
t

|'

I

11.'..,-ir'l

Õ

il

Cortland Firmware
Preliminary hlotes

rfr/riter_
_V/ayne læwry

Apple UscrEducation
030-1290-PN7

January 15, 1986

Copyright @ 1985 Apple Computer, krc. Atl righa rcserved

Changes Since Last Draft

. Cortland Monitor ERS 00.40, November 4, 19gs
' cortland Banks sE0/$E1 Memory Map ERS 00¿0, ocr 9, 19g5. Control Panel ERS 00.30, Octobér Zt, tõã5. Mouse ERS 00:10, Juiy 15, 1985. Çollplia Apple-TalkÊRS 00.00, June 12, t9g5. Serial Ports ERS 00.10, November 5, 19d5. Ðisk Sfppo+ ERS 00.10, November 6, 1995. Front Desk Bus ERS 02.50, October Zq, ßgS. p-esk Accessory M3F_g9r Switctrer ERS 00.00, June 17, 19g5. Memory_Manager ERS Revl, November 5, 1995. Phoenix Memory_Map ERS 00.00, July t5; 1995. Phoenix Huma¡r-Inæriace EnS OO.OO, Í"*i ig, lgAS

Õ

2Notes r/15/86

rf

o
Acknowledgements

Tbe Manual Team

V/rit€c llfayne Lowry
Editor: Dorothy Pea¡son
V/riting Supervison Rolly Reed

The Product Team

o

Engineerng: Fern Bachman, Mike Askins, G. Andrade, R. Montagne, peter Baum

rl

3Noæs r/15/86

Contents

7 Preface
7 About This Manual

9
9
9

12
13
t4
15
r2

Chapter 1: Cortland Monitor
Introduction {

General ROlvf Pro grarnrmng
Monior Functions and Apple tr Enry Poins

Inæmrpt Vecror Enry Points
Firmwarc ID Byæs
Disassembier, 65816
Mini-Assembler, 65816
StepÆrace Support
MonitorCommands
Math Capabüities (+Ð
40/80 Column Video Sup'port
Contoi Featu¡es Supporæd via COIIT1
Control Featr¡res Sup'poræd via C3COUT1
Full Interrupt Support
Intcrrupt Vectors -

Inæmrpt Prioriries
{gyboard Input B uffering
Checksums
Bell Tones

Chapter 2: Serial Ports
Intoduction
Compatibiliry
Conrol Commands
Handshaking

Chapter 3: Disk Support
Slot 5 Injfielize¡ie¡
Slot5 Boot
Dumb Sony

Chapter 4: Cortland Mouse
Inroducrion
Intemrpts
Features
Addresses Used
Frogram Requirements and Restrictions
Main Memory Screen

Inæmrpt Status Byte
Mode Byte

Firmware RAI4
Firmwarc Calls
Pascal Firmwa¡e Cails

PINTT
PREAD
PWRTTE

19
20
26
27
28

37

28
29
32
32

37
38

39
39
39
39
41

43
43
45
45

47
47
47
47
48
48
49
50
50
50
51
51
51
<1

52

4
'---)reliminary Noæs Ln5t86

<t
52
)J
5J
53
)J
54
54
54
55
)J
))

PSTATUS
Assembly-I-anguage

SETMOUSE
Firmware Cails

5/
57
57
)t
57
57

SER\ÆMOUSE
READMOUSE
GEARMOUSE
POSMOUSE
CT-AIvÍPMOUSE
HOMEMOUSE
INTTMOUSE

Stândåre Firmware Call Exampie
BASIC Firmware Entry

thapter. 5: single-Chip Microcomputer Keyboard Interface (sKI)
Intoduction
SKI Devices

Microcompuær (uQ Ctrip
Key Glu
The Keyboard

Scanning for Keystrokes
Poll FDB
Keysmokes
Key Modifien

Keyboard InæmrptMode
Keyboard Buffering Mode
Reset and the Keyboard
Appie IIMode
4ppie tr Mod€ with Key Modifien
Buffered Apple trMod¿
The Front Desk Bus Mouse
Additional FrontÐesk Bus Commands
Additional uC Com¡nands

Data Returned by the uC
Boot Sequence Protocol

Chapter 6: AppleTalk
Firmwarc RAM Memory Map
Pointers,ID Bytes, and Entr! points
Booting

General Information
Boot Sequence Frames

Boot Request Frame
Boot Information Response Frame
Boot Response Frame
Bytes V/irhin Frames
Boot Routine Memory Map
Slave Boot Screens
Boot Seouence

Cortland Usêr Interface
User Inærface

AppleTaikPARAlvfLST
PARAIvII-STs for Each Call

Er¡or Codes
Description of Calls

)ö

59

58
58

76
78
79

60
60
60
6i
61
61
62
63
63
æ
&
o5
o5
66
67
67
68
68
69
70
70
71
72
74
75
75
75

5reliminary Noæs Ln5t86

81
81
82
82
83
83
84

ônntg tr$ppleTaik Interface General Diagram
Receive Buffer

Receive Buffer Packet Data Str¡ctr¡¡e
Packet Rejection Er¡or Conditions
Interrupting The User
Resetting Firmwa¡e and Hardwa¡e
Printer Hooks Via AppleTalk Firmwarc

Chapter 7: Control Panel
Introduction
Funcrions
BATTERN,AN4
Control Pa¡rel at Power Up
Control Panei Parameter Screens

g.hapter 8: Co_rtland Banks $E0/E2 Memory Map
Firmwarc RAlv(Cata gories
Application Notes for Ba¡rk E0/E1
Byte-by-BytÊ Use of Banks E0 a¡rd E1

Bank E0
Bantc E1

Appendix A; Disassembler/Mini-Assembler Opcodes

Appendix B: Commands to uC

Appendix C: FDB Ke,vcodes

85
85
85
94
96
96

103
103
10ó
106
106
107
109

115

119

6'' 'reliminary Noæs L/r5/86

Preface

About This Manual
The Cortland firmware cont¿ins the prog:ams.or instn¡ctions that are stored in the system's
rcad'only memories. These progranis ¿éærniine what functions the system can pofo"a--

-

The Cortla¡rd firmwllg-p_rogfims consillof The Monitoç SingtqChip Microcomputer
$eyboard Inærface (SKI), ÃppigTalk, The Conrol Panei rË Conrä"¿-vfìose, bisk
Support System, and the Se¡iái ports.

Cortland Monitor

þ sysæm Monitor is a set of subroutines that provide a sundard interface for the buüt-in
VO dcvices. The Conland Monitor firmwarc alio p:ovidcs access to the .rrt oi ritè ryJr;
through standa¡d enbry points. Most of thcse funcüons arc iniriaæa Uy teybãara
com¡nands.

Control Panel

The Controi Pancl P-{qam 1s u¡ed for fre confignrztion of ha¡dware, and is displayed in
40 or 80 columns. It ii invokcd when the sysærã is powered ol or."irãn-."1ed.from a¡r
aprplication pro grzurL

Cortland Mouse

The Cortland Mouse uses the Front Desk B.us (FDB) to communicate with the keyboard
microprogram; the microprogram informs the àonitôr firm*.te of mousã aðtiøty --

AppleTalk

AppteTaik^is a work area network which provides communications and resource sharing
:^t$,.:rp_

,:,1?:orygæT, dilkr, prinrers, inodems, and, other peripherals. AppteTalk
o

cons6ts of communications hardwa¡e and a set of communicãtions protocoli.' This
hardware/software package, together ylth the.o-puæn, cables -å.o*..iors, shared
resource managers (sewers), and specialized appliiations software function in thièJ rnajor
configurations: small-arca inærcoiuect sysæmô, a tibutaty to a largei netwãrk, and a ' -

peripheral bus between Appic computers än¿ ttrelr dedicaæä p"¡p¡ãol à.ri."r.

Serial Ports

The Serial-Ports perform serial communications for Cortiand. The serial-port firmware
supPorts all command codes used by the Super Serial Card (SSC), inpui 6uif.;ng, aoa
background printing.

Disk Support

trt O.itt Support System accommodates Sony 3.5-inch disk d,rives with or withour built-
in intelligence.

7Draft U6t86

single chip Microcomputer Keyboard' Interface (sKr)

lhe SKI is the inærface between the system?rocessor and the Single<hip Microcomputer.
The Front Desk Bus (FÐB) and ttre inier¡r¿ Êeyboard ate cootrollå Uy S-Kt sornvare^
protocois.

Cortland Banks $E0/$E1 Memory Map

,ttth.ough B_ankf _$E0 and $El a¡ç not firmware a¡ such, they are the portion of RAlvf used,
by the Cortland firmwarc to perform its various functions.

NOTE: In addition to the above fr¡nctional progrzrms, the ROM also inciud.es Tooi' routines and Diagnostics that a¡e described in aãothei documenl

Cortland Tools

The Cortland tools p¡ovide lmeals of constn¡cting application programs that conform to
the standard user inierfacel !l,offer:1g a common-seìif routinå tËi.".1áppri.àtòni*
:g.93tl.T3l,l..*."t inærface, ,tré ,oqþ not only .nr*r ri*rurtil ãí¿.',í*ird.y --
lor the user, but also help to rcduce the appücation's ðode size and deveiopment time.

Diagnostic Routines

The diagnostic routines stored in ROM serve to test the sysæm auomatically when the
system is powered up. Also, the option is availabie to invoke tiitr itoË-¿ oi disk fJr a
more exænsive system and periphd¡al.æs¿

8Draft r/6/86

Chapter 2

Serial Ports
Introduction
The serial ports perform serial communications for cortland- The firmwa¡e

and
with

Control Commands
The firmware accepß commands in the foilowing sequence:

<CommandCha¡> <Com¡nandS trinp <Cr>

when a port.is in the prinær mode, commar¡dcharis a coNTRoL-I, and in
com¡nunication mode, it is a CONTROL-A. The Commandstring is a letter command,
sometirnes prefixed by a number or suffixed with an E or Ð.

