
AiphaDraji

Part V

Appendixes

205

/'

5/22/86

Alpha Draft

· "

206 5/22/86

Appendix A

ProDOS/16 File Organization

This appendix contains a detailed description of the way that ProDOS/16 stores flies on
disks. For most system program applications, the operating system insulates you from this
level of detail. However, you must use this information if you want

• to list the files in a directory

• to copy a sparse file without increasing the file's size

• to compare two sparse meso

This appendix first explains the organization of information on volumes. Next, it shows the
storage of volume directories, directories, and the various stages of standard files. Finally
it presents a set of diagrams that summarize all the material in this appendix. You can refer
to these diagrams as you read the appendix. They will become your most valuable tool for
working with me organization.

Format of Information on a Volume

When a volume is formatted for use with ProDOS/16, its surface is partitioned into an array
of tracks and sectors. In accessing a volume, ProDOS/16 requests not a track and sector,
but a logical block from the device corresponding to that volume. That device's driver
translates the requested block number into the proper track and sector number; the physical
location of information on a volume is unimportant to ProDOS/16 and to a system program
that uses ProDOSIl6. This appendix discusses the organization of information on a
volume in terms of logical blocks, numbered starting with zero, not tracks and sectors.

When the volume is formatted, information needed by ProDOS/16 is placed in specific
logical blocks. A loader program is placed in blocks 0 and 1 of the volume. This
program enables ProDOS/16 (or earlier versions of ProDOS) to be booted from the
volume. Block 2 of the volume is the key block (the first block) of the volume
directory file; it contains descriptions of (and pointers to) all the files in the volume
directory. The volume directory occupies a number of consecutive blocks, typically four,
and is immediately followed by the volume bit map, which records whether each block
on the volume is used or unused. The volume bit map occupies consecutive blocks, one
for every 4,096 blocks, or fraction thereof, on the volume. The rest of the blocks on the
disk contain sul:xlirectory file information, standard flie information, or are empty. The
first blocks of a volume look something like Figure A-I.

Alpha Dr.aft 207 5/22/86

Conland Operating System Reference

Loader Volutnll
Oi/'lllClllfY

(I(ey SIodI)

VoIutnil Volutnll
DI/'lIIClllfY S8 MllCI

LuI SIodI) (finn bliIl:lcl

O!tlef Files •••

~f:~.....--......
Figure A-I. Block Organization of a Volume

The precise format of the volume directory, volume bit map, subdirectory files and
standard mes are explained in the following sections.

Format of Directory Files
The format of the information contained in volume directory and subdirectory files is quite
similar. Each consists of a key block followed by zero or more blocks of additional
directory information. The fields in a directory's key block are:

• a pointer to the next block in the directory
• a header entty that describes the directory
• a number of file entries describing, and pointing to, the mes in that directory
• zero or more unused bytes.

The fields in subsequent (nonkey) blocks in a directory are:

• pointers to the preceding and succeeding blocks in the directory
• a number of entries describing, and pointing to, the files in that directory
• zero or more unused bytes.

The format of a directory file is represented in Figure A·2.

Key Bloek

0 f-
pointer -
header

file entrY

more
file

entries

Any IIloell

header

rile entrY

more ..
file ..

enlTle.

file entrY

lIIIJ*
$plICS

Last Illoell

- pOinter- v

header

file entrY

more
tile

enO'les

Alpha Draft

Figure A-2. Directory File Format

208 5/22/86

Appendixes

The header entry is the same length as all other entries. The only organizational difference
between a volume directory fIle and a subdirectory file is in the header.

Pointer Fields

The fIrst four bytes of each block used by a directory file contain pointers to the preceding
and succeeding blocks in the directory file, respectively. Each pointer is a two-byte logical
block number-low byte first, high byte second. The key block of a directory file has no
preceding block; its first pointer is zero. Likewise, the last block in a directory file has no
successor; its second pointer is zero.

By the Way: All block pointers used by ProDOS/16 have the same format: low byte
first, high byte last However, because of Conland's large memory size, all
ProDOS/16 pointers except those in the disk fIle entries discussed here are four bytes
long rather than two. See Chapter 2, "ProDOS/16 and ConIand Memory."

Volume Directory Headers

Block 2 of a volume is the key block of that volume's directory me. The volume directory
header is at byte position $0004 of the key block, immediately following the block's two
pointers. Thirteen fields are currently defmed to be in a volume directory header: they
contain all the vital information.about that volume. Figure A-3 illustrates the sttucrure of a
volume directory header. Following Figure A-3 is a description of each of its fields.

Alpha Draft 209 5/22/86

Conland Operating System Reference

2 bytes

1 byte

1 byte

1 byte
1 byte

1 byte
1 byte

1 byte

2 bytes

4 bytes

Field
Length

1 byte

rv <

'" creation
I- date and time

version
min_version

access
entry length

entries-per _block

'" file_count .
'"

biCmap-pointer

- total_blocks

f.

to

storage_type r name length

I- 0

Byte of
Block

o
1
2
3
4
5f file_name 1'15 bytes

~~l----~
~ (rese ad) h 8 bytes

18
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A

Figure A-3. The Volume Directory Header

Alpha Draft 210 5/22186

Appendixes

storage type and name length (l byte): Two four-bit fields are packed into this byte.
A valueof $F in the high tour bits (the storage_rype) identifies the current block as the key
block of a volume directory me. The low four bits contain the length of the volume's name
(see thejile_name field, below). The name_length can be changed by a CHANGE_PATH
call.

file_name (15 bytes): The fIrst n bytes of this field, where ri is the value of name length,
contain the volume's name. This name must confonn to the file name (volume nariie)
syntax explained in Chapter 2. The name does not begin with the slash that usually
precedes volume names. This field can be changed by the CHANGE_PATH call.

reserved (8 bytes): Reserved for future expansion of the me system.

creation date and time(4 bytes): The date and time at which this volume was initialized.
The format of these bytes is described under "Header and Entry Fields," in this Appendix.

version (1 byte): The version number of ProDOS or ProDOS/16 under which this volume
was initialized. This byte allows newer versions of ProDOS and ProDOS/16 to detenni ne
the fonnat of the volume, and adjust their directory interpretation to confonn to older
volume fonnats. In ProDOS 1.0, version =O.

min_version: Reserved for future use. In ProDOS 1.0, it is O.

access (l byte): Detennines whether this volu,me directory can be read, written, destroyed,
or renamed. The format of this fIeld is described under "Header and Entry Fields," in this
Appendix.

entryJength (1 byte): The length in bytes of each entry in this directory. The volume
directory header itself is of this le~gth. entry_length = $27.

entries_per_block (l byte): The number of entries that are stored in each block of the
directory me. entriesyer_block = $00.

file_count (2 bytes): The number of active me entries in this directory file. An active file
is one whose storage_rype is not O. Figure A-5 shows the fonnat of file entries.

bit_map_pointer (2 bytes): The block address of the first block of the volume's bit map.
The bit map occupies consecutive blocks, one for every 4,096 blocks (or fraction thereof)
on the volume. You can calculate the number of blocks in the bit map using the
total_blocks field, described below.

