Date: June 12, 1985
Author: Fern Bachman
Subject: Columbia AppleTalk ERS

Document Version Number: 00:00

General Information

AppleTalk on Columbia is significantly different from either the AppleTalk //e
card or the AppleTalk //c box. Both of those systems had a dedicated 45C02 to
handle AppleTalk communications with the SCC chip. In Columbia, the main system
processor (&3814) has to handle normal system operation and all necessary
AppleTalk communications with the SCC chip. Without the dedicated 43C02,
Columbia’s SCC and timer interrupts must save and restore the operating
environment even if the user is not “seeing’ the interrupts. This in addition to
the fact that an interrupt cannot automatically be assumed to have come frcm the
SCC or timer means significant overhead and rewriting of the //e and //c¢
AppleTalk firmware is necessary., To recover a lot of the time lost in testing
for where the interrupt came from and saving the environment, Columbia’s firmware
interrupt handler will switch to high speed operation (2.4 MHZ) as soon as
possible after an interrupt occurs. Running faster should allow the AppleTalk
firmware to get to the SCC before the SCC’s FIFO overflows (approximately 104.147
microseconds after the initial SCC interrupt).

AppleTalk needs two major items of hardware to work-with the &38!1&4. An SCC chip
and some hardware to provide 1/4 second interrupts. The SCC chip is Zilog’s 8330
Serial Communications Controller chip running in SDLC (Synchronous Data Link
Control) mode with FMO encoding techniques. It outputs a beginning flag, data, 2
CRC (Cyclic Redundancy Check) bytes and a closing flag. Transmission frequency
is 230.4K bits per second or 28,800 baud. A byte time is 34.722 microseconds or
4.340278 microseconds per bit.

Two timer functions are required for AppleTalk //e. One timer’s function is to
interrupt the 45814 every 1/4 (quarter) second for higher level protocol timing
functions. This timing function will be executed by enabling a 3.75 hertz
interrupt function of the Mega // chip. This will give the 45814 an interrupt
every 1/3.73 seconds (0.244447 seconds). This will be used as the timing
interrupt. The other timing function is to provide 400+xx microseconds delay for
the inter-dialogue gap. This timing function will be executed in software.

It is assumed that the reader of this document is familiar with AppleTalk either
on an Apple // product or on a Macintosh product.

AppleTalk June 12, 1985 Page #!



Currently the firmwar

follows.

$EIxxxx

$EIxxxx

$EIxxxx

$Elxxxx

AppleTalk

e RAM used as a receive and write buffer will be mapped as

Memory Map of Columbia AppleTalk Firmware RAM

June 12, 1985

<K ———

Receive buffer (405 bytes)

< - ———mmeeee-

{ e e o

]

]

|

|

!

!

|

]

| Write buffer (403 bytes)
|

]

!

|

| Work buffer (100 bytes)
|

|

LT .

Page #2



Pointers, ID bytes, Entry points to AppleTalk

The following flags and pointers will be set up in slot 7 ROM area in Columbia

starting at location $C700.

9 = Network or bus interface card/firmware

B = Apple Tech Support ID nybble
3$xx QOffset to PASCAL error routine
$xx Offset to PASCAL error routine
$xx Offset to PASCAL error routine
$xx Offset to PASCAL error routine
488 Non-zero indicates no offsets follow

Address Purpose

$C705 $38 Identifier byte #!-

$C707 $18 Identifier byte #2

$C708B $01 Generic signature byte
$C70C $98B Device signature byte
$C70D

$C70E

$C70F

$C710

$C711

$C712 -=== APPLETALK entry point ==--
$C715 --- REBOQTAPTALK entry point =---
$C718-3C7FD Reserved as code area

$C7FF

$00 RELVERNUM release version number

Other Addresses Used by AppleTalk in Columbia

Enable 1/4 second timer interrupt

User sets to 3$Cn (3C7 for Columbia) to
indicate a printer driver is installed
Printer driver entry point bank address
Printer driver entry point low byte of