The Cortla¡rd serialports use a t'íwo-channel Serial Communications Controller chip (SCC)
ft $per fçtitt Ç^.! *d Apple II use 655 1s.) Serial wft 2 sharcs its ðfra¡:ncf oi' ùe
SCC chip with AppleTalk AppleTalk and serial port 2 cännot be activqat thìsame time in
$l sharea or swap'ped mode(ihe conool Panel irogam ensures that thi port 2 serial --
ttrmwa¡e is inactive when AppleTalk has bee¡ saecæa¡. Either port 1 or fort 2 can be
confignred as a prinrcr or a c-ommunications (modem) óon

In case of a conflict between Appie II control commands urd SSC com¡nands, the SCC is
implemented.

lefault pantmeten for the serial porß. are set by the user in the Control panel progran¡.
The appiicæio.n proeram can change the paraméter values t"np"r tülui i"ìaingîo"t or
sequences to the serial-pon firmware.

lupports all command codes used by the Su
background prinri¡rg. (Background þrinting
mterrupt handler f rrmware.)

Compatibility
The'commands used to communicaæ with the serial-po.t iirtr,*atc arc the s¿rme as those
used with the Super. Serial Card and.Apple I p,"nf; howeuer, many .*iJting prog¡zrms
using tlese ports witl nor be compatible with ihe Cortlur¿ sei¿ ponj.-U"ñf progr*r,
particularly communications pacliages,.go directly t9 the hardwar!; t¡e tra¡ãia¡eäo toíger
uses a 6551. Print programs_arc mõre ñ<ely 1o work, as weil as apptiiatiJni wrinen in -BAsIc a¡rd Pascal.^ ¡'õnréwoitsã¿ lroui"painrarå ãir"tpi.i õ¡;õstarni th"t o,
compatible with the frñwarc.

heliminary Notes 39 L/15/86

The following commands invoke both prinær and com¡nr¡nications modes:

<n>B

<n>Ð

<n>P

Set the baud rate to a value corresponding to n.
OB = (use default) 68 = 300 baud - l2B = 4800 baud
18 = 50 baud 78 = 600 baud 138 = 7200 baud
28 = 75 baud 88 = 1200 baud 14B = 9600 baud
38 = 110 baud 98 = lggg 6"oO 158 = 19200 baud
48 = 134.5 6"u¿ 108 = 2400 baud
58 = 159 6uud 118 = 3600 baud

Set data format to values pern (data bis, stop bits).
9P = q {at4 l stop 4D= S data,2 stop
lP = Z 4at4 1 stop 5D = 7 data, 2 stoþ
?P = 6_data, 1 stop 6D = 6 data 2 stoþ
3D = 5 data, 1 sop 7D = 5 dat4 2 stoÞ

Set pariry corresponding ro n.
0P = nOne 2P = rrOo€
lP = e¿4 3P = cvcn
O{oæ that the SCC 8530 does not supporr {ARK and SpACE pa¡iry)

EnableiDisable XOND(OFF handshaking protocol.
)CE = Þetect XOFF, await XON
XD = Ignorc XOF.F

X<EID>

F<E/D> Enable/Disable keyboard inpur
EE = ÞFrr keystrokes into ierial input stream
FD, = Disabie

L<E/D> Add line feed after carriage æturn.
LE = Add linefeeds after éach carriage retu¡n output
LD = Do not add line feeds afær carrlage return duput

R Reset the SCC and inpulourput hooks.

ãp control characær intcrpretation.

The following commands arc for communications mode only:

E<EID> Echo input toscreen.
FE = Echo input
ED = Don't echo in

M<E/D EnableiDisable line feed filtering afærcarriage reb¡rns.

A<E/Ð> EnablelDisable input buffering.

B Transrnit a233 milllisecond break (all zeros).

T Enter terminal mode.

a Exit ærminal mode.

The following coÍunands a¡e for printer mode only:

helimjnary Notes 40 uL5/86

<n>N

T<EiD>

Page fo:matting (#.of chars 1 to 255 beforp forced carriage re¡rm).
OIoæ that a zero disables formaring.)

EnablelDisabie B ASIC tabbin g.
TE = Implement BASIC tabs -
1D = Do not implemenr BASIC abs

Handshaking
The Cortland seriai ports use the Mini-Din S.coirnector; this standard provides a simple
!t:l$!*t procedure. A character is ra¡rsmitted wheri rhe Eansmit briffer ii empty ana
HSKIN is asserted. To receive characters, HSKOIJT is asserted (when i.ttàðÉr is in
the input buffer, itjs received). The Generai-Furpose input line ijreadabte witfr apasc¿
inærface status call.

Preliminary Noæs 4t L/t5/86

keliminary Notes 4) Ln5t86

Chapter 3

Disk Support

Introduction
The Conla¡rd disk-support sysærn,yttt l.br$qin Inçqqted WozMachine (!nve chip,
accommodates Disk I! (Duodisls, Unidisks), Sony ¡.5-inctr drives with or *it¡oút buÏçin
inælligs¡çe (Jnidisk 1.{). Pon 6 is the sta¡i¿aø Óist U supporr stot. pist II boot
routines a¡e built into ROM. Þisk tr routines in ÐOS, ProDOS, -¿ Þas-cal operaæ tle
frne F-qey.do- in Appie E- Pot! 5 (interial slot-S) controls the'inætügéntãä u"int.iugrnt
Sony 3.5-inch drives as well as the RamDisic Yoû can attach up ioËobiri ¡Js, nvJ"----
g11t_tgfjsent S3¡13.5-inch drile_s, and two or more intelligent So"y j.5-d;ü d.iï.r,
depending on IWM output specifications. The disls must Ëe attachéd æ follows:

Noæ: Two r¡nintelügent Sony 3.5-inch drives arc shown below. This is the mæcimum
number.suPported- _Th.ttç may be morc than one Unid,isk 3.5, ot nõ-Uni¿lsk 3.5J

-- -

attached where the Unidisk 3-5 is shown.

Sony Sony.5, .) UniDisk 5 1/4
DuoDisk

fort 5 and port 6 disk interface routine-s access the IV/M, using siot 6 soft switches. Thefirmware a¡bitraæs between slot use of ttre same soft tr"i'æi,.s.- ff ipe¡pireral ca¡d is
Pllgge¿ into slot 6, the firmware in porr 5 can still accesi tttr ¿iüi;t';g'eä;to port 6'sIYivÍ conn€ctor by diY'lling.the extËrnal pãpñ*d.*Jlmporarily, performing the disk
access, and then reenabling the external pèripirerat cara. E ---J ' r -------'

F.-pot 5 9{. interface for Unidisk 3.5 is catled Smart Port. It consists of a superser of
the Protocoi Converær softwarc used in.the l2K 4epF U¡.Ot"t u.nión. S-rtt pon
supports two uninteiligent.Sonf J.5-_!9h drives, thäRarnDisk, and thi Unidist'lS up to utotai of 127 combined devices.-The fVfM can supporr uf to sii ¿eviJis ora*'*u*

SIot 5 Initialization

?*ing power up.(initiali4tiog $F"),.or during the siot-S boot process, a reset of all
devices supported.by the slot 5 drivei is initiatãd to be followea^Uy tA;"ìcr b arsign*.nt
process. Þuring It P æsignment process, the firmwarc ¿eærmínes-ttre quantiloî
devices connected to the pro-tocol coiverter-bus, and assigns a logical ü"iinu*U"r to each

II

-I

II
I-

rI
rrrrrll

II
ITI

Preiiminary Noæs 43 ut5/86

dcvice.starting
"tith

a unit nr¡mbcr of 1-. Devices arÊ assigned unit numbem starting with
uninteiligcat lony 3.5-inch drives, followed by the Rambisk, and then the Uni¿ijt< 3.5
dgviçes, The logical locatibn of deviccs o¡ the, protocol convérær chain may diffei ¡róã æpltf*{ !oç.$oq due tg the assignment of the fógical unit number just prior'to the fint
Unidisk 3.5 device to the RamDist as shown bellow.

logical Unit
#l

Logical Unit
1t¿

Sony

lngical Unit
#3

Iægical Unit
#rn

Sony

Iogical lJnit
#1

Sony

I-ogical Unit
#2

Iægicat Units
#2-t27

Logical Units
#3-t27

.J

Logical Unit
#1

Duringttre $ev!c9p T,s¡æ*9nt proc-ess, thelogical unir number assigned to the RamDisk,is saved in bank sEt. wh;n the siot 5 driver t õ¿È4 t¡" dri;;õ;;;;; tÃe unit
number,.passed-as o1e 9f the input parameærs, to the ifa*pist unlt n'urnuãr.- r the unit
number is less than the RamDisk uriit nuTber,_c.o1trol. is fassed ro the uninteitigeni $;idriver. If the unit number is equal to the Rambist unii nümUet, .onrol ii pär.¿ to theRamÐisk driver. If rhe unit number is greater t¡an tne iamóáË;;ìr ;"-fei contror ispassed to the Protocol Converter Bus diiver.

II,-
II

-

II
rI

rI
r-¡

--II

rI
r

I-
II

Preliminary Notes 4 LtL5/86

Slot 5 Boot
A cail to the slot 5 boot enüy pgint forces alt devices on the protocol converter chain to be
I:set? followed þy t¡e devicê b assignment process. rhen ihe boot utoc{ii¡ea¿ from the
rust loglcal device og-qe p.rotoggt converter chain. If thc boot block is found, then a jump
to 5000801 occun¡. If the boot block is not found and the boot was .¿ti¿ fro* the bóot ^

:9T rgutine (power up or auto boot), then control is passed back to the it,ot scan routine.If the boot was not frdm the scan routine, such as pd*S or 00/C500G tô¡n tfre Monitoi
then an er¡or message is displayed to indicate the boot faift¡re.