The bit map has one bit for each block on the volume: a value of 1 means the block is free:
ameans it is in use. If the number of blocks used by all files on the volume is not the
same as the number recorded in the bit map, the directory structure of the volume has been
damaged. .

total_blocks (2 bytes): The total number of blocks on the volume.

AlphaDrajr 211 5/22/86

Con/and Operating System Reference

Subdirectory Headers

The key block of every subdirectory me is pointed to by an entry in a parent directory; for
example, by an entry in a volume directory (Figure A-2). A subdirectory's header begins
at byte position $0004 of the key block of that subdirectory me, immediately following the
two pointers.

Its internal structure is quite similar to that of a volume directory header (only its last three
fields are different). Founeen fields are currently defined to be in a subdirectory header:
they contain all the vital information about that subdirectory. Figure A-4 illustrates the
structure of a subdirectory header. A description of all the fields in a subdirectory header
follows figure A-4.

. ..

A/phaDrajt 212 5/22/86

Appendixes

2 bytes

1 byte

1 byte

1 byte

1 byte

1 byte
1 byte

1 byte

2 bytes

4 bytes

Field
Length

1 byte

reserve (

creation ·
date and time ·.. ·

version
min version

access
entry length

entries-.oer block

file_count ·
.. parentJ)ointer ·

parent entry number
parent entry length

l- ·

storage type I name .Iength

Byte of
Block

o
1
2
3
4
5f file_name 1'15 bytes

~~r.--~.z d) ~ 8 bytes

18
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A

Figure A-4. The Subdirectory Header

A/phaDraji 213 5/22/86

Con/and Oper.ating System Reference

storage_type and name_length (l byte): Two four-bit fields are packed into this byte.
A value of SE in the high four bits (the storage_type) identifies the current block as the key
block of a subdirectory file. The low four bits contain the length of the subdirectory's
name (see thejile_name field, below). The name_length can be changed by a
CHANGE_PATIl call. .

file_name (15 bytes): The first name_length bytes of this field contain the subdirectory's
name. This name must confonn to the me name syntax explained in Chapter 2. This field
can be changed by the CHANGE_PATIl call.

reserved (8 bytes): Reserved for future expansion of the me system.

creation date and time (4 bytes): The date and time at which this subdirectory was
created. The fonnat of these bytes is described under "Header and Entry Fields," in this
Appendix.

version (I byte): The version number of ProDOS or ProDOSIl6 under which this
subdirectory was created. This byte allows newer versions of ?mDOS and ProDOSIl6 to
detennine the format of the subdirectory, and to adjust their directory interpretations
accordingly. ProDOS 1.0: version == O.

min version (l byte): The minimum version number of ProDOSIl6 that can access the
information in this subdirectory. This byte all9ws older versions of ProDOS/16 to
detennine whether they can access newer subdirectories. min_version == O.

access (l byte): Determines whether this subdirectory can be read, written, destroyed, or
renamed, and whether the file needs to be backed up. The format of this field is described
under "Header and Entry Fields," in this Appendix. A subdirectory's access byte can be
changed by the SET_FILE_INFO and CLEAR_BACKUP_BIT calls.

entryJength (1 byte): The length in bytes of each entry in this subdirectory. The
subdirectory header itself is of this length. entry_length == S27.

entries_per_block (l byte): The number of entries that are stored in each block of the
directory file. entriesyer_block == SOD.

file_count (2 bytes): The number of active me entries in this subdirectory file. An active
file is one whose storage_type is not O. See "File Entries" for more infonnation about file
entries.

parent_pointer (2 bytes): The block address of the directory me block that contains the
entry for this subdirectory. This two-byte pointer is stored low byteflIst, high byte
second.

parent entry namber (l byte): The entry number for this subdirectory within the block
indicated by parentyointer. .

parent entry length (1 byte): The entry length for the directory that owns this
subdirectory file. Note that with these last three fields you can calculate the precise posi tion
on a volume of this subdirectory's file entry. parent_entry)ength == $27.

A/phaDrajr 214 5/22/86

AppendLtes

File Entries

Immediately following the pointers in any block of a directory me are a number of entries.
The first entry in the key block of a directory file is a header, all other entries are file
entries. Each entry has the length specified by that directory's entry)ength field, and each
file entry contains information that describes, and points to, a single subdirectory me or
standard me.

An entry in a directory me may be active or inactive, that is, it mayor may not describe a
file currently in the directory. If it is inactive, the first byte of the entry (storage_type and
name length) has the value zero.

The maximum number of entries, including the header, in a block of a directory is recorded
in the entriesyer_block field of that directory's header. The total number of active file
entries, not including the header, is recorded in the file_count field of that directory's
header.

Figure A-5 describes the format of a me entry.

Alpha Draft 215 5/22/86

Con/and. Operating System Reference

2 bytes

4 bytes

1 byte

1 byte

1 byte

2 bytes

4 bytes

2 bytes

1 byte

2 bytes

Field
Length

1 byte

:3 bytes

h15 bytes- ,J'..
file_type

.. key-pointer

I- blocks_used ·
I-

EOF
l-

I-
creation ·

I-
d~te & time.. ·

version
min version

access

I- aux_type

I-
modification

I-
date & time ·... ·

I- header-pointer ·

Entry
Offset

o storage_type nameJength
1

~ file name

F
10
11
12
13
14
15
16
17
18
19
1A
18
1C
10
1E
1F
20
21
22
23
24
25
26

Figure A-5. The File Entry

A/phaDrcrft 216 5/22/86

Appendixes

storage_type and name)ength (l byte): Two four-bit fields are packed into this byte.
The value in the high-order four bits (the storage_type) specifies the type of file pointed to
by this file entry:

$1 = Seeding file
$2 = Sapling file
$3 = Tree file
$4 = Pascal area
$D = Subdirectory

Seedling, sapling, and tree files,are described under "Format of Standard Files," in this
Appendix. The low four bits contain the length of the file's name (see the file_name field,
below). The name_length can be changed by a CHANGE_PATH call.

file name (15 bytes): The first name 'length bytes of this field contain the file's name.
This name must conform to the file name syntax explained in Chapter 2. This field can be
changed by the CHANGE_PATH call.

file type (l byte): A descriptor of the internal structure of the file. Table A-I is a list of
the currently defined values of this byte.

key_pointer (2 bytes): The block address of:

• the master index block if the file is a tree fIle
• the index block if the file is a sapling file
• the block if the me is a seedling file.

blocks_used (2 bytes): The total number of blocks actually used by the file. For a
subdirectory file, this includes the blocks containing subdirectory information, but not the
blocks in the mes pointed to. For a standard me, this includes both informational blocks
(index blocks) and data blocks. See "Format of Standard Files" in this Appe'ndix.

