full assembly and link. If the error still occurs,
report the problem as a bug.

Address is not in Current Bank [4]
The (most-significant-truncated) bytes of an expression did not evaluate to the value of
the current location counter,

For short-address forms (6502-compat1b1e) the truncated address bytes must match the
current location counter. This restriction does not apply to long-form addresses (65816
native-mode addressing).

Address is not Zero-Page [4]
The most significant bytes of the evaluated expression were not zero, but were required
to be zero by the particular statement in which the expression was used.

This error occurs only when the statement requires a zero-page address operand (range
= () to 255).

Data Area not Found [2]

A USING directive was issued in a segment, and the linker could not find a DATA
segment with the given name.

Ensure that the proper libraries are included, or change the USING directive.

Duplicate Label [4]
A label was defined twice in the program.

Remove one of the definitions.

Evaluation Stack Overflow [2]

(a) There may be a syntax error in the expression being evaluated. (b) The expression
may be too complex for the linker to evaluate.

(a) Check to see if a syntax error has also occurred; if so, correct the problem that
caused that error. (b) Simplify the expression. An expression would have to be
extremely complex to overflow the linker’s evaluation stack, particularly if the
expression passed the assembler without error.

Beta Draft ' B-2 8120186

Cortland Programmer’s Workshop Appendix B Error Messages

Expression Syntax Error [8]
The format of an expression in the object module being linked was incorrect.

This error should occur only in company with another error; correct that error and this
one should be fixed automatically. If there are no accompanying errors, check for disk
errors by doing a full assembly and link. If the error still occurs, report the problem as
a bug.

Linker Version Mismatch [2]
An older version of the linker, which cannot properly link the segments, is being used.

Update the linker.

MEM Location has been Passed [4]
The linker encountered a MEM directive that tried to reserve a memory area that the

linker had already passed. The linker must find a memory definition before it places
code in the defined locations.

Move the MEM directive to an earlier segment, preferably the first. This error applies
only to absolute code, and should therefore be rarely encountered when writing for the
Cortland.

Only JSL Can Reference Dynamic Segment [8]

ORG Location has been Passed [4]
The linker encountered an ORG directive for a location it had already passed.

Move the segment to an earlier position in the program. This error applies only to
absolute code, and should therefore be rarely encountered when writing for the
Cortland.

Relative Address out of Range [4]
The given destination address is too far from the current location.

Change the addressing mode or move the destination code closer.

Relocation Expression Syntax Error
Some expressions are legal in relocatable code, if they are supported by the OMF.

Some expressions, such as LAB | 4+2 are not legal because the linker cannot express
them in a way that would allow the loader to perform the relocation.

Segment Header MEM Directive Not Allowed [8]

Undefined Op Code [16]

The linker encountered an instruction that it does not understand. There are four
possible reasons:

1. The linker is an older version than that required by the assembler or compiler; in

this case, a Linker Version Mismatch error should have occurred also. Update
the linker.

Beta Draft B-3 . 8/20/186

Appendix B: Error Messages Cortland Programmer’s Workshop

2. An assembly or compilation error caused the generation of a bad object module.
Check and remove all assembly/compilation errrors.

3. The object module file has been physically damaged. Recompile to a fresh disk.

4. There is a bug in the assembler, compiler or linker. Please report the problem for
correction.

Unresolved Reference [8]
The linker could not find a segment referenced by a label in the program.

If the label is listed in the global symbol table after the link, make sure the segment that
references the label has issued a USING directive for the segment that contains the
label. Otherwise, correct the problem by: (1) removing the label reference, (2) defining
it as a global label, or (3) defining it in a data segment.

Fatal Errors

When the linker finds a fatal error, it cannot continue processing. It prints the error
message, waits for a keypress, and then quits.

The following errors are fatal. The error message as it appears on the screen is printed in
boldface; an explanation follows in normal text. The listing is in alphabetical order by the
first word of the message.

Could not Read Sublib Directory
A ProDOS error occurred while the linker was trying to read the directory of the library
disk.

This error is usually the result of a bad disk or disk drive. Put the library disk in a
diferent drive, or use another disk.

Illegal Sublib Directory
The library directory pointed to by the sublib prefix does not exist, or is not a directory.

Use the SYSGEN directive to correct the directory name.

Input File not Found
The .ROOT file could not be found.

The linker expects file naming conventions to be followed. That is, when it is asked to
link the file MYPROG, it actually looks for the file named MYPROG . ROOT, because
MYPROG .ROOT is the name of the first object file created by the assembler or compiler

when it is asked to assemble the source file named MYPROG. If the proper . ROOT file
name is not found, this error is returned.