Notc: Some issues Tg.tq3g the. slot I b*! process:
.
If no unintelligenr Sony drives

arc instailed, it is not possibié1o boot {9T tolgic.al unit i or the nanrbiit on power up.
{tþogLÞoots f¡om ihe RamDisk could be aioided, it may ¡e ¿esira-¡iËìo boot from
the RamDisk after PToDOS has been installed via a pR#5. '

AII devices connecte** u y.nart:qort_device, such as Unidisk 3.5, should respond to allprotocol convqter çrlls, ¿¡d handback appropriate status information

Information specific to the RamDisk driver is covered, in a separate documenl

Dumb Sony

The Duq! Sony @sory).44yç has an 800K-byte capacity, which is used, in the Corttand
systgrn This drive is a Unidisk 3.5 without thé conËoihi ca¡ù The Corttã¿ contains all
f: If*å.Içlrequired to access the drive._The Dsony úe¡avis ãJã pötããåì converr€r
device. The driver is accessed through the Cortland prôtocol .onuettËt n""*ro.
ï-111:n:15lT:d ro th9 Dsony.dãver through nirie b¡es oc"oo ñü- TËiouowing
deplcts the parameter-passing alea layout

X Ræ = Unit Number
842
$43
$+¿
$4s
$46
$47
$48
$4s
$¿e ButTer Bank address

Spare Blockiumber

Block number high

Block number medium

Biock number low

Buffer

Buffer addr

param_count = 3

Com¡nar¡d

Deærmine{ by. the sry.cific call.being m1:le, some of the parameær field may not be
Fqu{ed-: OP thq exit from a call to the Dsony firmwar€,'the accumulator contains a status
byte indicating the success or failurc of the cäu. r tn" ã¿l ir to"rã.rnri, tit;c.tty¡ii il-
clearcd, otherwise; it ise set a¡d the accumulator contains the .trot code.

heliminary Noæs 45 L/t5/86

The list of calls supported arc:

. Staû¡s. Read biock. V/rite block. Formar cüsk. Controi. Init. Read and write

The individual calls arc described in the Protocol Converter specification.

keliminary Noæs 46 L/15t86

Chapter 4

Cortland Mouse

fntroduction

The Cortland Mouse, also known as the FDB Mouse, uses the Front Desk Bus (1iDB) to
communicate with the Cortland Keyboard micro; the micro informs the monitor firmware
of Mouse actions. For those who are familiar_wrth ApplJ tr;this is ;ã.;;r*, from the
A-pple II Mouse inærface which-depends on firmwa¡ê io suppbrt tfre fvfóusã. Cortland,'s

Y:::_H:p:Iïrive mode rfte trre npple rr; however, ùri Àppr; tr røäìir" ,rq"ir.ï
lntem¡PF to function. The fue pas,siv.e mode is an advantage, in titag it ¿lows Mðuse
:Pfï|"X:j? rL3t" and allows dcvices to operarc *rat trüè'timinglãti.a'i*pr, or tharcan'tnrn lf rntemrpr:*]h: Te passive modé dso prcvents the osãre iro* u"iür!
overbr¡rdened wi¡h intemrpts froir the Mouse.

fnterrupts
The FDB Mouse can cause. ar-t intemrpt to the-65819 or,ly if an inærnrpt ,nod. has beenselecæd: the mouse on.and the interrirpt condition has ãäcr¡rred- For those f*iiÏ.iïüi,
Appie tr,.it intemrpa when the Mouse'is moved. rhJnog Mouse intË*ros *synchronization with Cortland's Verticai Bla¡:king$gn¿ gfBL). TluM;õ; c"r, inæ*rptthe 65816 a maximum of 60 times per second- riaËots ào,*o on t¡¿ ñã;; the Mouseputs on the 65816. y.n TltryptSon{fon f¿"tètnin.¿ uy F. mode-byte setring) occurs,an intemrpt Yiu bq passcd o_th.ê Key Glg ctrìp o cauiilt ó i"¡.*npìthåãy|io i"synchronization with the vBL ira piøetine¿ con¿itiõn ã*¡t . F --- -- -!

Features
The Mouse groyi$gs position data th4 repq.s a_position change of up to +/- 63 counts orapProrym+ely 0.8.inches of travel. Conlands ff**.*-.onuã.ts thii relativ.-porltlòn aut^to an absoluæ position. The FDB Mouse also providei ttr" iorioørãi;rtrto'

. C¡¡rrent button 0 and button 1 dara (1 if down; 0 if up)' kevious bunon 0 and butron 1 data (-1 if ir *ár Joñ; 0 if it was up)' Intemrpt data (whether vBL, bunon b/1, or *ou.*"ntinæãptj -"'

llno*9t lp' th: FDB Mouse, by way of_ttre Key Gtu chip, defauits to a Mouse-off non-
mterrupt state. Reset \¡/ill cause the Key Glu chip to turn the FDB Mouse intemrpt off and
enter a non-intemjpt state.

Preliminary Noæs 47 L/15/86

Addresses lJsed

Address

$c027

sc024

Function

Key Glu status rcgister defined as follows:
Bit 0 = d Mustnot be aiærcd by Mouse
Bit I = 0 'X'position availabie (read oniy)

= ! 'Y'position availabie (rcad onlii
Bit 2 = k Muit nor be alærcd by'Mouse "
Bit 3 = k Must not be attered by Mouse
Bit 4 = d Must nor be altered by Mouse
Bit 5 = d Must nor be airercd by Mouse
Bit 6 = 1 Mouse intcmrpt Enabie (read/write)

. Bit 7 = 1 Mouse rcgisæi fult Geaà only)

k = used by keyboard handlen
d = uS€d by FDB ha¡rdlers

Mouse data rcgistcc
lst¡ead yieids 'X'position data and button_1 d,ata
2nd rcad yields 'y'-position data and UuttonO aat¿

Program Requirenients and Restrictions
' To enable Mouse intemrpts, set bit 6 of location $c027 to 1.

' To determine if anintem¡pt came from the Mouse, rcad bit 7 of $C027 and bit 6 of$C027. If both = 1, then-an inærnrpt is penaing fúr" rh; M;
' To read the Mouse positior, the following conditions must occur or the data arecontaminated and côrrcctive measr¡res müst be taken:

1. Read bit 7 of $C027:
If bit 7 = 0, then 'X' a¡ld 'Y' data are not yet avaüable
If bit 7 = 1, then data arc available but ca¡i beiontaminared,

2. Read bit i of SC027 onty if bit 7 = 1:

If bit I = 0, then 'X' and 'Y' data are not conta¡ninated and can be read. The
first read of SC024 retums 'X' data and bunon-1 data; rh. r*9¡ã iead of

$C024 returns 'y'data and button 0 data

Caution must be observed when using indexed instn:ctions. The false read
and write results of some indexed insìructions can cause the 'X' data to belost and the 'Y' data to appear when 'x'data was expected.

If bir I = I and $c024 has nor been read, then the data in $c024 a¡e
contaminated and must be considered useless. If that.ã"ãitiã"'oä*r,
perform the following steps:

. Read $C024 one tirne only.

Preliminary Notes 48 Ln5t86

. Ignorc the bfæ rcad in

' F*it yo'r Mousg-read routine without updating the 'X' and 'y' or
button data This will not-harm any proþm; È'owener, it guaranæes
that the next rime you read Mouse þoìitiõns they will bé acc¡¡raæ.

3. The data rcad in arc encoded as follows:

'X'data byte:
If bit 7 = 0, then Mouse buttou 1 is
If bit 7 = 1, then Mouse button 1 is

Address

up.
down.

Bit 0-6 delta Mouse move:

I{Þlt 9=0, rhen a positive move up to S3F (63).
If.bit 6=1, then a negative move in two's co*pt"-.nt up to
$40 (64).

' rY' data byæ:
If bir 7 = 0, then Mouse button 0 is uo.
If bit 7 = l, ¡hen Mouse bunon 0 is däwn.

Bit 0-6 dclt¿ Mouse move:

I{þit q = 0, rhen a positive move up to $3F (63) ticla.
If.Þit g = l, then a negative move in nvo,s .o'-t'i...nr up to
s40 (64).

' The main sc¡een holes can be in either bank S00 or bank $E0, deærmined by whether
shadowing is on-or off. If shadowing is on, the scrcen úË;; ü'barik õö0, ir
shadowing is off, the scrcen holes a¡ã in bank $Ë0.

Main Memory Screen
The Mouse is resid,ent in Cortland's intsrnal qlot 4. V/hen the Mouse is in use, the main
Ínemory screen holes for slot 4 hotd'Xj.qd'Y'absoiute position ¿ata, ãutrrinr mode,
þuJton 0/1 status, and intern¡pt status. Eight a¿¿itionJ Uvìes are used, for Mouse
i*T$"n storage. Thgr--trot4 the ma"xiìiu*.od *initiu* clamps roiirr. rriåir"t
absolute position. The following lists the Mouse's screen-hole usè when Óortland
firmware is used:

s47C
$4FC
ssTc
s5FC
s67C
s6FC
$77C

Use

þ* Þyt" of absolute X position
þry Þyæ of absoiute Y iosition
I{g!t byæ of absoiute X-position
$ieh byæ of absolure Y þosition
Reserved and used by fîrmware
Resewed and used by frrmware
Bunon 0/1 intem¡pr sÉtus
Plt Z = Cunently buuon 0 is up/down (0/t)
Bit 6 = Previousiy button 0 wäs uplaown lblt¡

49Prelirninary Notes i/15/86

Bir 5
Bit 4
Bit 3
Bit2
Bit 1

Bit 0

'=)VY moved since last READMOUSE
= Cr¡rrently button 1 is upidown (0/1)
= VIIL inæmrpt
= Button 0/1 internrpt
= Movement intermpt
= heviously button 1 was up/down (0i l)

Interrupt Status Byte

$7FC

$E0xxx"r
$E0xxx,r
SE0xxx,'tr
$E0xxr.r
$E0xx;<x
$E0xxx,r
$E0xxx,r
$E0xxx"t

= Reserved
= Resewed
= Reserved
= Rescrr¡ed
= Intem¡pt on VBL
= lnæm¡pt on next VBL if burton pressed
='Intem¡pt on next \ßL if Mouse moved
= Mouse off/on (0/1)

Modc byæ
Bit 7
Bir 6
Bir 5
Bit 4
Bir 3
Bit 2
Bit 1

Bir 0

Mode Byte

Firmware RAùI
The Mouse ciamps reside in the following ar.r,riliary screen-hole locations:

Address Use

Lgry Þyt. of low 'X'ciamp
Fligh byte of low 'X' clamp
!çry Þyæ of high'X'clarnþ
Figh byte of high 'X' clamp
!,-9w byte of low'Y'ciamp-
High byte of low 'Y' clamp
!_9w byte of high 'Y' clarnþ
High byte of high 'Y'clarnp

You must never attempt to change these locations directly; they must be changed using
CLAIvÍPMOUSE.