EOF (3 bytes): A three-byte integer, lowest byte first, that represents the total number of
bytes readable from the me. Note that in the case of sparse files, EOF may be greater than
the number of bytes actually allocated on the disk.

creation date and time: (4 bytes): The date and time at which the file pointed to by this
entry was created. The format of these bytes is described under "Header and Entry
Fields," below.

version (1 byte): The version number of ProDOS or ProDOS/16 under which the file
pointed to by this entry was created. This byte allows newer versions of ProDOS/16 to
determine the format of the me, and adjust their interpretation processes accordingly. In
ProDOS 1.0, version = O.

min version (1 byte): The minimum version number of ProDOS or ProDOS/16 that can
access the information in this me. This byte allows older versions of ProDOS and
ProDOS/16 to determine whether they can access newer files. In ProDOS 1.0,
min_version = O.

access (l byte): Determines whether this file can be read, written, destroyed, or renamed,
and whether the file needs to be backed up. The format of this field is described under
"Header and Entry ~ields." The value of this field can be changed by the

Alpha Draft 217 5/22/86

Cortland Operating System Reference

SET_FILE_INFO and CLEAR_BACKUP_BIT calls. You cannot delete (destroy) a
subdirectory that contains any meso

au,,_type (2 bytes): A general-purpose field in which a system program can store
additional infonnation about the internalfonnat of a file. For example, the ProDOS BASIC
system program uses this field to record the load address of a BASIC program or binary
file, or the record length of a text file.

last mod (4 bytes): The date and time that the last CLOSE operation after a WRITE was
pertOnned on this file. The fonnat of these bytes is described in Section B.4.2.2. This
field can be changed by the SET_FILE_INFO call.

header-pointer (2 bytes): This field is the block address of the key block of the directory
that owns this file entry.. This two-byte pointer is stored low byte first, high byte second.

Reading a Directory File

This section deals with the general techniques of reading from directory mes, not with the
specifics. The ProDOS/16 calls with which these techniques can be implemented are
explained in Chapters 9 and 10.

Before you can read from a directory, you must know the directory's pathname. With the
directory's pathname, you can open the directory me, and obtain a reference number
(ref_nwn) for that open file. Before you can process the entries in the directory, you must
read three values from the directory header:

• the length of each entry in the directory (entry_length)
• the number of entries in each block of the directory (enrriesyer_block)
• the total number of files in the directory (file_count).

Using the reference number to identify the me, read the first 512 bytes from the me, and
into a buffer (ThisBIock in the example below). The buffer contains two two-byte
pointers, followed by the entries; the first entry is the directory header. The three values
are at positions $lF through $22 in the header (positions $23 through $26 in the buffer).
In the example below, these values are assigned to the variables EntryLength,
EnrriesPerBIock, and FileCount.

Open (DirPathname, RefNuml;
ThisBlock :- ReadS12Bytes(RefNum);
EntryLength :- ThisBlock(S23);
EntriesPerBlock := ThisBlock(S24];
FileCount :- ThisBlock(S25] + (256

{Get reference number }
{Read a block into buffer}
{Get directory info }

* ThisBlock(S26]1;

Once these values are known, a 3Ystem program can scan through the entries in the buffer,
using a pointer to the beginning of the current entry EntryPoinJer, a counter BiockEnrries
that indicates the nurnber of entries that have been examined in the current block, and a
second counter ActiveEnrries that indicates the number of active entries that have been
processed.

An enp-y is active and is processed only if its fIrst byte, the storage_type and name)ength,
is nortzero. All entries have been processed when Acn"veEmries is equal to FileCount. If

Alpha Draft 218 5/22/815

Appendixes

all the entries in the buffer have been processed, and ActiveEnrnes doesn't equal .
FileCount, then the next block of the directory is read into the buffer.

EntryPointer
BlockEntries
ActiveEntries

:= EntryLength + S04; (Skip header entry)
:= S02; (Prepare ·to process entry two)
:= SOO; (No active entries found yet

while ActiveEntries < FileCount do begin
if ThisBlock(EntryPointer) <> SOO then begin (Active entry)

ProcessEntry(ThisBlock(EntryPointer)) ;
ActiveEntries ;- ActiveEntries + SOl

end; I

if ActiveEntries < FileCount then (More entries to process)
if BlockEntries = EntriesPerBlock

then begin (ThisBlock done. Do next one)
ThisBlock ;- ReadS12Bytes(RefNurn);
BlockEntries :- SOl;
EntryPointer :- S04

end;
Close (RefNurn) ;

end
else begin

EntryPointer :­
BlockEntries :-

end

{Do next entry in ThisBlock
EntryPointer + EntryLength;
BlockEntries + SOl

This algorithm processes entries until all expected active entries have been found. If the
directory structure is damaged, and the end of the directory file is reached before the proper
number of active entries has been found, the algorithm fails.

Format of Standard Files
Each active entry in a directory me points to the key block (the first block) of a file. As
shown below, the key block of a standard ftle may have several types of information in it.
The storage_type field in that me's entry must be used to determine the contents of the key
block. This section explains the structure of the three stages of standard file: seedling,
sapling, and tree. These are the ftles in which all programs and data are stored.

Growing a Tree File

The following scenario demonstrates the growth of a tree file on a volume. This scenario is
based on the bloc}c allocation scheme used by ProDOS 1.0 on a 28Q-block flexible disk
that contains four blocks of volume directory, and one block of volume bit map. Larger
capacity volumes might have more blocks in the volume bit map, but the process would be
identical.

A formatted, but otherwise empty, ProDOS/16 volume is used like this:

Blocks 0-1
Blocks 2-5
Blocks 7-279

Alpha Draft

Loader
Volume directory
Unused

219 5/22/86

.ConLand Operating System Reference

If you open a new me of a nondirectory type, one data block is immediately allocated to
that me. An entry is placed in the volume directory, and it points to block 7, the new data
block, as the key block for the me. The key block is indicated below by an arrow.

The volume now looks like this:

Data Block 0

Blocks 0-1
Blocks 2-5
Block 6

-> Block 7
Blocks 8-279

Loader
Volume directory
volume bit map
Data block 0
Unused

This is a seedling file: its key block contains up to 512 bytes of data. If you wri te more
than 512 bytes of data to the file, the file grows into a sapling file. As soon as a second
block of data becomes necessary I an index block is allocated, and it becomes the file's
key block: this index block can point to up to 256 data blocks (it uses two-byte pointers).
A second data block (for the data that won 't fit in the first data block) is also allocated. The
volume now looks like this:

Index Block 0
Data Block 0
Data Block 1

Blocks 0-1
Blocks 2-5
Block 6
Block 7

-> Block 8
Block 9
Blocks 10-279

Loader
Volume directory
Volume bit map
Data block 0
Index block 0
Data block I
Unused

This sapling file can hold up to 256 data blocks: 128K of data. If the file becomes any
bigger than this, the file grows again, this time into a tree file. A master index block
is allocated, and it becomes the me I s key block: the master index block can point to up to
128 index blocks, and each of these can point to up to 256 data blocks. Index block 0
becomes the first index block pointed to by the master index block. In addition, a new
index block is allocated, and a new data block to which it points.

Here's a new picture of the volume:

Master Index Block
Index Block 0
Index Block 1
Data Block 0
Data Block 255
Data Block 256

Blocks 0-1
Blocks 2-5
Block 6

Alpha Draft

Loader
Volume directory
Volume bit map

220 5/22/86

Block 7
Block 8
Blocks 9-263

-> Block 264
Block 265
Block 266
Blocks 267-279

Data block 0
Index block 0
Data blocks 1-255
Master index block
Index block 1
Data block 256
Unused

Appendixes

As data is written to this me, additional data blocks and index blocks are allocated as
needed, up to a maximum of 129 index blocks (one a master index block), and
32,768 data blocks, for a maximum capacity of 16,777,215 bytes of data in a file. If you
did the multiplication, you probably noticed that a byte was lost somewhere. The last byte
of the last block of the largest possible me cannot be used becauseEOF cannot exceed .
16,777,216. If you are wondering how such a large me might fit on a small volume such
as a flexible disk, refer to Section B.3.6 on sparse files.