Printer driver entry point high byte of

Address Purpose
$E£0C038 SCCADATA register
$E0C039 SCCAREG register
$E0C03A SCCBOATA register
$EQ0CO38 SCCBREG register
$EQ0COxx
$E0COxx 1/4 second timer startus
$bb047F
$bb04FF
$bb077F

address-1i
$bbQ7FF

address-1

bb = 300 if shadowing is on

= 3E0 if shadowing is off

_At Reset Time

1. A1l SCC registers, and functions are reset.
interrupts and the SCC’s ability to interrupt.

This also turns off SCC

2. All buffer pointers and variables used by AppleTalk are reset,
3. The timer interrupt capability in the Mega // that AppleTalk uses is

AppleTalk June 12, 1985

Page

#3



disabled. .

AppleTalk June 12, 1985 Page #4



Bootable AppleTalk General Information

i,

(58]

AppleTalk in Columbia can be booted in one of 3 ways

1. The MENU program options to start-up from internal slot 7 has been
chosen.

2. The student types in INH7 or CALL 50945 from basic.

3. The user types in $C715G from the monitor or JMP’s or JSR’s to $C7!5S
from a program,

Ouring booting the following occurs.

1. A series of transfers between the AppleTalkK firmware and main system
RAM will occur., The higher level protocol necessary to request boot
information from the master station is being moved from Columbia ROM
to system RAM for execution., The boot code is placed at $200 to 3$3F0
and uses text page 1, 3400-37FF as a display/data buffer with
execution address of $200., This allows all memory from $800-3BFFF to
be used for storing the main boot program loaded from the master
station.

2. When transfer is complete the AppleTalk boot code will jump to $200.

3. The RAM code will establish communications with the master/teacher
station and request the main boot code. This boot code could be
PRODOS or PASCAL or whatever. Once the boot code is loaded, the RAM
code will cause the boot code to begin execution.

4. At this point in time the slave station is a fully operational system
which will access files, at the master station, and a print station
via AppleTalk. assuming FAP and PAP have been loaded with the
operating system. Initially the slaves will not be able to
communicate between themselves, however it should not be long before
some student writes the necessary code to do this. It can be done
since the open architecture of AppleTalk does not prevent anyone from
replacing our code with their code.

AppleTalk June 12, 1985 Pagé

83



Boot frames used for

Boot Information Response Frame

Bootable AppleTalk Specific Information .

a normal boot sequence are as follows.

Boot Request Frame

]
Destination adr |

|

|

! - |
] Source adr |
! -—=]
I Lap type |
I |
| 0 OlHop Cnt! msb |
I

I

I

|

|

|

I

- -1
1sb of Data Lengthl
I
Boot Type |
l
Block # Requested |
=1

-1
Destination adr |

]
Source adr |

Lap type |

!

!

I

I

!

I

| -1
I 0 OlHop Cntl msb |
I =1
I

|

l

!

I

|

!

I

Isb of Data Lengthl
!
Boot Type ]
-1
# Blks in bt Prog |

————

«+.Place.Data.....!|
Address |

lvoExecution...ee.l
| Address |
|

— ]

AppleTalk June 12, 1985

Page

#4



Boot Response Frame

Frame Definitions

The boot request frame is used by the slave station to ask for boot information, -
to be sent all the boot blocks and to be sent specific boot blocks.

The boot response frame is used by the master station to reply to the slave
station with specific boot blocks.

The boot‘information frame is sent to the slave station by the master to inform
the slave station about the boot program it is about to receive.

AppleTalk June 12, 1985 Page #7



Bytes Within Frames Definitions

Destination address for the Boot Request Frame is initially 3FF, since a station
coming on line doesn’t Know what the master’s station # is.

Source address is the sending station’s address 4.
Lap Type is $0B for all boot transaction sequences.

msb is the most significant two bits of the data length in the packet. Packet
data length includes all bytes except the destination address, source address and
lap type.

Isb Data Length is the least significant eight bits of the data length in the
packet. Packet data length includes all bytes except the destination address,
source address and lap type. '

Boot Type is defined as follows.

0 = Request for boot information

1 = Send boot blocks request

2 = Send specified boot block request
$80 = Boot information frame
$81 = Specific boot block

Block numbers range from 0 to $FF and consist of exactly 512 bytes.