Previous
Bu$on I
status

Movement
inæmrpt
occur¡ed

Button
intemrpt
occurrcd

\EL
intÊmrpt
occurrcd

Curænt
Button 1

status

)?Y move
since
ist Read

Prcvious
Button 0
status

Currcnt
Bunon 0
staus

Mouse
ofF/on

Movement
inæmrpt
mode

Buton
intemrpt
mode

\EL
intemrpt
mode

RescrvedReærvedRæervedReserved

Preiiminary Noæs 50 Ut5t86

Firmware Calls
To use the Mouse {rmyan:, enpr by way of the user inærface provided below.
interface coaforms to the Pascai 1.r protócol for pcripheral .arås.

This

Location Routine

$C4OD PINTT
SC4OE PREA
SC4OF PSTRTTE
$C410 PSTATUS
$c411 = S00

Standard routines that arc implemented on Cortland, Apple tr, urd AppteMouse ca¡d.

Definition

Pascal D.ìTT device (f{ot implemenæd)
Pascal READ cha¡acær gloi implemáte¿)
Pascal WRITE character (Not irirplementá)
|qS¿ get{evice sanrs (Irlot impiemented)'
Indicates that more routines fo[ðw

Set Mousc mode.
Sen¡ice Mouse intemrpt
Read Mouse position.

$eg_Mousc þsition to 0 (for delra mode).
Set Mouse posirion to user{,efined posi¡ión.
Sct Mouse bounds in a window.
Set Mouse to upper-left corner of clamping window.
Reset Mouse clamps to defauits, positiðnjto 0,0.

kritiat entry point when coming from BASIC
BASIC input entry poinr (opcocie SEC) pascai
ID byæ J

BASIC output entry point (opcode CLC) pascal
ID byæ
Pæcal generic signanre byte
ep¡le Tech Support IÐ byte
Additional ID byæ

sc412
sc413
$c414
sc4ls
$c416
sc417
sc418
$c419

SETMOUSE
SER\'EMOUSE
READMOUSE
GEARMOUSE
POSMOUSE
CLAIvIPMOUSE
HOMEMOUSE
INITMOUSE

BINTTENTRY
BASICINPUT

$c400
$c405

$c407 BASICOUTPUT

$c408 = $01
$C40C = $20
sc4FB = $D6

Function:

Ouçut:

Not imp.lemenæd (ust an enrry point in case user calls it by
mistake).
All regisærs and status bits
X = $03 - Error 3 = Bad mode: ülegal operation
C=1--Always
Screen holes: Unchanged

Pascal Firmware Calls

f*cjl æcogni"es the Mouse æ a valid device, how.-ever, !æcal is not directly supporred by
the firmwarc. A Pæcat driver for the Mouse ii avaitablifr_on1{gple to interface programs
with the Mouse. The standard pascal cails pINIT, PREAD;Þ\lËn3, äã-Þsrerus
returns with the 'X':egister set lo 3 (pascar.ilargJ;p;ri;n enor) and carry ser Thefollowing is a üst of ttie Pascal fi¡mware calls: '

PINIT

Input:

heliminary Noæs 51 uL5t86

PREÁ.D

Fr¡nction:

Input
Ouçut

PWRITE

Function:
krput
Ouçut

PSTATUS

Function:

krput
Ouçur

Not imp-lemenæd (ust an entry poinr in case user cails it by
mist¡ke).
All rcgisters and status bie
X = S03 - Error 3 = Bad mode: illegal operation
C=1--Always
Screen hoies: Unchanged

{gt rnpienented (usr an entry point in case it's called by mistake).
All regisæn and status bits
X = $03 - Er¡or 3 = Bad mode: illegal operation
C=1--Aiwavs
Screen holes: Ûnchanged

Not implemenæd (ust an enty point in case user calls it by
,¡¡teke).
All rcgistcrs and status bits
X = $03 - Er¡or 3 = Bad mode: ülegal operation
C=l-Always
Screen holes: Unchanged

Assembly-Language Firmware Calls

To use a Mouse rou!1; f1¡1ass¡mbiy languager¡ead the location correspond.ing to theroutine you want to call. The value rcâd isÏhe-ofrset ãiti," .r,tty poittiõi'trt"ìoutine ro becailed

The following lists the available cortland firmwa¡e cails:

Notes:

1. n = Mouse slot number

2. The following bits a¡e not changed by Mouse frrmwa¡e:. ermrÏrx
. Direct regist€r. Data bank regisær. Program bank rcgister

3. Mouse screen holes are not to be changed except during POSMOUSE when new
' Mouse coordinates are put directly intõ ttre scrån holeã. ño otit.iuður" screen

hole can be changed without advenely affecting the Mouse

4. If shadowing.is.on,-ulq$e screen holes in bank.$O0. If shadowing is off, use the
screen holes in bank SEO.

Preliminary Notes 52 L/t5/86

SETMOUSE

Function:
Input

Output

SERVEMOUSE

Function:
Input
Output

READMOUSE

' Function:

krput:

Ouçut

CLEARMOUSE

Function:

Sets Mouse opemtion mode.
4 = 4ode ($00 to $0F, only vaüd modes)
X = Cn for standa¡d,.interfaôe (Cortland Mouse not affecæd)Y = n0 for standa¡d interface (Òortland Mouse not afllcteã l'
A = mod€ if ülegal mode entered, else A is scrambled
X, Y, V, N, Z = Scrambled

Ç = 9 $gg¿ mode enæred (mode is <= $0Ð
Ç = t t{ illegai mode entered (mode is > $0FÍ
Screen holes: Mode byte updated only.

Input

Output:

T.fç for intemrpt frog Mouse, and resets Mouse's intemrpt line.
A, X, Y = fiot affecæd
X, Y, V, N, Z = Scrambled
C = 0 if itwas aMouse inæmrpt
C = 1 if it was not a Mouse intêmrpt
sc:een holes: Inæmrpt st¿tus bits updated to show currenr status.

Realis.defta WÐ positions, up,lates absolure)(/y positions, and
rcads button statuses from FDB Mousc.
A = ilot affecæd
X = cn for standard.interface (_cortland Mouse not affecæd)Y = n0 for standard interface (cortrand Mouse not

"niliiã l'A, X, Y, V, N, Z = Scrambied
C = 0-Always
scrcen holes: sl-o,)cil, Y-Lo, ytfl buttons and movemenr sratus
bia updated-inæmrpt sratus bits a¡e ciea¡ed-

Ltg"tt to- 0r x, and Y, ¡he þquo¡s, movement, and intemrpt starus.
This mode is intcnded for delt¿ Mouse positioning insæã¿ of trre
normal absolutc positioning.
A = not affecæd'
x = cn for standard.interface (_cortland Mouse not affected)Y = n0 for sunda¡d interface (Cortland Mouse not affecieã ¡'A, X, Y, V, N, Z = scnmbled
C = O-Always
screen holes: sl-o,)G{I, Y-Lo, YFII buttons and movemenr starus
bits updated--inæmrpt status bits a¡e clea¡ed

heliminary Noæs)J I/15/86

POSMOUSE

Function:
Input

Ouçut

CLAMPMOUSE

Function:

Inpur

Outpuc

Function:

Inpuc

Allows user to change curent Mouse position.
Userpiaces new absõiuæ XIY positio¡is di¡ectly in appropriate '

screen holes.
X = Cn for standard.interface (Cortland Mouse not affected)
Y = n0 for standard interface (Cortland Mouse not affecred,)'A, X, Y, V, N, Z = scrambled
C = 0-Always
screen holes: user changed x and Y absolute positions only-bytes
changed-

SeA.)(/Y absolute positiion to upper-left corner of clamping
wndow.
A = not affecæd
X = Cn for sunda¡d interface (Cortland Mouse not affected)
Y = n0 for standa¡d interface (Cortland Mouse not affected)
A, X, Y, V, N, Z = scrambled
C = O--Always
screen holes: user changed x and Y absolute pösitions only--byreschanged. \

9*p:lgqqql{ndow for Mouse use. power up d,efaults a¡e 0 to
1023 ($0000-$03FÐ
A=0ifenteringXclamps
A=lifentaingYclamps
Clamps o'Ir entãed in slðt 0 screen holes by the user as follows:. $478 = low byte of low clamp. $4F8 = low byte of high clamp

' $578 = high 6Yte of ldw ciamp. $sFB = high byte of high clamp
X = Cn for Standa¡d interface (CóÍhnd Àrfouse nor affecæd)
Y = n0 for sundard interface (Cortland Mouse not affected)A, X, Y, V, N, Z = Sc¡ambled
C=0-Always
scrcen holes:)vY absoluæ position set to upper-left corner of
clamping window. clamping RAlvf varues iri ua¡rt $E0 a¡e upcaæd.