This scenaJ;;io shows the growth of a single me on an otherwise empty volume. The
process is a bit more confusing when several files are growing-or being
deleted-simultaneously. However, the block allocation scheme is always the same: when
a new block is needed, ProDOS/16 always allocates the first unused block in the volume bit
map.

Seedling Files

A seedling file is a standard file that contains no more than 512 data bytes
($0 <= EOF <= $200). This file is stored as one block on the volume, and this data
block is the me's key block.

The structure of such a seedling file appears in Figure A-6.

key_pointer_...,...__...,

Data
Block

512 bytes long

$OsEOFsS200

Figure A-6. Organization of a Seedling File

The file is called a seedling me because, if more than 512 data bytes are written to it, it
grows into a sapling me, and thence into a tree file.

The storageJype field of a directory entry that points to a seedling file has the value $1.

Alpha Draft 221 5/22/86

Con/and Operating System Reference

Sapling Files

A sapling file is a standard file that contains more than 512 and no more than
128K bytes ($200 < EOF <= .(ooסס$2 A sapling file comprises an index block and
1 to 256 data blocks. The index block contains the block addresses of the data blocks.
See Figure A-7.

keY...POinter-n:==~__

S200<EOFS$20 000

011I11
Block
SFF

Figure A-7. Organization of a Sapling File

The key block of a sapling me is its index block. ProDOS/16 retrieves data blocks in the
file by first retrieving their addresses in the index block.

The storage_rype field of a directory entry that points to a sapling file has the value $2.

Tree Files

A tree file contains more than 128K bytes, and less than 16M bytes
($20000 < EOF < $1000ooo). A tree file consists of a master index block, 1 to
128 index blocks, and 1 to 32,768 data blocks. The master index block contains the
addresses of the index blocks, and each index block contains the addresses of up to
256 data blocks. The structure of ~ tree me is shown in Figure A-8.

A/phaDraft 222 5/22/86

Appendixes

•
•

Master
Index
Block

keY-POinter-iE===(

Data
Block
IFF

$20 000<EOFs$1 000 000

Figure A-8. Organization of a Tree File

The key block of a tree me is the master index block. By looking at the master index
block, ProDOS/16 can find the addresses of all the index blocks; by looking at those
blocks, it can find the addresses of all the data blocks.

The storage_type field of a directory entry that points to a tree file has the value $3.

Using Standard Files

A system program or application program operates the same on all three types of standard
files, although the storageJype in the file's entry can be used to distinguish between the
three. A program rarely reads index blocks or allocates blocks on a volume: ProDOS/16
does that. The program need only be concerned with the data stored in the file, not wi th
how they are stored.

All types of standard files are read as a sequence of bytes, numbered from 0 to EOF . 1,
as explained in Chapter 2.

Sparse Files

A sparse file is a sapling or tree file in which the number of data bytes that can be read
from the file exceeds the number of bytes physically stored in the data blocks allocated to
the me. ProDOS/16 implements sparse files by allocating only those data blocks that have
had data written to them, as well as the index blocks needed to point to them.

!

AlphaDrajt 223 5/22/86

Con/and Operating System Reference

For example, you can define a me whose EOF is 16K, that uses only three blocks on the
volume, and that has only four bytes of data written to it If you create a file with an EOF
of $0, ProDOS/16 allocates only the key block (a data block) for a seedling file, and fills it
with null characters (ASen $00).

If you then set the EOF and MARK to position $0565, and write four bytes, ProDOS/16
calculates that position $0565 is byte $0165 ($0564 - ($0200 '" 2)) of the third block
(block $2) of the file. It then allocates an index block, stores the address of the current
data block in position 0 of the index block, allocates another data block, stores the address
of that data block in position 2 of the index block, and stores the data in bytes SO 165
through $0168 of that data block. The EOF is now $0569.

If you now set the EOF to $4000 and close the file, you have a 16K file that takes up
three blocks of space on the volume: two data blocks and an index block. You can read
16384 bytes of data from the me, but all the bytes before $0565 and after $0568 are nulls.
Figure A-9 shows how the file is organized.

keY-POinter_--II§~~~'-'-T$7"l$1
$200

58FF

n
EOF • $4000-0-U $:IFFF

Figure A-9. An Example of Sparse File Organization

Thus ProDOS/16 allocates volume space only for those blocks in a file that actually conrain
data. For tree files, the situation is similar: if none of the 256 data blocks assigned to an
index block in a tree file have been allocated, the index block itself is not allocated.. ,
On the other hand, if you CREATE a file with an EOF of $4000 (making it 16K bytes. or
32 blocks, long), ProDOS/16 allocates an index block and 32 data blocks for a sapling
file, and fills the data blocks with nulls.

By the Way: The first data block of a standard file, be it a seedling, sapling, or tree
file, is always allocated. Thus there is always a data block to be -read in when the file is
opened.

A/phaDrajr 224 5/22/86

Appendixes

Locating a Byte in a File

The algorithm for flnding a specific byte within a standard me is given below.

The MARK is a three-byte value that indicates an absolute byte position within a file.

If the file is a tree me, then the high seven bits of the MARK detennine the number
(0 to 127) of the index block that points to the byte. The value of the seven bits indicates
the location of the low byte of the index block address within the master index block. The
location of the high byte of the index block address is indicated by the value of these seven
bits plus 256.

Applin to:
..

Tree File oriy
....

Tree 800 Sapling
....

All Three

Figure A-10. MARK Format

If the file is a tree file or a sapling file, then the next eight bits of the MARK determine the
number (0-255) of the data block pointed to by the indicated index block. This 8-bit value
indicates the location of the low byte of the data block address within the index block. The
high byte of the index block address is found at this offset plus 256. .

For tree, sapling, and seedling files, the low nine bits of the MARK are the absolute
position of the byte within the selected data block.

Header and Entry Fields

The Storage Type Attribute

The value in thestorage_type field, the high-order four bits of the first byte of an entry,
defines the type of header (if the entry is a header) or the type of file described by the entry.

$0 indicates an inactive file entry
$1 indicates a seedling file entry (EOF <= 256 bytes)
$2 indicates a sapling file entry (256 < EOF <= 128K bytes)
$3 indicates a tree me entry (l28K < EOF < 16M bytes)
$4 indicates a Pascal operating system area on a partitioned disk
$D indicates a subdirectory file entry .
$E indicates a subdirectory header
$F indicates a volume directory header

The name length, the low-order four bits of the first byte, specifies the number of
characters-in the file_name field.

AlphaDrajr 225 5/22/86

Conland Operating System Reference

ProDOS/16 automatically changes a seedling me to a sapling file and a sapling file to a tree
file when the file's EOF grows into the range for a larger type. If a file's EOF shrinks into
the range for a smaller type, ProDOS/16 changes a tree file to a sapling file and a sapling
file to a seedling me.