Place data address is the address of where the slave station should start putting
the main boot program at as it receives it from the master station.

Execution address is the address the boot program should jump to, to start up the
main boot program.

AppleTalk June 12, 1985 . Page #8



Columbia-Boot Routine Memory Map

[ === |$00FFFF
! ---1%000800
| I

I Text Page 1 | Block Byte Map
! I

I - 1$000400
| ROM |
l+..Boot.Code.....!3000300
I Placed here |

| ]

f= 1$000200
I I

I Stack I

I I

| 14000100
1 !

I Zerao Page |

| 1

I 1$000000

The ROM boot code is placed at $00200 by the firmware. (Placed here after the
user initiates a boot sequence.

Text page | will be the byte map for the boot program as it is being transferred
from the master station to the slave station.

Locations $00-$1F and locations $54-$FF are available for the ROMs boot program
to use as it is loading the boot program from the master station.

AL will appear on the screen to correspond to a block # which is to be loaded
from the master station.

AppleTalk June 12, {985 ' Page &9



Slave boot screens. .

Initial Secreen

After a station # (node ®) is determined the following screen appears.
## is the node number in hexadecimal taken by AppleTalk.

Second Screen

‘AppleTalk  June 12, 1985 Page #10



After the .boot information frame is received the following frame appears.

Third Screen

lIl.llll'llll'lllll‘llll.l.l.lllllll'll

| ##
I

I
|
|
I
! /®\
I
I
I

After timeout occurs or after block 1 (the last block since blocks are received
in reverse order) is received the next screen appears. The dots left on the
screen may or may not appear. They indicate unreceived blocks which are to be
requested one at a time after this screen appears.

Fourth Screen

AppleTalk ° June 12, 1985 Page #11



.The final screen appears only after all blocks required have been received. Take
note that all the “grains’ of ‘sand’ are now at the bottom of the hour glass.

Final Screen

1
| #4

I
I
|
!
I
I
----- !
I
I
I
!
I
I

7
~N

The 71’ appearing in the Program Screen and the Byte Map Screen represents an-
indicator that the program is still running. It increments every {/4 second
until the entire user boot program is received and the firmware’s boot program
Jumps to the starting address of the user’s boot program.

AppleTalk  June 12, 1985 ' Page #12



Boot Sequence

1.
2

-

3'

10.
11,

12,

13'

Power-up master station.

Initiate the boot sequence on the slave station.

Slave station broadcasts Boot Request Frame with a boot type of 0 to
get the Boot Info Frame. He broadcasts it every 1/4 second until the
master station responds.

Master sends Boot Info Frame to slave. :

Slave sends directed pacKket to master asking for all boot frames (Boot
Type=1).

Master sends packets (blocks) sequentially ‘1’ time only.

Slave receives frames and places them in sequential order in memory
according to their block 4.

Slave determines which blocks he missed.

Slave requests 1 at a time the block #‘s he missed, waiting 130 msec
between requests for missing frames.

Master sends requested blocks to slave.

Slave initializes the AppleTalk firmware.

Slave JMP’s to Execution Address.

Program just loaded in takes control of the slave station.

AppleTalk  June 12, 1985 Page

#13



g

s that no user RAM be occupied with any of the ATLAP code.
n such a way as to assure an identical interface between
mbia. This interface will allow the user to write
protocols (such as a new DDP) and still be able to use our
neric LAP protocol interface will allow us at any time to

P software/hardware without requiring the applications

any changes to their programs. The firmware entry points
ation in the $Cn00 (3C700 in Calumbia) space which is

he //e and //c versions.

2 LAP as follows;

je in that is requires only ! entry point into the $Cn00
t future maintainability is simple. We only need to make
( entry point is maintained.