The Cortla¡rd Mouse performs an automatic HOMEMOUSE after a CLAùIpMOUSE. This
ts.ng! E-oyg! qtlh.l t" AppieMouse cardgr the Apple U. Aftei ex;rlrrg;
CLAÌvfPMpUSE, follow imme¿iaæiy with the exicution of a HOI,EN4O"USE when¿t"¡ig with the Apple II or the AppieMousc. The execution of a HOMEMOUSE it
rcqutred

^because
the delta information is being fed to the firmwa¡e instead of +/-l,s as is

the case for the Appie II and the 6805 AppleMãuse microprocessor card. The deita
infbrma!'on from Cortland's FDB Mousè ca¡r alter the absblute position to a point where
the clamping æchniques used by the other two mouse devices aïJ ur.i.sirõíco.ttan¿-

HOMEMOUSE

Ouçut:

Preliminary Notes 54 t/I:t86

INITMOUSE

Function:

SETIvÍOUSEOFF EQU SCn12

Input:

Ouçut

Sets sc:een holes to-{ef-a¡r!þ, and sets clamping window to default
of 0000-1023 ($0000, $03FÐ in both the X aã¿ y dircctions.
Resets Key Glu-Mouse intemrpt capabilities.
A = ûot affected
X = Cn for sandard, interface (Cortland Mouse not affected)Y = n0 for Sunda¡d inærface (Cortland Mouse not affecæd j
A, X, Y, V, N, Z = SCrambled
C = 0-Always
scrcen hoies: xAl positions, button statuses, intemrpt status reset

Noæ: Button and movement statuses¿re_":Ji9_gniy afær a READMOUSE. Intemrpt
status bits a¡e valid only aftEr a SER\aE¿VÍOUSE. Ínæmrpt st¿tus bits a¡ó rcser afrer aREADMOUSF.-Read and use, orrcad and save ttre apprõpriiæ vtõuse icre¡n-troie
data before enabling orrcenabling 65816 inæmrpæ.

Standard Firmware CâlI Example

Note: Intemrpts must be disabled on every call to the Mouse frrmware.

ERROR

TOMOUSE

LDA SETIvÍOUSEOFF
STA TOMOUSE+I
LDX Cn
LDY n0
Pnp
SEI
LDA #$01
JSR TOMOUSE
BCS -ERROR
PLP
RTS
PLP
JMP ERRORMESSGE
JMP $Cn00

;Offset to SETIvÍOIJSE offset ($C412 for
Cortland).
;Get offset into code
Modify operand
;Where Cn = C4 in Conla¡rd
;.Wherc û- = 40 in Cortland
;Save inæm¡pt s¡Ít¡us
;Guaranee no inrcrn¡prs ciurine call
;Turn Mouse passive mocie ori
JSR to a mo¿itied JMp inur¡cdon
iC = I if illegal-mode-entcrcd error
ß,esrorc inrerrupr slans
;l,x¡t
;Ilestorc inærn¡pr s¡aus
Èxit to er¡or roùrine
Modified operand, for cor¡ecr entry point
$C400 for Cortland

BASIC Firmware Entry
The Mouse a¡rd BASiC have the following inærface. To turn the Mouse on, perform rhefollowing steps:

1. PRINT CIIR$(4);"PR#4" :RElvf Beady Mouse for output
2. PRINT CIIR (1) :REM Sendihe Mouse a i tô turn it on from BASIC3. PRINT CHR$(4);"PR#0" :REM Restore screen ourpul

Note: IJse PRINT CHR$(4);"PR#3" to rerurn to g0 columns.

To. accePjoutp-uts from BASIC, Se firmwrrc changes the ourput hooks at $36 and $37 topoint to $c407 and performs ur INTTlvrousE (des-cribed aboie).

Preliminary Noæs)) r/t5t86

To turn the Mouse off, perform the foilowing steps:

1. PRINT CIIR$(4);"PR#4" :Rfuf S."¿V Mouse for ouçut
2. PRINT CIiR (0) :REM Sendihe Mouse a 1 tó turn it off from BASIC
3. PRINT CIIR$(4);"PR#0" :REM Restore screen ourput.

Note: Use PRINT CHR$(4);"PR#3" ro rerurn to g0 columns.

To read Mouse position and bunon statuses from BASIC, perform the following sreps:

1. PRINT CIIRS(4) "IN#4"
2. INPUT X, Y, B
3. PRINT CÍIR$(4) "IN#0"

,¡pl _Ready Mouse for inpur
:REM Input Mouse positioir
:REM Rêturn keyboärd as input device when reading

Mouse posirions has been cómplered-

v/hen the Mor¡se is tumed on f¡om Be,SÇJto input Ètal, the firmware changes the inputhoolc at S38 and $39 !o pgint to SC405. Wiren dn nrpUiaãr"il;r ir inuãËe¿ white
talking to the.Mouse,^the firmware performs aREADMOUSE beforeä;;irg theicreen
hoie data to decimal AscII and piaäng it in the input buffer ar $200.

In BAsIc, the Moql¡ runs in^p^as^sive mode or a non-intemlpt mode. clamps ¿ue seta¡torya{catly to 0000-1023 (S-0000-$03FÐ in both the X;'d t di*;ti""s,'*¿ poiition
data in the scresn holes a¡e set to 0.

punng a-anslc INPUT statemenq the frmwarc reads the position changes (deitas) fromthe FTD Mouse, adds them to the absoiuæ position in t¡ãi"tr.n holes, ci"amjing ttrepositions if necessary, and converts the absbtute positiòns in üt;;;;ÏãËí o Asctr.
3t^ ig:T_{:. piaces that data with t¡e uuttðn 0 it"tut, intó rÈiúui ñffer foltowed
Þy a carr¡age rcturn and rcturns to BASIC.

Button i sutus cannot be returned to BASIC since that wouid add, another input variabie toIr inpqt bsqtrcsulting in an ?EXTRA rcNoREÐ;db"tã;*ü'ä úiã existing
Y:yr" llslC progranr-. 4 BA.sIc !!ogram, t*'tüã rea¿ Ëritron irr"rù ca¡r pEEK
Ine screen nole contaning that dar¿ The data rctumed in rhe inpur buffer is in thefollowing form:

s x1 x2 x3 x4 É , s yL y2 y3 y4 y5 , sb B0 b5 cr

s = sign of absolute position
x1....x5 = 5 ASCIJ charactdn giving the decimal value of X
y1....y5.= 5 ASCtr cha¡acters úvinã the decimal value of y

sb = - i{kï 9l keyboard was-pressed during input staremenr
+ if no key was pressed dúring input sta-æmènt

B0 = ASCII space clìa¡acær
b5 = 1 if button 0 is pressed now and was pressed on last INPIJT starement

= 2 il button 0 is þressed now but was riot pressed on last næf¡f-tt.remenr
= 3 if button 0 is not prcssed now but was þressed on last tr lpÚi stutr*.nt
= 4 if butto:t 0 is not þressed now and was not pressed on last nIptJ-I statement

cr = Ca¡riage Return-requi¡ed as terminator beforå p*ring iontoi fiom frrmware
back to BASIC.

Note: The BASIC p_rogram must reset the key strobe at $C010 if sb returns ro a
negative st¿te. A POKE 49168,0 resers the stobe.

heliminary Notes)o It15t86

Chapter 5

Silgte- Chip Microcomputer
Keyboard fnterface (SKI)

Introduction
The Front Desk Bus (FÐB) and the.inElnaf ke1bpg{.*, controlled by software prorocols
betweenlhe system processor and the Singie-Chip Microcompurer. Tlii ;úptei¿escribei
these sofhva¡e protocols.

SKI Devices
The following devices comprise the SKI:

Microcomputer (uC) Chip

The uC is a singie<hip micro with th¡ee basic functions:

' Scans the built-in (inærnat) keyboard and periodically polis FDB for keyboard and
keypad data

' Acts as the FDB host for the mousE by periodically poiling the FDB mouse.

' Acts ¿ui a Eansceiver chip for other FDB devices. The system teils the chip to issue
lister/talk commands ori nOg.

up to 4.5 ms
they have

The uC can be intemtpted or polled bv
if it has started an FDÊ operaûon. FD'B
begun or data witl be losi

the systen¡ but it may not respond for
operations cannot be inærnrpiæd once

KEY GLU

Key.Giu.ailows communication between the uC 1nd the system processor. The chip acts

1 1-!ot$ing register so that data w¡inen by_the uC can be iead by tire system and daia
ilT"L by the pstep. can be rcad by Se.uC. This chip is also uied to generate inrenupts ro
the system, and to aid in performing the internai keybõard scan.

The Keyboard

Jhe uC Proces!_e-s all keyboard operations by scanning the built-in keyboard and FDB for
kelprelses_.^ All keystrokes ary passed bacþto the sys'tem using the sáme metrro¿ as in the
Apple tr. if an FDB keyboard or keypad is corrnected to the sistem, the uC acts as the

heliminary Notes 57 u15t86

FDB host and automatically ¡eads keystrokes from the devices. The keyboard matrix is the
s¿Ìmc as the one implemented on the Apple tr (80 positions) so that the retrofit boa¡d can
use the existing Apple tr keyboard andkeypad

The sKI performs the following stgps during normal keyboard operation:

Scanning for Keystrokes

Scanning the built-in keyþoar{ consiss of checking forkeypresses and, convening them
tn-to^ttt" ploPer AS9II code. Auto-rcpeat raæ is selectablei no rÊpear or 40, lO,i+ ã0, S,
11, 8, or 4 keystrokes pcr second.

The keybo.td.*ül onþ auto-rcpeat as-fast as ke.y¡.æ. b"ing read- If the buffer (normaly
I kty, unless the buffer mode seiecæd is thatwhjch employs a i6-key buffer) is not emóry,
F.n sr auto-repsü-key wiil not be put in the buffer (thi-s prevents the cr:rsor, etc. from ^ ' '
jumping immediaæty..fttf long^op^erations, such as disk áccesses). The delay before auto-
iepe-at it tltg selectable: L/4, L/2,3t4, and 1 second- The keyboard scan attémpts to
implement the same idiosyncrasies as the.cur¡entkeyboard eírcoder (l-key buder, pseudo
N-key roilover, including ghosting and phantom keÍs).