The Creation and Last Modification Fields

. The date and time of the creation and last modification of each file and directory is stored as
two four-byte values, as shown in Figure A-II.

Byte 1 Byte 0

Bit:

Value:

15\14\13\12\11\10\9 8P!615 4\3\2!11°

Year Month Day

Byte 1 Byte 0

Bit:

Value:

15 14 13 12\11110 \9\8 7 6 51 4 \3\2\1\0

0 0 0 Hour 0 0 Minute

Figure A-ll. Date and Time Format

The values for the year, month, day, hour, and minute are stored as binary integers, and
may be unpacked for analysis.

The Access Attribute

The access attribute-field (Figure A-l2) determines whether the file can be read from,
written to, deleted, or renamed. It also contains a bit that can be used to indicate whether a
backup copy of the me has been made since the me's last mcx:iification.

BIt:

Value:

7 6 5 4 13 12 1 0

0 AN B reserved W A

where
D =destroy-enable bit
RN =rename-enable bit
B =backup-needed bit
W =write-enable bit
R =read-enable bit

Figure A-12. The Access Attribute Field

A bit set to 1 indicates that the operation is enabled; a bit cleared to 0 indicates that the
operation is disabled. The reserved bits are always O. The most typical setting for the
access byte is $C3 (11000011).

AlphaDrajt 226 5/22/86

Appendixes

ProDOS/16 sets bit 5, the backup bit, to 1 whenever the file is changed (that is, after a
CREATE, RENAME, CLOSE after WRITE, or SET_FILE_INFO operation). This bit
should be reset to 0 whenever the file is duplicated by a backup program.

Note: Only ProDOS/16 may change bits 2-4; only backup programs should clear bit 5
(using CLEAR_BACKUP_BIT).

The File Type Attribute

Thefile_type field in a directory entry identifies the type of file described by that entry.
This field should be used by system programs to guarantee file compatibility from one
system program to the next. The currently recognized values of this byte are shown in
Table A-I.

File Type

$00
$01
$02 t
$03 t
$04
$05 t
$06
$07 t
$08
$09 t
$OAt
SOB t
SOC t
$OO,$OE t
$OF
$10 t
$11 t
$12 t
$13 t
$14 t
$15 t
$16-$18 t
$19
$IA
$IB
$IC-$EE
$B3
$B4
$B5
$B6
$EF
$FO

Alpha Draft

Table A·I. Apple II File Types

Preferred Use

Typeless file (SOS and ProDOS)
Bad block file
Pascal code file
Pascal text me
ASCIl text file (SOS and ProDOS)
Pascal data file
General binary file (SOS and ProDOS)
Font file
Graphics screen file
Business BASIC program me
Business BASIC data file
Word Processor me
SOS system file
SOS reserved
Directory me (SOS and ProOOS)
RPS data me
RPS index me
AppleFile discard file
AppleFile model me
AppleFile repon format me
Screen Library me
SOS reserved
AppleWorks Data Base file
AppleWorks Word Proc. fJ.1e
AppleWorks Spreadsheet file
Reserved
ProDOS11 6 system me
ProOOS/16 run-time library me
ProDOSIl6 shell load file
ProDOS/16 startup load file
Pascal area on a partitioned disk
ProDOS CI added command me

227 5/22/86

Cortland Operating System Reference

$Fl-$F8
$F9
$FA
$FB
$FC
$FD
$FE
$FF

Alpha Draft

ProDOS user defIned files 1-8
ProDOS reserved
Integer BASIC program me
Integer BASIC variable me
Applesoft program fIle
Applesoft variables me
Relocatable code file (EDASM)
ProDOS system me

tapply to Apple III only

228 5/22/86

Appendix B

Apple II Operating Systems

This appendix explains the relationships between ProDOS/16 and three other operating
systems developed for the Apple II family of computers (DOS. ProDOS, and Pascal), as
well as one developed for the Apple III (SOS). If you have written programs for one of the
other systems or are planning to write programs concurrently for ProDOS/16 and another
system, this appendix may help you see what changes will be necessary to transfer your
program from one system to another.

The first section gives a brief history. The next two sections give general comparisons of
the other operating systems to ProDOS/16, in terms of me compatibility and operational
similarity. The final section describes the changes made for version 1.2 of ProDOS.

History

DOS

DOS stands for Disk Operan'ng System. It is Apple's first operating system; before DOS,
the firmware System Monitor controlled program execution and input/output.

DOS was developed for the Apple II computer. It provided the first capability for storage
and retrieval of various types of files on disk (the Disk m; the System Monitor allowed
input/output (of binary data) to cassette tape only.

The latest version of DOS is DOS 3.3. It uses a 16-sector disk fonnat.

SOS

SOS is the operating system developed for the Apple ill computer. Its name is an acronym
for Sophisticated Operating System, reflecting its increased capabilities over DOS. On the
other hand, SOS requires far more memory space than either DOS or ProDOS (below),
which makes it impractical on computers other than the Apple III.

ProDOS

ProDOS (for Professional Disk Operating System) was developed for the newer members
of the Apple II family of computers. It requires at east 64K bytes of RAM memory, and
can run on the Apple lIe, Apple lIe, and 64K Apple II Plus.

AlphaDrajt 229 5/22/86

Conland Operating System Reference

ProDOS !:kings some of the advanced features of SOS to the Apple II family, without
requiring as much memory as SOS does. Its commands-are essentially a subset of the 50S
commands.

The latest version of ProDOS developed specifically for the Apple IIe and IIc is ProDOS
1.1.1. An eve~ more recent version, developed for the Cortland but compatible with the
IIe and IIc, is ProDOS 1.2

ProDOS/16

ProDOS/16 is an extended version of ProooS, developed specifically for the Cortland (i t
will not run on other Apple II's). The "16" refers to the 16-bit internal registers in the
Cortland's 65816 microprocessor.

ProDOS/16 permits access to Cortland's entire 16 Mbyte addressable memory space
(ProDOS is restricted to addressing 64K bytes) and it has more "50S-like" features than
ProDOS has. It also has some new features, not present in 50S, that ease program
development.

There are two versions of ProDOSIl6. Version 1.0 is an interim system, consisting of a
ProDOS 1.2 core surrounded by a "ProDOS/l6-like" user interface. Version 2.0 is the
first complete implementation of the ProooS/16 design.

Pascal

The Pascal operating system for the Apple Il and Apple ill was mQd.ified and extended
from UCSD Pascal, developed at the University of California at San Diego. The latest
version, written for the Apple IIelllc, is Pascal 1.3. .

File Compatibility

ProDOSIl6, ProDOS, and SOS all use a hierarchical file system with the same directory
structure. Every file on one system's disk can be read by either of the other systems. DOS
and Pascal use significantly different formats.

ProDOS: ProDOS/16 and ProDOS have identical file system organizations and support
the same file types, with these exceptions:

• ProDOS/16 does not recognize ProDOS system files (type $FF) or binary
files (type $06)f""'.*true??]

• ProDOS does not recognize the file types $B3, $B4, $B5, $B6; these file
types are specific to ProDOS/16.