ST 3Y = hi byte of parameter list address
ST ;X = 1o byte of parameter list address
jA = the slot # of the AppleTalk interface+3C0

($C7 in Columbia)
K jCall the interface (in ROM in //c and in Columbia
and in RAM section of peripheral card in //e)
NE ;<>0 then an error occurred

1 always be clear upon exit from the AppleTalk

1983 ’ Page #14



AppleTalk Generic PARAMLST is defined as follows

OFB HCOMMANDNUM ;Function requested
-= All command calls --
$01 = INIT
Initialize the interface
$02 = READREST
Read rest of buffer
$03 = WRITE
Write a buffer
"$04 = STATUS
Check if AppleTalk interrupted
Set/reset interrupt masks
305 = READPROT
Read protocol from buffer
OW/DFB jData pointers/actual data to pass to/from
"AppleTalk buffer

PARAMLST’s Defined for Each Call

INIT Call - Command Number 1

DFB 31! ;Command number for INIT call
DS 1,0 ;Misc information to pass to the AppleTalk
firmware

1. 800 then normal init
2. $FF then find new node address using a
random number and do normal init

3. $xx if 1 to $FE (! to 254) then find new
node address but use $xx as starting
address when determining a new station
address. Note: $01-37F (1-127) are
valid node ID addresses. $80-3FE
(128-234) are used for servers only.,
This $xx option therefore lets the
user set up Columbia as a normal! node
or as a server node.

4. returns AppleTalk station address

READREST Call - Command Number 2°

—

DFB 32 ;Command number for READREST call
OW BUFFADDR jAddress in user’s program for rest of data packet
to be put

‘1. Address of read buffer (buffer for packet
to be transferred to)
DS 1,0 jMisc information to pass to the AppleTalk
firmware .
1. =0 then read rest of the data from the
AppleTalk firmware RAM buffer
2. <> 0 then purge and don’t read current

AppleTalk  June 12, 1985 Page

#15



AppleTalk

DS 2,0

packet to be transferred to)

;Number of bytes read in during

WRITE Call - Command Number 3

OFB $3
OW WRITETBL

;Command number for WRITE call

jAddress in 4302 of pointer table containing data

to transmit

READREST call.

1. Address of write buffer gointer table

WRITETBL EQU = ;Generic form

ODW NUMDATABYTES ;Number of bytes
DW DATABUFFER ;Pointer to data

to read
buffer

OW NUMDATABYTS2 ;Number of bytes to read
DW DATABUFFER2 jPointer to data buffer
DW $FFxx ;Pointer table terminator

Sample WRITETBL (DESTADR, SRCADR, LAPTYPE need not be
separated as this example shows!!)

WRITETBL EQU =

DW 30001 iNumber of bytes

DW DESTADR jPointer to destination address
OW $000! jNumber of bytes

D4 SRCADR jPointer to source address
DW %0001 iNumber of bytes

OW LAPTYPE jPointer to LAP type

OW DDPLEN jNumber of bytes

DWW DDPBUF ;Pointer to DDP data

OW ATPLEN ;Number of bytes

DW ATPBUF jPointer to ATP data

DW MISCLEN iNumber of bytes

OW MISCBUF jPointer to misc data

DW $FFxx ;Pointer table terminator

June 12, 1985

Page

Bl1S



STATUS Call - Command Number 4
DFB %4 ;jCommand number for STATUS call
DS 1,0 ‘ iMisc information to/from the AppleTalk firmware
This parameter byte is explained below.

The STATUS call does 2 things. It sets interrupt
masks and returns interrupt status to the user,
If STATUS is called with a parameter byte of

- then the call is setting the interrupt

masks only. If the parameter byte is + then

the call is requesting interrupt information.

N D R
1B71B841BS1B8418B31B821B81180!
SN N U U U DU N

A ‘=’ parameter byte is defined as follows

B? = | Set interrupt mask request
BS = 0/1 enable/disable 1/4-sec timer interrupt
B3 = 0/1 enable/disable packet ready interrupt

B4-80 RESERVED

A “+’ parameter byte is defined as follows
B7 =0 Return interrupt status request
B4é-80 RESERVED

Above call returns with parameter byte
defined as follows.
B? = 0/1 AppleTalk pKt or/and timer event

occurred
B4 = 0/1 1/4 sec timer went off
BS-B4 RESERVED
B3-80 1 bit set for each pkt in buffer (1

packet maximum in Columbia)

READPRQOT Call - Command Number 5
DFB $5 jCommand number for READPROT call
DW BUFFADDR jAddress in users’s program for part of data
packet to be put

1. Address of read buffer (buffer for packet
' to be transferred to)

DS 2,0 iNumber of bytes
1. Number of bytes to read

NOTE: READPROT can read from last position+! accessed. It cannot

read data prior to the last read data position in the
current packet,

AppleTalk June 12, 1985 : Page " #17



NOTE

For all calls carry will return set if an error occurred and the
accumulator will contain the error code.