Inæ¡national keyboard layouts a¡e identified at power up by rcading a specific location in
the batæry-þackgd RAlvf. A com¡nand can be eiecuæd'to êhange t1e cùr¡erit rayoui On
powerup, the uC u:es the-keyboard l?yogq specified by a comrñand from the slstern On
rÊseL the uC uses the laqt þ9ut specified by ttre sofnvarc or sysrem menu The FDB
keyboards have a key labeled witli a period(.¡, which is not usêd on international
keyboards b-ecause sglne languages- gtr thq cortma (,) insæad Each keyboard,layout is
preset to defauit to either the period (.) or the commal,¡ as foilows:

.
Jhe U. S., U. K., Qvorak, a¡rd Canada use the period (.).

' France, Denmark, spain, Italy, Germany, and swedEn ì¡ie the comma (,).

It is possible to overrid" th: default Ð F1ing Lspecific bit when indicating the keyboard
layout and cha¡acter set to be used. This bitlilïwap the setting to the opfosiæ of tire
presct default

A new mode, called tlleDual Spced mode, doubles the auto-rcpeat rate for the four arrow
keys when CONTROL is. prcssèd; this mode is aiways enableå An optional extension of
t!i^s qode_ ailows you to dõuble the rcpeat rate of the deiete key and thå space bar when
CONTROLis prcssed. This mode extension is enabled using'the serup åenu/conrol
panel. Another optional mode allows you to repeat at four tiñres the nôrmal repeat rate.

PolI FDB

SU ryPleyboards.and keypads are automatically proccssed by the uC. Keystrokes read
f¡om QB kgrb.oar.psltgyp?ds æe incorporated inio tåe normal stream of keystrokes
detecæd on the built-in keyboard- A command that disables rhe automadc fóg
keyboard.rkeypad poil is implemenæd so that a mutti-player game that requires many
keypads can be used

Keystrokes

Keypresses ar€.returned by loading keylatch urlttr ¿ata Normal keyboard operations are
compatible with the Apple tr keyboard- The keylatch is read at address $CdO0, with the

keüminary Noæs 58 ut5t86

msb indicating whether the kcy is vatid (KYSTB). AKD is read on msb of address $C010
and the KYSTB is cleared by reading $C0i0 or writing $C01X.

Key Modifiers

Kelmodifiers, such as sHIFr, coNTRoL, cAps LocK, opEN-AppLE, soLIÐ-
AP|LF, Auto-rcpeat, gd $e1nad are storcd in the key-modifierrcgisrer. TÍre key-
mod.ifier register is updated when a key is pressed andthe ASCtr vãue is loaded into the
keyþçh. The values stored in the k9y-meãifier register reflect rhe stare of the key
modifien when the key was pressed and not the crirrent state of the modiFren. ftris allows
1ry-rym to rcad th9 kgylatçh a¡rd modifiers after a disk operation and dcæ¡t if OPEN-
APPL! YT prcsse¿ when tlre key wai prcssed- Cur¡entli, if . key and OPEN-APpLE are
pressed d11$-. {islo-¡teçarion, a prognm will detect thai a key wæ prcssed, but may
miss the OPEN-APPLE since it was lét up before the disk acceis *as tinisirá
(Keystrokes are not read dnring FroDOsbperations.)

Table 1. Key Modifiers

Bit 5 (updaæ bit).signifies that ttre modifierrcgister was changed without any other
!.fP*ttqt_occ$_This only.occu¡s when lhe KYSTB is c-iear. For exaápiJ, if onty
CONTROL or SHIIT is.prcssèd an{ the KYSTB is ciear, then the uC wiuãäi"åt. t¡iíuy
setting the update bit and changing the stah¡s of the control or shift bit in the mod,ifÏer
regisær.. When a new key Þ_gfq:_4.such æ 'x', then the modifier register is updated
along with the keylaæh (and KYSTB is set) and rhe updaæ bit is ciea¡eld- rtri rnb¿itier
reglster, ytll. be updaæd in two cases: when a new key is written into the keylatch (with rhe
up{ate bit clea¡ed), and if the KYSTB is ciea¡ and a riodifrer condition chadges (wìth rhe
update bit cieared).

Appendix 9ütq the keycodes geqerated by the FDB keyboa¡d. Codes 96 through tZ6 arc
extra, undefured codes for the EDB keyboTgs: These códes are processed by pãssing
them di¡ectly through the keyboard tatðtr øtir the keypad bit se¿ ïhese codeõ can then be
used as macro keys, softwa¡e-defined keys, or funciión keys. Code 127 ($7F) is resewed,
for-resqt (not to be confused with keypad key 64,DELETE , which is ransiateá into ASCII
code S7F with the keypad bit set).

0
1

2
3
4
)

6
7

SHIFT
CONTROL
CAPS LOCK
Repeat
Kelpad
Updated Modifier
latch without keypress
SOLIÐ.APPII
OPEN.APPIJ

Bit Modificr

keiiminary Noæs 59 1/15/86

The Open- and SOLID-APPLE bits a¡e needed so that the uC knows when to drive the
9p.l or Soüd Apple ouputl. Thesg outputs¿re driyen high beforc the key is sent to
simulaæ someone pSTTg þ Agfie keys. This allows tlie sysæm to emuiaæ the existing
keyboard with the FÐB keyboa¡d--

Since the cur¡ent keyboard is unbr¡ffered and ailows an overrun to occur, the key-modifier
rcgis-ær is not alwlys valid (unless the keyboard is in buffering;"d.i. iË; is a small
window of time when {:e keylatch.has key1, while the tey-rnõaifier regiìïei ftus mod,ifien
!9I!I1 _Çr:, ktv. modif'rers must be writien ou¡ frsg sinóe keylaætr úr lh; rvSæ, - -tlo9a$8 both byæs arc _Y4i¿) To veri$ ttrat the key-modifiei register is accr¡ate, bóúr
the keyiaæh and key-modifier rcgjsæn must be reø rintil the data ffiõ¡ *eitær ií t¡e
same for two successive times. The second pair of rcgisterrcads rttouf¿ Uããt least 30 usec
aparl. ({-$:-!gþoard.hgbee¡r placed in thè buffer rñode, then thJ *odifier uytJiJu¿iã-
afær the KYSTB is set) The differe¡rt methods of reading'the keyboard are-described,later
in rhis ciocumenr

Keyboard Interrupt Mode

}|ff9i::T! larr be s€t.up.to inæmrpt whenever the keylaæh is writæn into by the uC.
fry Pærrlpt can be clea¡ed with ¡vo different operations. Typicaüy, software rcads a
key, then clean the.intemrpt by clearing the-IIYSTB. Bur ocðåion¿iy .ett^in tas¡!] r*n
as

-backgqgund_routines wans io intercept a key before it ges ro the kevboar¿ lf--ri;'
--'"

software i¡stells ur intemrpt handler tþt lootci for a specifi"t.ypoä,'t¡ái*¿r.r musr
.atwals ciear the inltottpl5gardless'of whether it reaàs ttre tey'bãa¡C* tit" ryrtem will
It$]q in * ir¡Jiniæ loop. If.tlt! handlerchooses to ignore *¡e cüe¡rt Ëri-*Jnot clea¡ theKYSTB, then it can clear the inæmrpt by rcading ñe keyboard-

Keyboard Buffering Mode

A buffer mode exists wherc the uC buffers keystrokes and mod,iflrens. The uC sends a newkeystoke and modifiers when the KYSTB is óleared (also, the Ftush buffeicommand). In
$:lf:t9:ry:,"q polls.the keylaæh until the msb ìs i"i, then.¡eâds,h¿ kry *oãinãi -:
Tglster' and ltnally clea¡s the ICISTB. Both regisærs wiil stay valid until *rõ fyS'lS is
ciearcd-

Reset and the Keyboard

The uC.perigi.lcally samptqq t{e-$ESETin line to deternrine if it should ¡eser rhe sysrem(usinåth9 REllTou¡¡r¡4ui} If it deæcts that RESETin is low, ttre" th¿;ðwiil éheck if
both CONTROL and RËSET have been pressed on eitherthe internal oi th. roã t.luàà¿
befo¡e setting RESETout low. If CONTiIOL has not bein pressed, then thi uC wiil
:onglYe sampling_the inærnai kevboard and FDB, but will ð"ty-s"t nf-Sliãut if RESETin
is stilt low while ëOVfnOL is piessed-

'When RESETin is released, RESETout will also be released- If the FDB OpEN-AppLE
Hv B9^E:n P¡essed, then the uC will r¡Fol?æ this by puiling tnãOapl"oot ri"e iriett -
Ihe

-system f,rrmwa¡e will detect this a¡rd. instituæ a powêr-upieset sequence, that inãludes
a softwa¡e reset cornm4nd_to the uC, which wül their reset iÅelf*d ñB.-Éu.n though

-

IPIE-T is pressed, the keyboard must continue to scan both rhe intem¿ tevboar¿ and the
tsÐ.B lceyboa¡d so that the status of the Apple keys can be maintained.

The keyboa¡d is read by the system using one of the following mod,es:

heliminary Noæs 60 U15/86

Apple II Mode

This-mode is compatib-ie with the existing Apple tr, and it is unbuffered and asynchronous.
The following arc the fi¡nction locations:

. Reads keyboard data at SC000. C-lea¡s keyboard strobe at $C010
' OPEN- ar¡d SOHÞAPPLE a¡e read at soft switch locarions $C061 and $C062.

Apple II Mode with Key Modífiers

This mode emulaæs.existing Apple tr, but exç¡ds the keyboard data by includ.ing keyboard
modifien. The bits in the modifie¡ rcgisterwhich reprcsénr the statr¡s ófã" nppî" kéyr - -ruy not reflegt the same state as the Àppie key locadons $C06i an¿ $C062. When tfrä uC
is runningrvith the F.yUo+¿ unbufferËd, tle$nnle key soft s*lt.tt uJuüã*"yr r"fiot-
tlyl of the.$Wie]<.9 innu5. The Apple¡iis inrtre modifrer rcStrt i t*y not be the
same because the modifierregisær is updaæd as follows:

. 'When the keylarch is updaæd with a new ASCTI code.