50S: The SOS me types that are recognized by ProooS/16 are directory files, text
files, and binary fJ.1es(***?]. These three types are adequate for transferring
programs and data between 50S and ProDOS/16.

Alpha Draft 230 5/22/86

DOS:

Appendixes

DOS does not have a hierarchical file system. ProDOS/16 cannot directly read
DOS files (but see "Reading DOS 3.3 Disks," below).

Pascal:' Pascal does not have a hierarchical file system. ProDOS/16 cannot read Pascal
files.

Reading DOS 3.3 Disk Files

Both DOS 3.3 and ProDOS 140K flexible disks are formatted using' the same 16-sector
layout As a consequence, the ProDOS/16 READ_BLOCK and WRITE_BLOCK calls are
able to access DOS 3.3 disks too. These calls know nothing about the organization of files
on either type of disk.

When using READ_BLOCK and WRITE_BLOCK, you specify a 512·byte block on the
disk. When using RWTS (the DOS 3.3 counterpart to READ_BLOCK and
WRITE_BLOCK), you specify the track and sector of a 256-byte chunk of data, as
explained in The DOS Programmer's Manual. To use READ_BLOCK and
WRITE_BLOCK to access DOS 3.3 disks, you must know what 512-byte block
corresponds to the track and sector you want.

Table B·1 shows how to detenninea block number from a given track and sector. First
multiply the track number by 8, then add the Sector Offset that corresponds to the sector
number. The half of the block in which the sector resides is determined by the Half-of-
Block line (l is the first half; 2 is the second). .

Table B-l. Tracks and Sectors to Blocks (140K Disks)

Block Number =(8*Track Number) + Sector Offset

Sector: 0 1 2 3 4 5 6 7 8 9 ABC D E F
Sector Offset: 0 7 6 6 5 5 4 4 3 3 2 2 1 1 0 7
Half of Block: 1 1 2 1 2 I 2 1 2 1 2 1 2 1 2 2

Refer to the DOS Programmer's Manual for a description of the me organization of
DOS 3.3 disks.

Operating System Similarity

Input/Output

ProDOS/16 can perform VO operations on disk files (block devices) only. Under
ProDOS/16, therefore, the current application is responsible for knowing the protocol
necessary to communicate with character devices (such as the console, printers, and
communication ports).

ProDOS: Like ProDOS/16, ProDOS performs I/O on block devices only.

Alpha Draft 231 5/22/86

Conland Operating System Reference

SOS: SOS communicates with all devices, both character devices and block devices,
by making appropriatejile access calls (such as open, read write, close). Under
SOS, writing to one device is essentially the same as writing to another.

DOS: DOS allows communication with one type of device only-the Disk II drive.
DOS 3.3 uses a 16-sector disk fonnat; earlier versions of DOS use a I3-sector
format. I3-sector Disk II disks cannot be read directly by DOS 3.3, SOS,
ProDOS, or ProDOS/16.

Pascal: Pascal provides access to both block devices and character devices, through
their volume names.

Filing Calls .

SOS, ProDOS, and ProDOS/16 filing calls are all closely related. Most of the calls are
shared by all three systems; funhermore, their numbers are identical in ProDOS and SOS
(ProDOS/16 calls have a completely different numbering system from either ProDOS or
SOS). Some differences are these:

• With ProDOS and ProDOSIl6, unlike SOS, you don't specify the file size when
creating a me. Ftle sizes are automatically extended when necessary.

• With SOS the GET_FILE_INFO call returns the size of the file (the value of EOF).
With ProDOS and ProDOS/16 you must first open the flle and then use the
GET_EOF call.

• The SOS VOLUME call corresponds to the ProDOS ON_LINE call. 'Nhen given a
device name, VOLUME returns the volume name for that device. When gi,ven a unit
number (derived from the slot and drive numbers), ON_LINE returns the volume
name.

The ProOOS/16 VOLUME call is functionally identical to the SOS VOLUME call.

• The SOS calls SET_MARK and SET_EOF can use a displacement from the current
. position in the file. ProDOS and ProDOS/16 accept only absolute positions in the tile

for these calls.

Memory Management

Under ProDOS/16, neither the operating system nor the application program perform
memory management; allocation of memory is the responsibiliry of the Memory Manager, a
Conland ROM-based Tool. When an application needs space for its own use, it makes a
direct request to the Memory manager. When it makes a ProDOS/16 call that requires the
allocation of memory space, ProDOS/16 makes the appropriate request to the Memory
Manager. The Cortland Memory Manager is similar to the SOS memory manager, except
that it is more sophisticated and is not considered part of the operating system.

ProDGS: A ProDOS system program is responsible for its own memory management. It
must find free memory, and then allocate it by marking it off in the ProDOS
Global Page's memory bit map. Pr6DOS protects allocated areas by refusing to

AlphaDrajt 232 5/22/86

50S:

DOS:

Pascal:

Appendixes

write to any pages that are marked on the bit map. Thus it prevents the user
from destroying protected memory areas (as long as all allocated memory is
properly marked off, and all data is brought into memory using ProDOS calls).

50S has a fairly sophisticated memory manager that is part of the operating
system it:self. A system program or application requests memory from SOS,
either by location or by the anmount needed. If the request can be satisfied,
SOS grants it. That portion of memory is then the sole responsibility of the
requestor until it is released.

DOS performs no memory management Each application under DOS' is
completely responsible for its own memory allocation and use.

Interrupts

ProDOS/16 does not have any built-in interrupt-generating device drivers. Interrupt
handling routines are therefore installed into ProDOS/16 separately, using the
ALLOC_INTERRUPT call. Interrupt routines in ProDOSI16 have no priority; ProDOSI16
must poll them in succession until one of them claims the interrupt.

ProDOS: ProDOS handles interrupts identically to ProDOS/16, except that it allows fewer
installed handlers (4 vs. 16).

50S: In SOS, any device capable of generating an interrupt must have a device driver
capable of handling the interrupt; the device driver and its interrupt handler are
inseparable and are considered to be part of SOS. In addition, SOS assigns a
distinct interrupt priority to each device in the system.

DOS: DOS does not suppon interrupts.

Pascal: Apple II Pascal versions 1.2 and 1.3 suppon interrupts; earlier versions do not.

Revised ProDOS for the Cortland
Both ProDOS and ProDOS/16 operating systems are delivered with the Conland computer.
Conland ProDOS (version 1.2) has some minor revisions, necessary to make it compatible
with the Coniand hardware configuration.

1. The system clock:

For Apple II computers, the only supponed system clock is the ThunderClock™, an
option on an accessory board. ConIand has a built-in system clock, and ProDOS has
been modified to suppon that clock. At boot rime, ProDOS senses whether it is on a
Conland; if so, it replaces the ThunderClock routine with the built-in clock routine.

2. QUIT mechanism:

Alpha Draft 233 5/22/86

Conland Operating System Reference

>Ie**

3. Cold and wann start:

. A ProDOS cold start on Cortland is the same as on other Apple II's. A ProDOS warm .
start is performed by taking the proper system file name from a prearranged memory
location, then loading and running that program. [u*not completely defined yet?]

4. NEWLINE bug:

A minor error in the way ProDOS handles NEWLINE mode in reading and writing has
been corrected. See .**.