For a STATUS call carry will return set Cindicating the user was in error
assuming that the AppleTalk was the interrupting device) if AppleTalk was
not the interrupting device. Carry will return clear if AppleTalk was the
interrupting source (indicating the user was correct in assuming the
AppleTalk was the interrupting source.

AppleTalk  June 12, 1985 ' ' Page #18



Error Codes by Call Number

Command error
1,2,3,4,5.

= $FF for any call where the command # does not equal

INIT call errors

4 =

READPROT call
{ =
2 =

3

READREST call
1
2

o

could not get unique AppleTalk address

"for station or in the //c version could not

talk to the AppleTalk //c protocol converter box.

errors
no packets in buffer to read

multipurpose buffer overflowed (not possible in
Columbia)

tried to read past end of current data

packet

errors
no packets in buffer to read

multipurpose buffer overflowed (not possible in
Columbia)

WRITE call errors

oW NoO-W
W nuu

number of bytes to send >403

number of bytes <3

excessive deferrals

toc many collisions

illegal lap type (>127 ($7F) not allowed)

STATUS request call errors

3A =

AppleTalk was not the interrupting device

STATUS set interrupt mask call errors
None possible

Brief Description of Each Call

INIT: Start timer. Inhibits all AppleTalk interrupts and resets
AppleTalk IRQ sources.

NOTE: The user must call STATUS with an interrupt mask to

enable AppleTalk interrupts to be passed to the user.

The INIT call returns:

C=20if no error
C=1if an error occurred
A = error code
X/ Y /U = scrambled

AppleTalk  June 12, 1985 Page

819



READPRQT:

The

Called to read xx number of bytes from the buffer beg:nnxng
with the last read byte+! in the buffer.

This call is used by the different protocol layers to read
their headers from the multi-purpose buffer into their
buffer,

0 if no errors occurred
1 if an error occurred
error code

V = scrambled

READPROT call returns:

Nonnon

c
c
A
X/ Y

NOTE: READPROT can read from last position+! accessed.

READREST:

The

I't cannot read data prior to the last read data position
in the current packet.

Reads from last position+! accessed (via READPROT) or from
the start of packet if no previous READPROT was done and
places data in user specified buffer. Allows user to purge
the current packet without reading it if desired.
READREST call returns: 0 if no errors occurred
1 if an error occurred
error code
V = scrambled

NoHounou

c
c
A
X/ Y

WRITE: Called by appropriate protocol level to move data from

AppleTalk

protocols buffer and send a datagram on AppleTalk. WRITE
passes a pointer to a table of pointers and byte counts that
included sequentially, comprise a correct data packet with
all protocols intact and data present. This table is built

by each protocol above the LAP including its protocol data in

the correct sequence in a common table found in the DOP.

NOTE: The source node number is placed over the second byte
in the packet to be written out by the Appletalk

firmware, Therefore the user does not need to Know his

station (node) number to transmit a packet. The user
must however provide space for the source address to
go when he is defining a packet.

The WRITE call returns: C =0 if no errors
C=1if an error occurred
A = error code
X/ Y/ VU= scrambled

June 12, 1985 Page

#20



STATUS: Called when an interrupt occurs to determine if AppleTalk was
the interrupting source or not. If C=0 it was, C=! if it was
not. Also returns whether it was a 1/4 second timer
interrupt or a packet ready interrupt if AppleTalk was the
interrupting device. If an AppleTalk source was not the
interrupting device the accumulator register returns with a
3A as the error code. '

STATUS is alsoc called to set the interrupt masks.