' If no keys are down and the KYSTB is ciea¡. The modifier register is then updated
approximately every eight ms.

kr the unbuffered mode, S. qÇ updaæs.the keylatch and modifier rcgister æynchronously
!o.Fe systerr To deærmine if thè d,ta in the Ëey modifier rcgisær isäi-,,oté, use the
following procedure:

1. If bit 5 (updated without keyprcss) is set, then the regisrer conrents are accurate.

2- If bit 5 is not set, then both the keyboard laæh and rhe modifier rcgisær must be read
(30us aPart) until thc data in eachis thc same for two successive tiit"s.

Buffered Apple II Mode

This mode emulates.thfåpft" 4 m$e with key.modifiers, bur oniy sends new keystrokes
and modifiers afær the KYSTB has been cleardd. To use ttri¡ t*aÉ d;p"tly, b"rti btæ¡,-
þ\e;uga¡{ laæh and.the modifier rcgister must be ¡ea4 white tñ ÄdË-Ëóy locations
(9ç9q! lç062) rng¡t b9 ignored.. Ttrõ program l*\! ror teysr'ot;."biiltng untii-trr.
KY.STB bit (msb o{kelbqqd latch) is sèt bËfore reading tire Íceyuoara á"à ão¿in.t
rcgister Afterreading-both bytes, the keyboard strobe ii clea¡eä o in¿iðuæ that *re
program is ready for the next keystroke.

!,{rÆ:¿:: an application pro_gram deæcts ¡nodifier keys, such as coNTRoL, 5I{IFT,
or LOCK- Normally,.the_modifier.Tgrsær reflects the staæ of the modifier keys when
tr*y*? is ¡_ry¡¡ea. However, ir ñq!:rt ap ¿lylghich can b¿ õæ¿t.íuy cireðHng
P: lKP. -nag

oq the msb of location $CO10), the KYSTB is cleared, and the update bit 5 o"f
the modif,ter regls_ter is set; the modifier byæ has then been updaæd to reflect thè current
st¿æ of the modiften. If another keypresi occuñ¡, then the upaate will be cleared, both the
keylatch ryd godifier rcgisten will bè updaæd, and the KYSTB is ser rtrJ fvsfg muJi
be cleared before the modifier register tþaatea
V/hile you can qwrtch in this mode with existi¡g software to prevenr the system from
missing keystrokes when an overrun occurs, it-has certain siåe effects. Sóm exirti"rg

Preliminary Notes 61 1i 15/86

softwarc will automatic$f .ctear the strobe at cstain times, such as coming back from a
<iisk access. kr this modc, the automatic clear wäl only ciear the fnst key ðf a string of
keystrokes.- Also, since the buffer has no control overOPEN-AppLE ai¿ SOI.fO--APPLE,
existing software, such.as games, that ¡eads the hardwa¡e locations ($C06i, $C062) may
l9t^Tletprclqe-¡PP]e keys properly. In this buffer mode, Apple-key soft switch tocañns
SC061 and SC-62 reflect the state of the Appie key bis in the^riro¿ifiä regisær.

The buffer can be flushed by pressing the fo[owing key sequences:

OPEN. APPI*E.CONTROL.DELETE.

The Front Desk Bus Mouse
The FDB mouse is processed automatically by the uC. lhe uC wül periodically poll the
EDB mouse to check for mouse activity. if the mouse has moved, oi the Uuùoir þustre¿, itwill rcspond to the.FDB.mouse poll barcturning two byæs of d¿á ffre uC wiUleru"t ittis
dat¿ to the system_þv writins.boihmoirsc data.bÍæs o ihe Kry Glu chip(Àdouse byé t -_--

follow.gd þr bytc X-this enables the intern¡p$. T" system ttrcn checlå ìLè statuíregiitet
to veriff tþt_l mouse inæmrpthavqgken piace, thc ¡vo data byæs h"d d;trad, aid
mous€ larch Y was æad frnt, Key Glu cleãn the internrpt whei the second,laæh h"s be.n
f.¿ To prevent gvelrglt:, the uC onll fitf mouse daia when ttre

"egisæï
are empry

(i.e., after mouse latch X has been rcaã Uy the system).

The adyantages of {lt.pryro"ol is that the sysæm is only intemrpted at \BL time if the
mouse has moved This keeps the number of inrcm¡pti, and thèreforJ *riìyitem
overhead, to a barc minimu¡n

lhe uC won't perform another FDB mous€ poll until both bytes have been transfer:red to
the systera

Pa¡t of the initialization proûopgl sends the FDB address of the device ro be automaticaily
Pollq+. \t/hile this address will qæic3tlry indic.atc the FDB mouse as the prrri¿ device, i is
possible to-speci$ some other FDB device (with one cavear: whichever äevice is oicicd

-

must^tr'¿risfer only 2 bytes. -Tht pC wiil ignorc all data sent by ne mouse d""i6i¡;;; '
than z byæs are senE since there is no way o handle more autômatically).

Table 2 depica the 16 bits rcnrned by the FDB mouse:

Table 2. FÞB Mouse Dat¿ Bits

15
14-8

7
6-0

Button pressed
Y-Deita movement (negative=up, positive=down)t1'

X-Delt¿ movement (ne g ative=left, positive=ri ght)

Bir Function

Preliminary Notes 62 I/t5t86

Additional Front Desk Bus Commands
All other FDB devices will be

-poll-ed
when the sysæm sends an FDB poil tokea to the uC.

In tl4. m$e, the uC acæ ¿ts a d:umb Eansceiver for FDB activiry. fHi cãmãan¿ piòio.ãr
rcquirep that.the syst€m sp€c]fy the FDB command byre to be tånsmjtæ¿ ftt. uC willgllt-"l$: !{q,,rh.n wàit foi the FDB res_ponge. tÍre uC rcrurns darÂby rlórinJ^ tot.n
in tlte data latch identifying the data that wilt follow; then it sends a new dáta byte'each time
the system reads the previóus one.

If the token stored by the
bytes beforc initiating the
rccevies ail data bytes.

systemindicaæs an FDB lisæn command, the uc reads all data
FDB operation. The uc suspends all other operations ontii it

The FDB respons: token storcd in the data larch ind.icates to the system that the uC is
responding to lnlDB command This token contains sÞtus biß ih;i inJdr. if the FDB
device respoqged (data vaüd), how ry butes arc coming COei.¡tyãjlàJi¡a Service
Request (SRQ) on FÐB was detectcd- Forexample, onlyä¿iy6 ú iáirt ùã"t if there was
no res?onse to the FDB poll. This byte is the rcsþnse tóken wirictr indicaies no response
and SRQ srarus.

Jtr*.,tt. tot l byæ of a mutti-byæ reporu¡e is storcd r¡ the data laæh, the uC wais forI müuseconcl Îor thesylleg to read the.first dau byF. This allows rhe sysrcm to rcad theFDB data back quickly if the data-latch inæmrpt atía sysæm inæmrpts are enabled.

If an FDB Service Requestis detecæd and none of the auto-poll devices Geyboard,
F.yP.4 or mouse) ar¡lauqing the intemrpt, rhen ttre snd t&en it *i-;;ilio tire ¿atalatch rcgister. The SRe tokeñ indicaæs. ûy sening th¿ SÈa ;ùrñ bil rúì;me FDB
device is currcntlv rauestins_service. TTre sysæm-*sr;rai polu"tbÈ-J."ices whenthis bitis s.e5 by íendiig-roit $ti.dmmattãs to the uð. n device rcquesting service wilt
respond with data when it is poiled-

{ tttt system recryl |n PB rcsponservith the SRQ status clear, then it should, assume
that therc a¡€ no rop,agvicgs reqûiring.service. Tire-opposite is nbiur¡e -lt rnay bepossible for an SRQ set status, which ãisappean later,iã be passed, to the systern- The
system must be pryPar:d to rcceive and handle spurious SRQ's- fotè*atnítã, if ¿"t" ii

=:i:dglryl
of a device which is.not.autôpo[eg *q sRQ G il;tiltrr.ttttã Sne

I.Pjlfl-altepoll device and could disappéar when the ui automatilatty pú;*tsì
pou oI nat devlce.

The system can send data to FDB devices (EDB lisæn mode) by sending the FDB LISTENtoken.totre r¡C. Fgt{oy{ uy the command byte, then two áatå uvtes" "nris ransaction
uses the DMD/DATA latch to eansfer the bytés f¡om the sysrem tó the uc.

Additional uC Commands
Abort Command- If the system passes the abort cornmarid. to the uC, the uC flushes out
any active-commands. All commands that requirc the uC to tansfer á^tu to t¡L sysrem
using the data laæh arc abruptly ærminaæd-

Preiiminary Notes 63 t/15t86

Data Returned by the uC

One bit is reserved to signify thgt 1 special key sequence has been presssed- This bir can be
ys.e$ by the d:sktop.maygtr, $eskop accessories, or a swircherpiograrr. Using the ¿ata
latch, rather than using the keyboard latch" allows the uC to internrpt-the system ãnd
indicaæ this condition without aiso sending a dummy keystroke.

Boot Sequence Protocol
At boot time, the uC^performs some pretiminary initialization and then attempts to
synchronize itself with tle sysæ.m_b-i.*"i!ing forthe SYIICH.o--attd aoä ti,i systen'.All other com¡nands arc ignorcd Iflthe uC ðoesn't rcceive the SYNCII command ti¡itirln
1.5 seconds, ir uses its built-in defaults. The defauits a¡e:

Mode byte All modes clear (see Appendix B, Command 5)
Delay beforc auto-repeat 3t4 sec.Repeatraæ 15/sec.
Language and layout U. S.
FDB Keyboard, address $02
FDB Mouse address $03

Afær this initialioation, the system can change the defauls by using the change-
configr:ration-bytes command s

Preliminary Notes 64 L/15t86

Chapter 6

AppleTalk

Introduction

{fnJeTatt is a stand-alonc work-a¡ta network ttrat provides com¡nunications and, ¡esogrce
r.t"q"g with up.to 32-computln, disks, printen, modems, and other pe¡pi,èrzrs.
AppleTalk consists of communications hà¡dwarc and a set of communicaü.ons protocols.
This hardwarc/sof¡va¡e package, together with the computers, cables at d co*."ton,
shared rcsource managen (sewen),-and specialized appiicatioir softwa¡e zun.tioo in th¡ee
major configurations: ¿ts small a¡ea inæ¡connect systerirs, .s a tiUot tyioã-f*grt network,
*g ts,. P€np.henl.bus between-ApPle computen¡ án¿ tnei aeaiciteaþ;!¡à ¿evices.
lÏus chaPter describes AppleTatk to provide the extErnal developer with aìoherent pict're
of the firmwarc invoived.-

Firmware RAM Memory Map
The following dcpicts the firmwa¡e RAlv(map, used, as a rcceive a¡d write buffen

$Elxxxx

$Elxxxx

'SElxxxx

$El:txxx

Receive buffer (605 bytes)

V/rite buffer (603 bytes)

Work buffer (100 bytes)

Preliminary Notes o) L/15/86

Pointers, ID Bytes, and Entry Points
The_following flags and poinæn a¡e set up in slot 7, in Cortland's ROM starting at location
$c700.