Check the spelling of the file name in both the KEEP directive and the LINK directive.
Make sure the .ROOT file has the same prefix as the file specified in those commands.

Beta Draft B4 8120186

Cortland Programmer’s Workshop Appendix B Error Messages

Object Module Read Error
A ProDOS error occurred while the linker was trying to read from the currently opened
object module.

This error may occur after a nonfatal error; correcting the nonfatal errors may correct
this one. Otherwise, it may be caused by a bad disk or disk drive.

Out of Memory
All free memory has been used; the memory needed by the linker is not available.

This error should not occur. If it does, it is either a bug in the linker program or a
Memory Manager problem.

Output Error
A ProDOS error occurred while the linker was trying to write to the (output) load file.

This error is usually caused by a full disk. Otherwise, there may be a bad disk or disk
drive.

Output File Could not be Opened
A ProDOS error occurred while the linker was trying to open the (output) load file.

This error may be caused by trying to write to a full disk, a write-protected disk, or an
unformatted disk. Otherwise, there may be a bad disk or disk drive.

Symbol Table Overflow
The symbol table could not hold all of the symbols needed by the program.

This error should occur only very rarely. If it does, decrease the number of global

labels in the program. The START, DATA, ENTRY, and GEQU directives all create and
pass global symbols to the linker. Labels inside data areas are also passed to the linker.

Beta Draft : B-5 8120186

SLANDEROUS ACCUSATIONS

Cortland Programmer’s Workshop Glossary
Glossary

absolute code: Program code that must be loaded at a specific address in memory, and
never moved.

absolute segment: A segment that can be loaded only at one specific location in
memory. Compare with relocatable segment.

assembler: A program that produces object modules from source files written in
assembly language. :

binary file format: The ProDOS 8 loadable file format, consisting of one absolute
memory image along with its destination address.

binary output file: A file of absolute code that is ProDOS 16 file type $06. The system
loader will not load binary files. ‘

code segment: An object segment that contains program code. Code segments are
provided for programs that differentiate between code and data segments; see the “Segment
Types” section in Chapter 8.

command table

compiler: A program that produces object modules from source files written in a high-
level language such as C.

CPW Linker: The linker supplied with CPW.

current language

current prefix

data code: Code that consists primarily of data.

data segment: An object segment that contains data code. Data segments are provided
for programs that differentiate between code and data segments; see the “Segment Types”

section in Chapter 8.

dynamic segment: A segment that can be loaded and unloaded during execution as
needed. Compare with static segment.

emulation mode
external command
field delimiter

file number

file number cross-reference: The part of the pathname table that contains load-file
numbers and pointers to their corresponding pathnames.

Beta Draft Glossary-1 8120186

Glossary Cortland Programmer’s Workshop

global symbol: A label in a code segment that is either the name of the segment or an
entry point to it. Global symbols may be referenced by other segments. Compare with
local symbol.

Handle:

image: A representation of the contents of memory. A code image consists of machine-
language instructions or data that may be loaded unchanged into memory.

initial load file: The first file of a program to be loaded into memory. It contains the
program’s main segment and the load file tables (jump table segment and pathname table)
needed to load dynamic segments.

initialization segment: A segment in an initial load file that is loaded and executed first,
to perform any initialization that the program may require

internal command

INTERSEG Record: A part of a relocation dictionary. It contains relocation
information for external (intersegment) references.

jump table segment: A segment in a load file, created by the linker, that provides the
information the loader needs to locate dynamic segments as they are needed during program
execution. The loader creates a linked list in memory, called the jump table, that indicates
the location of all jump table segments in a program.

language card: Memory from $D000 to $FFFF with two RAM banks in the $Dxxx
space, corresponding to expansion memory on a card in a 48K Apple II or Apple II Plus.

language.command
LinkEd: The language (set of commands) recognized by the CPW Linker.

library dictionary segment: The first segment of a library file; it contains the names
and locations of all the other segments in the file. The linker uses the library dictionary
segment to find the segments it needs.

library file: An object file containing program segments, each of which can be used in
any number of programs. The linker can search through the library file for segments that
have been referenced in the program source file. A library file may contain a library-
segment dictionary.

linker: A program that combines files generated by compilers and assemblers, resolves
all symbolic references, and generates a file that can be loaded into memory and executed.

link map: A listing, produced by the linker, that gives the name, length, and starting
location of each segment in a load file.

load file: The output of the linker. Load files contain memory images that the system

loader can load into memory; each memory image is followed by a relocation
dictionary.

load segment: A segment in a load file.