In every case, whether the interrupt mask allows interrupts
or not, the STATUS call parameter byte will return the
current status of the events which have taken place relating
to AppleTalk. This allows Columbia’s AppleTalk ability

to be used in a polling mode fashion if for some reason the
user decided not to use our higher level protocols (our
higher level protocols require the use of lnterrupts) and
wrote ones not requiring interrupts to work.

The STATUS ca]] returns: C

0 if AppleTalk was interrupting
device (Clears interrupt)

C=1 if AppleTalk was not the
interrupting device
A = error code
X/ Y/ V= scrambled

AppleTalk June 12, 1985 ' Page #21



Apple // AppleTalk Interface General Diagram

! --Apple—- | === Peripheral Card----- |
| : //e I I
I I I I I [
I I | I ATLAP | I
I 0.S. I AppleTalk I Peripheral ! 43€02 ! scC IATLK
! I Protocol I Card ! 2K RAM ! 1/F | =
I I I Bus I 4K (8KJROM l |
| I | : I I |
|
- ATLAP layer as -=>)I
seen by DDP layer
| mmm e -Apple -=1 --Protocol Converter Box=======—- !
I //¢ | I
1
I I I | ! | | I
I lApTalk | ROM | //c 1__ | ATLAP l I
! 0.s. ! | PRE-| Prot | 1 | [ 43C02 I sccC IATLK
I I Prot | LAP | Conv | W [===| W | 2K RAM | I/F | ====
I I [ ! I M M 4K(8KIROM I !
| I ! ! ! I I l l !
I I
ATLAP layer as ==))| !
seen by ODP layer !
cBUS

[===————— : Columbia====-—mmmmm e l
| |
I I ! I
I | | !
I 0.8. I AppleTalk ROM ATLAP I scc IATLK
| | Protocol with RAM buffers I I/F | ===
! I I
l | !

I
I
I
|
|
I
|
I

ATLAP layer as --=))
seen by DDP layer

AppleTalk June 12, 1985

Page



Receive Buffer Columbia

Ouring an interrupt to the 45814, the firmware interrupt handlier will determine
if it is an AppleTalk related interrupt. If it is it will call AppleTalk
firmware to handle the interrupt, read data into the receive buffer, and call the
user if required to, When the user is interrupted he will call the routine
called STATUS to determine what type of AppleTalk interrupt occurred (a packet
ready to read or a 1/4 second timer interrupt. If a read is required the user
first calls READPROT which enables the DDP to determine which node the message is
for. That particular node will call READREST which will read the rest of the
data packet. If no packet is in the buffer when READPROT or READREST is called
the user will receive a no packets available error.

AppleTalk June 12, 1985 Page #23



Receive Buffer Data Stfucture a Packet

Destination Address

Source Address
LAP Header

LAP Type Field
{=Short Header
2=Long Header

@ 0 | Hop Cnt ¢4 bits)! msb (2bits)

DOP Header | |

3 to 11 bytes long

Datagram Data

I

|

]

|

|

|

]

I

]

|

]

] | |
]

|

]

]

|

!

]

|

|

| 0 to 584 bytes maximum
I
|

Automatic Packet Rejection by the AppleTalk Firmware

The firmware will automatically reject an incoming packet under the following
conditions:

1. Any SCC error occurs.
Including: receiver overrun, CRC, missing clocks

2. More than 403 bytes are in incoming packet

3. The number of bytes-3 received do not equal the length byte
parameters in brte positions 3 and 4 in the packet just received.

4. No characters received within 1 character time. (approximately
34.722 microseconds.

3. A WRITE is_in progress.

In every case the user is not interrupted if any of the above conditions occur.

The firmware simply resets its pointers and waits for more packets to be sent to
it

AppleTalk June 12, 1985 _ . Page #24



Interrupting the User

The AppleTalk firmware will interrupt the user when it has received a datagram
the user should Know about or when a 1/4 second has elapsed. The timing
interrupt like the SCC cannot directly interrupt the user for any reason (it
interrupts the 43814 but is not passed to the user unless requested to do so).
The AppleTalk firmware controls the interrupting of the user. During the
interrupt routine a call to STATUS will inform the user what type of interrupt
occurred. Carry =0 if AppleTalk did the interrupting and carry =1 if not.