5. Zeroing index blocks:

A previous revision to ProDOS causes all of a me's index blocks to be zeroed when the
file is destroyed. That revision has [***?]been removed.

For more details on Cortland ProDOS, see ProDOS 12 Delta Guide or the ProDOS
Technical Reference Manual.

AiphaDrajr 234 5/22/86

AiphaDrafr

Appendix C

The ProDOS/16 Exerciser

(version 0.0)

U*infonnation not yet available**'"

235 5/22/86

Coniand Operating System Reference

. '\

Alpha Draft 236 5/22/86

Appendix D

System Loader Technical Data

This appendix assembles some specific technical infonnation on the System Loader. For
more infonnation, see the referenced publications.

Object Module Format

The System Loader can load only code and data segments that confonn to Conland Object
module Format. Object Module fonnat is described in detail in CortLand Programmer's
Worrkshop.

File Types

File types for load flies and other OMF-related files are listed below. For a complete list of
Apple II flie types, see Appendix A.

File type
$BO
$B1
$B2
$B3
$B4
$B5
$B6

Segment Kinds

Description
SoW'Ce file (aux_type defines language)
Object file
Library file
Load file
Run-time Iibrary me
Shell load me
Initialization system me

Whereas flies are classified by type, segments are classified by kind. Each segment has a
kind designation in the KIND field of its header. Each bit in the KIND field describes
some attribute of the segment; different combinations of these attributes yield different
values for the segment kind. Some specific values are

Segment Kind
$02
$04
$08
$10

Alpha Draft

Description
Segment Jump Table
Pathnarne Table
Library Segment Dictionary
Initialization segment

237 5/22/86

Conland Operating System Reference

Record Codes

Load segments, like all OIv1F segments, are made up of records. For a complete list of
record types, seeCorriand Programmer's Worrkshop. The only record types recognized by
the System Loader are these:

Record Code Name Description

$E2 RELOC intrasegment relocation record (in relocation
dictionary)

$E3 INTERSEG intersegment relocation record (in relocation
dictionary)

$F2 LCONST long-constant record (the actual code and data for
each segment)

If the loader encounters any other type of record in a load segment, it will not load the
segment.

Load File Numbers

Load files processed by the linker at anyone time are numbered consecutively from one.
Load file 1 is called the initial load file. It must fulfill these requirements:

• It must be static.

• If there is an Initialization segment, it must [***71?] be in load file 1.

e if there is a segment jump table, it must be in load file 1.

e If there is a Pathname table, it must [*""???]be in load fIle 1.

Load Segment Numbers

In each load file created by the linker, segments are numbered consecutively by their
position in the load file, starting at 1. The loader determines a segment's number by
counting up to it from the beginning of the load fIle. As a check, it also looks at the
segment number in the segment's header.

Load Data Table Formats
Th~ tables diagrammed here are described in Chapter 16. The width of each diagram
represents one byte in memory~ numbers down the left side of the diagram represent byte
offsets (in hexadecimal) from the base address of the entry.

Alpha Draft 238 5/22/86

Memory Segment Table

Each entry in the memory segment table looks like this:

Appendixes

o,
2
3
<4
5
6
7
8
9
A
B
C
D
E
F

10

'1
12
13

~ handle to

~
next entry

~ handle to
~

previous entry

F- UserlD

memory handle

-
- load-file no.

load-segment no.

in-use counter

Segment Jump Table

Entries in the Segment Jump Table are in one of two states.

1. "Unloaded" Segment Jump Table entry:

0
load-file no.,

2
load-segment no.

3
<4
5-
6 load-segment offset

7-

a JSL to

; segment-jump·table

B - load function

Alpha Draft 239 5/22/86

Con/and Operating System Reference

2. "Loaded" Segment Jump Table Entry:

o
1
2
3
4
5
6
7
8
9
A
B

.. handle to
~ memo 58<,1. table

entry

..
F'load-segment offset
..
.. JSL to

i" s8<,1ment-jump-table

'" transfer function

Pathname Table

Each entry in the Pathname Table looks like this:

o
1

2
3
4
5
6
7
8
9
A
B
C
D
E
F

10
11
12
13

handle to..
neld entry

~ handle to
~

previous entry

'"
UserlD

.. load-file no.

Oo file date

'"
file time

address of
I- direct page/stack

size of
.. direct page/stack

..
~

pathname-
~

Alpha Draft 5/22/86

Apperujixes

Entry Point and Global Variables
There is only one entry point needed for all System Loader calls (actually, all tool calls). It
is to the Conland tool dispatcher, at the bottom of bank $E1 (address $E1 00 (0).
Although the System Loader maintains memory space with a table of loader functions n
bank $00 and other space in bank $EO, locations in those areas are not supported. Pleas
make all System Loader calls with a JSL to $E1 00 00.

The following variables are of global significance. They are defined at the system level,
meaning that any system program or application that needs to know their values may access
them. However, only USERlD is important to most applications, and it should be
accessed only through proper calls to the System Loader. The other variables are needed
by system programs only, and should not be used by applications.

SEGTBL
JMPTBL
PATHTBL
RETSTK
USERID

Absolute address of memory segment table
Absolute address of segment jump table
Absolute address of pathname table
Absolute address of current application's return address stack
UserID of current application

UserID Format
The UserID Manager is discussed in Chapter 5, and fully explained in ConLand Toolbox
Reference: Part I. Only the format of the UserID parameter needed by the System Loader
and ProDOSIl6 is shown here.

There is a 2-byte UserID associated with every allocated memory segment. It is divided
into three fields: Main ID, Awe ID, and Type ID. The Main ID is the unique number
assigned to the owner of the segment by the UserID Manager; every allocated segment has
a nonzero value in its Main ID field. The Aux ID is a user-assignable identification: it is
ignored by the System Loader, ProDOS/16, and the UserID Manager. The Type ID gives
the general class of software to which the segment belongs.

ALphaDrajr 241 5/22/86

Cortland Operating System Reference

.....
TYPE 10

V'

AUXIO
.....

MAIN 10
.I

Figure D.;1. UserID Format

The Main ID can-have any value from SOl to SFF (0 is reserved).

The Awe: ID can have any value from SOO to SOF.

Type ID values are defmed as follows:

o Memory Manager
1 Application
2 Controlliing Program
3 ProDGS and ProOOS/16
4 Toolset
5 Desk accessory
6 Run-time library
7 System Loader
8-F (undeflned)

. ..

Alpha Draft 242 5/22/86

Appendix E

ASCII Tables

ASCII Dec. Hex. Binary ASCII Dec. Hex. Binary

NUL 0
@ 64

AlphaDrajr

00 OOOOOOOO
40 0100000o

243

, SP 32
DEL 127

20 00100000
7F 01111111

5/22/86

Con/and Operating System Reference

Alpha Draft 244 5/22/86

· Alpha Draft 245 5/22/86

Alpha Draft 246 5/22/86

Glossary

absolute code: Program code that must be loaded at a specific address in memory, and
never moved.

access byte:

application program (or application): A program that performs a specific task useful
to the computer user, such as word processing, data base management, or graphics.
Compare with controlling program.

assembler: A program that produces object files from source flles 'W'ritten in assembly
language. .

backup bit:

bank:

binary output file: A file of absolute code that is ProDGS file type $06. The system
loader will not load binary files.

bitmap:

block device:

character device:

code segment: A segment that contains program.code. Code segments are provided for
programs that differentiate between code and data segments. See the "Segment Types"
section in the Object Module Fonnat Preliminary Notes.