Beta Draft Glossary-2 8120186

Cortland Programmer’s Workshop Glossary

local symbol: A label defined only within an individual segment. Other segments
cannot access the label.Compare with global symbol.

main segment: The first segment in the initial load file of a program. It is loaded first
and never removed from memory until the program terminates.

makelib utility: A program that creates library files from object files.

memory image: A portion of a disk file or segment that can be read directly into
memory.

Memory Manager: The part of the operating system that allocates blocks of memory as
needed, and keeps track of which blocks of memory are available. All applications must
request blocks of memory from the memory manager rather than loading data directly into a
preselected memory location.

memory segment table: A linked list in memory, created by the loader, that allows the
loader to keep track of the segments that have been loaded into memory.

moveable segment: A segment in memory that can be moved by the memory manager
whenever necessary. The memory-resident version of a position-independent segment.

native mode
object file: The output from an assembler or compiler, and the input to the linker.

object module format: The general format used in object files, library files, and load
files; described in the Object Module Format section of Chapter 8.

Object Segment: A segment in an object file.

OMF: Object module format.

OMEF file: Any file in object module format,

operand

operator

parameter block

pathname table: A segment in a load file that contains the cross-references between load
files referenced by number (in the jump table segment) and their pathnames (listed in the
file directory). The pathname table is created by the linker.

pathname list: The part of the.pathnamc table that contains the file pathnames.
pathname segment

pipline

pointer

Beta Draft Glossary-3 8120186

Glossary Cortland Programmer’ s Workshop

position-independent segment: A load segment that is moveable when loaded in
memory.

program code: Code that consists primarily of instructions.

Programmer’s Workshop: On Cortland, a set of programs whose purpose is to
facilitate the writing, translation, execution, and debugging of system programs and
applications for the Cortland. Components of the Programmer’s Workshop include the
shell, editor, assembler, linker, debugger, and various compilers.

record: A component of an object module segment. All OMF file segments are composed
of records, some of which are program code and some of which contain cross-reference or
relocation information.

RELOC record: A part of a relocation dictionary that contains relocation information for
local (within-segment) references.

relocate: The process of modifying a file or segment at load time so that it will execute
correctly at the location in memory at which it is loaded. See also relocatable segment.

relocatable segment: A segment that can be loaded at any location in memory. A
relocatable segment can be static, dynamic, or position independent. A load segment
contains a relocation dictionary that is used to recalculate the values of location-
dependent addresses and operands when the segment is loaded into memory. Compare
with absolute segment.

root filename

segment body

segment header

segment number

shell call

shell-call block

static segment: A segment that is loaded at program boot time, and is not unloaded or
moved during execution.

string
symbol table

relocation dictionary: A portion of a load segment that contains relocation information
necessary to modify the memory image immediately preceding it. When the segment is
loaded into memory, the relocation dictionary is used to patch location-dependent addresses
into the code. Relocation dictionaries also contain the information necessary to transfer
control to external references.

resolve

Bera Draft Glossary-4 8120186

Cortland Programmer’s Workshop Glossary

run-time library file: A load file containing program segments--each of which can be
used in any number of programs--that the system loader loads dynamically when they are
needed.

segment: An individual component of an OMF file. Each file contains one or more
segments, '

segment jump table: A segment in a load file that contains all references to dynamic
segments that will be called during execution of the program. The segment jump table is
created by the linker.

shell: A program in the Cortland Programmer’s Workshop that provides a command
processor interface between the user and the other components of the Programmer’s
Workshop.

Shell Load File:

source file: An ASCII file consisting of instructions written in a particular language,
such as C or assembly language. An assembler or compiler converts source files into
object files.

Startup Load File:

static segment: A segment that is loaded only at program boot time, and is not unloaded
during execution. Compare with dynamic segment.

symbolic reference

system loader: The part of the operating system that reads the files generated by the
linker, loads them into memory, and relocates them if necessary.

text file format
token
utility

wildcard

Beta Draft Glossary-5 8120186

THIS PAGE INTENTIONALLY BLANK EXCEPT FOR THIS
NOTICE WHICH IS NOT BLANK BUT TAKES UP SPACE ON
THE PAGE THAT YOU COULD OTHERWISE USE FOR
SOMETHING ELSE

	v1_04_01
	v1_04_02
	v1_04_03
	v1_04_04
	v1_04_05
	v1_04_06
	v1_04_07
	v1_04_08
	v1_04_09
	v1_04_10
	v1_04_11
	v1_04_12
	v1_04_13
	v1_04_14