The interruptability of the user is totally dependant on the interrupt mask sent
to the AppleTalk firmware during the last STATUS call used to set the interrupt
mask. ‘It can be set to allow timer interrupts or/and packet ready interrupts in
any combination.

It is possible, although not using our higher level drivers, to use AppleTalk in
non-user interrupt mode by polling the AppleTalk firmware. This is done by
periodically doing a STATUS call ignoring the carry bit and decoding the status
brte. If bit 7 is set an AppleTalk event occurred. Bit & is set i+ the 1/4 sec
timer went off. Bits 0 will be set to indicate a packet was received since the
last READREST call. Using this data the user can call READPROT and READREST to
extract the packet data from AppleTalk’s firmware RAM buffer.

NOTE: - For AppleTalk on Columbia to work interrupts must be enabled,
whether the user wants to be interrupted or not. If the user does
not want.to be interrupted the firmware will trap, decode, and act
on all AppleTalk interrupt sources transparent to the user.

AppleTalk June 12, 1985 Page #2S5



Resetting the AppleTalk Firmuare / Hardware

AppleTalk Firmware and Hardware can be reset in 3 ways.
1. Pressing ‘CONTROL-RESET’.
2. Pressing ‘CONTROL-open apple-RESET
3. Powering up the system

1apENG, TapACK, 1apRTS, 1apCTS

LAP enquiry, acknowledge, request to send and clear to send will be handled
transparent to the user. The AppleTalk firmware will process and respond when

these frames occur or should occur.

Miscellaneous Comments

The AppleTalk firmware will be made recognizable with appropriate ID bytes for
PRODOS and PASCAL. Although AppleTalk // is using the generic PASCAL 1.!
firmware entry points, AppleTalk does not support any PASCAL generic firmware
calls directly nor does it support any PASCAL 1.0 firmware entry points. A \

machine language driver must be written for PASCAL and PRODOS for those operating
systems to access AppleTalk.

The AppleTalk PRODOS driver(s) will reside in the main language card bank 2 at
. 30400-3DFFF. The AppleTalk driver for PASCAL will reside on the heap.’

AppleTalk June 12, 1985 Page #2s



Printer Hooks Via the AppleTalk Firmware

There is no room in the AppleTalk firmware to provide all the protocol and
routines necessary to output to a print server. However by providing proper
hooks in the AppleTalk interface firmware we can redirect the users (or
application programs) printer outputs to a printer driver located in main memory
in the Apple //. The scheme we have chosen should allow BASIC and PRQODOS
application programs to access the AppleTalk interface firmware as if it were a
normal printer “card’. That means that entry at 3$Cn00 is for an initialization
call for the printer driver. Entry at $Cn05 is for inputting a character and
entry at 3Cn07 is for outputting a character to the printer.

Entry at $Cn00 means that the user wants to initialize the printer driver
interface if one is loaded into main memory. To determine whether a driver is
available or not we must perform the following step. :

Test the 1st screen hole $47F to verify that it is $C7 (3C? is the
flag indicating a driver has been installed.)

If a driver is not available the monitor ROM is mapped in and a JMP to the
monitaor RESET routine is executed.

[f a driver is available the AppleTalk interface firmware goes to the driver this
way;

1. Loads the printer driver address-! low byte from screen
hole location $77F and pushes it on the stack.

2. Loads the printer driver address-! high byte from screen
hole 37FF and pushes it on the stack.

4. Loads the printer driver bank address from screen hole
$4FF and pushes it on the stack.

S. Does an RTS which goes to the driver if shadowing is on.
Does an RTL which goes to the driver if shadowing is
off.

The AppleTalk interface firmware passes information in the following form to the
printer driver;

user Y

user X

user A

Print character status

V=1 if init printer driver requested
C=1 if input to printer

C=0 if output to printer

VD X<

AppleTalk June 12, 1985 Page #27



It is assumed that part of the printer driver initialization code for the driver
itself will be to place $Cn at screen hole location $47F and its execution
address-1 into screen holes $77F (low byte) and $77F (high byte)

and $4FF (bank byte), o

AppleTalk  June 12, 1985 Page #28