Alpha Draft 247 5/22/86

Con/and Operating System Reference

device:

device driver:

device 'information block (DIB): a memory table, maintained by the operating
system, which contains pertinent information on all active devices. DIB's will be a fearure
of ProDOS/16 (version 2); ProDOS and ProDOS/16 (version 1) do not build or use DIB's.

direct page:

directory file:

dispose: To permanently disallocate a memory segment. The memory manager dispose~

of a memory segment by removing its master pointer. Any handle to that pointer will then
be invalid. Compare with purge.

dynamic segment: A segment that can be loaded and unloaded during execution as
needed. Compare with static segment.

emulation mode:

EOF (end-of·file):

error:

external device: See device.

failure: See system failure.

fatal error:

file control block (FCB):

file name:

file type:

file number cross-reference: The part of the pathname table that contains load-file
numbers and pointers to their corresponding pathnames.

Finder:

global page:

global symbol: A label in a code segment that is either the name of the segment or an
entry point to it. Global symbdlS'may be referenced by other segments. Compare with
local symbol.

handle: See memory handle

Human Interface Guidelines:

image: A representation of the contents of memory. A code image consists of machine­
language instructions or data that may be loaded unchanged into memory.

A/phiJ Draft . 248 5/22/86

Cortland Operating System Reference

index block:

initial load file: The fIrst file of a program to be loaded into memory. It contains the
program's main segment and the load. me tables (segment jump table and pathname table)
needed to load dynamic segments.

initialization segment: A segment in an initial load file that is loaded and executed first,
to perform any initialization that the program may require

interrupt:

interrupt handler:

interrupt vector table:

INTERSEG record: A pan of a relocation dictionary. It contains relocation
infonnation for external (intersegment) references.

kernel:

key block:

library file: An object file containing program segments, each of which can be used in
any number of programs. The Linker can search through the library me for segments that
have been referenced in the program source file.

linker: The program that combines files generated by compilers and assemblers, resolves
all symbolic references, and generates a me that can be loaded into memory and executed.

load tile: The output of the linker. Load files contain memory images that the system
loader can load into memory.

load segment: A segment in a load file.

local symbol: A label defIned only within an individual segment. Other segments
cannot access the label. Compare with Global Symbol.

lock: To prevent a memory segment from being moved or purged. A segment may be
locked or unlocked by the memory manager, or by an application through a call to the
system loader.

main segment: The fIrst segment in the initial load me of a program (unless the file also
has an initialization segment). It is loaded fIrst and never removed from memory until the
program terminates.

MARK:

master index block:

master pointer: A pointer to a memory segment; it is kept by the memory manager.
Each allocated memory segment has a master pointer, but the segment is normally accessed
through its memory handle (which points to the master pointer), rather than through the
master pointer itself.

Alpha Draft 249 5/22/86

Cortland Operating System Reference

memory handle: A pointer to the master pointer to a memory segment It identifies a
particular segment of memory. A handle rather than a simple pointer is needed to reference
a movable memory segment; that way the handle will always be the same though the value
of the pointer may change as the segment is moved around.

Memory Manager:

memory segment: A contiguous, page-aligned region of memory, under control of the
memory manager. Each memory segment contains a single load segment that the system
loader has loaded into memory.

MLI:

move: To change the location of a segment in memory. The memory manager may move
segments to consolidate memory space.

movable: A memory segment attribute, indicating that the memory manager is free to
move the segment. A segment is made movable or unmovable through memory manager
calls.

native mode:

object file: The output from an assembler or compiler, and the input to the linker.

object module: An object file in Object Module Fonnat.

object module format: The general fonnat used in object files, library mes, and load
files.

OMF File: Any file in object module fonnat.

operating system:

parameter block: A set of contiguous memory locations, set up by a calling program, to
pass parameters to and receive results from an operating system function that it calls.
Every call to the system loader must include a pointer to a properly-constructed parameter
block

pathname:

pathname list: The pan of the pathname table that contains the me pathnames.

pathname table: A segment in a load file that contains the cross-references between load
files referenced by number (in the segment jump table) and their pathnames (listed in the
file directory). The pathname table is created by the linker.

pointer:

position-independent code: Code that is written specifically so that its execution is .
unaffected by its position in memory. It can be moved withOUt" needing to be relocated.

prefix:

prefix designator:·

A/phaDrajr 250 5/22/80

Conland Operating System Reference

program code: Code that consists primarily of instructions.

purge: To temporarily disallocate a memory segment The memory menager purges a
segment by setting its master pointer to NIL (0). All handles to the pointer are still valid,
so the segment can be reconstructed quickly. Compare with dispose.

purge level: An attribute of a memory segment that sets its priority for purging. A purge
level of 0 means that the segment is unpurgeable.

purgeable: A memory segment attribute, indicating that the memory manager may purge
the segment if it needs additional memory space. Purgeable segments have different purge
levels, or priorities for purging; these levels are set by memory manager calls.

random-access device: See block device.

RELOC record: A part ofa relocation dictionary that contains relocation information for
local (within-segment) references.

relocate: The process of modifying a file or segment at load time so that it will execute
correctly at the location in memory at which it is loaded.

relocatable segment: A load segment that can be loaded into any part of memory. A
relocatable load segment contains a code image followed by a relocation dictionary.

relocation dictionary: A part of a relocatable load segment that contains relocation
information necessary to modify the code-image immediately preceding it. When the code­
image part of the segment is loaded into memory, the relocation dictionary is processed to
recalculate the values of location-dependent addresses and operands.

run-time library file: A load file containing program segments--each of which can be
used in any number of programs--that the system loader loads dynamically when they are
needed.

sapling file:

Scheduler:

sector:

seedling file:

segment: An individual component of an OMP file. Each me contains one or more
segments.

segment jump table: A segment in a load file that contains all references to dynamic
segments that will be called during execution of the program. The segment jump table is
created by the linker. .

sequential-access device: See character device.

source file: An ASCII file consisting of instructions written in a particular language,
such as Pascal or assembly language. An assembler or compiler converts source files into
object meso

Alpha Draft 251 5/22/86

Con/and Operating System Reference

sparse file:

standard file:

static segment: A segment that is loaded only at program boot time, and is not unloaded
during execution. Compare with dynamic segment.

storage type:

system level:

System Loader:

system program:

track:

tree-structured file or tree file:

unload: To remove a load segment from memory. To unload a segment. the system
loader does not actually "unload" anything; it calls the memory manager to either purge or
dispose of the memory segment in which the code segment resides. The loader then
modifies the memory segment table to reflect the fact that the segment is no longer in
memory.

UserID:

UserID Manager:

verSiOJl :

volume:

volume bitmap:

volume control block (VCB):

volume directory:

zero page:

AiphaDraji 252 5/22/86

	v2_09_01
	v2_09_02
	v2_09_03