Address Purpose

S38 Identifier byæ #1
$18 Identifier byæ #@
S01 Generic signature byte
$98 Device signaturc byte

9 = Network or bus inærface card/firmwa¡e
B = Appie Tech Support ID nibbie

Sxx Offse¡ to Pascal er¡or rourine
$xx Offsct o Pascal eror routine
Sxx Offsct to Pascal srror routine
Sxx Ofßet to Pascal e¡ror routine
$88 Non-zcro indicates no offses follow
-- APPLETALK entry point --
-

REBOOTAPTALK enury point
-Rescn¡ed as codc arca

$00 REL\ERNIJM rclease ve¡sion number

SCCADATA rÊgisr€r
SCCAREG rcgisær
SCCBDATA regisrer
SCCBREG rcgister
Enable l/4-second timer inæm:pt
i/4-second timer status
User sets to $Cn ($C7 for Cortland) to indicate a
printcr driver is installed-
Printer driver enury point bank address
Printer driver entry point low byte of address-1
Printer driver entry point high byte of address-1

bb = $00 if shadowing is on.
= $80 if shadowing is off.

Note: At Rese¡ time:

1. {ll!.CC. registers and functions a¡e reseL This also turns off SCC intem¡pts and the
SCC's abiliry to intemrpr

2. Atl buffer pointers and variables used by AppleTalk are reseL

3. The ti¡ner intemrpt capability in the Mega tr that AppleTaik uses is disabled.

sc700
sc70E
$c70F
$c710
$c711
$c712
sc715
$c718-$C7FD
$C7FF

$c705
$c707
sc70B
s70c

$E0c038
$80c039
$Eoc03A
$Eoc03B
SE0COxx
$E0C0xx
$bb04æ

sbb06FF
$bb077F
sbb07ïF

Preliminary Noæs 66 t/t5t86

Booting
This section desc¡ibes AppleTalk booting , frame definitions, and the booting sequence.

General fnformation

Cortland AppleTalk can be booted in th¡ee'ways:

1. The MENU pro$zlm options to start up from inærnal slot 7 have been chosen.

2. The user types in IN#7 or CALL 50965 from BASIC.

3. The user types in SC715G f¡om the Monitor or JMPs or JSRs to SC715 f¡om a
progfarrL

The following sequence of events occurs during booting:

1. A scries of ra¡rsfen betweEn the AppleTalk firmwarc and main system RAlvf occurs.
The higher-level protocol, necessary to request boot information f¡om the master
station, is being moved from Cortland ROM to sysæm RAÌvf for execution. The
boot code is piaced at $200 to $3F0 and uses rexr page 1 ($4@-S7FF) as a

$spla/{qqþq¡ffetusing $200 as the execution addrèss. This allows all memory
f¡om $80G$BFFF to be used for soring the main boot program loaded from thé
master station.

2. v/hen the ransfen are compleæ, the AppleTaik boot code jumps to $200.

3. The RAlvf code establishes communications with the mastef/teacher station and
rcquests the main boot codc. The boot code could be ProÐOS or Pascal or
whatcver. When the boot code is loadc4 the RAÀ4 code causes the boot code to
begn execution.

4. The slave station is a fully operational sysæm that accesscs f:les, at the master
station, a¡rd a print station via AppleTalk (æsuming FAP and PAP have been loaded
with the operating system). The siaves caririot communicate between themseives.

Preliminary Notes 67 ut5/86

Boot Sequence Frames
The foilowing frames a¡e used for nonnal boot sequeaces:

Boot Request Frame

The bootrequest frar¡re is used by the slave station to request boot information, such as all
boot blocks or specific boot biocks.

Block No. Requested

Boot Type

1sb of Data Length

msbHop Cntl00

Læ Type

Source Address

Ðestination Address

\- Preliminary Notes 68 t/r5/86

I

Boot Information Response Frame

The boot i¡¡formation frame is sent to the slave station by the masterto inform the sl,ave
station of the boot program it is about to rccçive.

Execution
Address

Place Data
Address

Block No. in bt Prog

Boot Type

lsb of Data Length

Hon cntrl msb00

Læ Type

Source Address

Destination Address

s

(

Èeiiminary Noæs 69 L/15/86

Boot Response Frame

The boot rcsponse frame is used by the masær station to reply to the slave station with
specific boot biocls.

Block
of

Program

Bytes Within Frames

The destination addrcss for thc Boot Request Frame is $FF. A station coming on-line
doesn't know the master station's numbér.

The sending station's add¡ess number is the source address.

Lap Type is S0B for all boot ransaction sequences.

The msb is the most significary ryo bits of the data length in the packer Packet data length
includes all byæs except the dcstination address, sourcé address, and lap type.

Tt: þU O:q f:ngth is-the least significant eight bits of tt¡e data length in the packer Packet
data length includes all bytes except the destination add¡ess, sourciaddress, äna Up rype.

The following describes boot types:

0 = Request for boot information
1 = Send boor blocks request

I I

¡

Block No. Sent

Boot Type

lsb of Data Length

msbnon cntrl00

Læ Type

Source Address

Ðestination Address

heliminary Notes 7A t/r5/86

2 = Send specified boot blockæquest
$80 = Boot information f¡ame
$81 = Specific boot block

Block numben Énge from 0 to $FF and consistof 5L2 bytes.

The place{ata address is the sarting addrcss wherc the slave station piaces the main boot
p¡o$am as it receives it from thc master station.

The execution addrcss is the add¡ess to which the boot prograrn shoutd jump to sta¡t the
main boot progra¡rt.

Boot Routine ùfemory ùIap

$OOFFFF

$000800

Block Bytc Map
s0004m

$000300

$000200

$000100

$000000

The ROM boot code is placed at $00200 by the firmware afær the user initiates a boot
sequence.

Text page 1 is the byæ map for the boot program as it is being tansferred from the master
station to the slave stæion.

Locations S00-$1F and $56-$FF. a¡e used by the ROM's boot program as it loads the boot
progrirm from the master station.

I I

I,

Zero Page

FClvl

Boot Code

Placed here

Stack

Text Page 1

R'eiiminary Noæs 7L 1/15i86

A '.' wiil appear on the scæen to correspond to a block number which is to be loaded f¡om
the masær station

Slave Boot Screens

hitiat Screen

After a station # (nodc number) is determined, the following screen appea¡s. The lÊ#, in the
upper-left corner, is the nodc number in hexadecimal.

ttt
t

(

tt

t

t

#

Preliminary Noæs 72 tl15/86

Afær the boot information framc is received, the following frame appeañi:

Third Screen

AftÞr timeout occlrñ¡, or a{er b-togk 1 (blocks a¡e rcceived in reverse order) is received, the
next screen¿prPea$. The dots left on the screen ruy or nay not appear. They indicaté
un¡eceived biocks which are to be rcquested one at á time ai'ter thiiicr..tt apiears.

Fonrth Ssreen

I

t
t

t

I.
,IJ,JL
+þ+þ

tt

t

t

I.
##

r

heliminary Notes 73 L/15/86

The final screen appea¡s only after all biocks rcquircd have beeri rcceived- Take noæ that
all the 'grains'of 'sand' arÇ now at the bottom oï the hour giass.

Final Sc¡ceri

Th. ']'appearing.rn4: hogram lqeen and the Byte Map Scrcen represents an indicator
that the PPgran is still qnnryg. It increments every V4 ôecond ontii the entire user boot
program is received and the firmwa¡e's boot prograin jumps to the starting uãdr..t of the
user's boot prograrn

t
t

I
##

Boot Sequence

1. Power up master station.

2. Initiaæ the boot sequqlce on the slave station.

3. The slave station broadcasts a Boot Request Frame with a boot-type 0 to get the Boot
Information Frame. It broadcasts it evèry 1/4 second until the tríaiter staãon
responds.

4. The master station sends packets (blocks) sequentially one time only.

5. The slave station sends a dirccted packet to the master station asking for ait boot
fra¡nes (boot [çc=l).

6. The master station sends packeæ (brocks) sequentiaily one time only.

7. The slave station rcceives fra¡¡res and places them in sequential orderin memory
according their block numbers.

8. The slave station determines which blocks it missed-

R'eliminary Noæs 74 I/15/86

9. The slave station requesb block numben of fiz¡nes it missed, one at a time, waiting
150 ms bet'*reen requests.

10. The master station sends rcquested blocks to the srave station-

1i. The sþys iniriatizes the AppleTatk frmware.

, 12. The slave station JMPs to the execution add¡ess.

13. The prograrn, just loaded, takes control of the slave st¿tion.

Cortland [Jser fnterface
This interface requircs that user RAlvf is f¡ee of the ATLAP code. It is implemented to
ensure an idcntical inærface between the Appie tr and Cortland '¡1is inæiface allows the
user to q¡rite diffe¡ent $gher-lgvei protocols (such ¿ui a new DDP) and still be able to use
ourlAP prgtocol

Q1s een*c I;Þ protoco]intsface allows uíto en¡ance *ã itnlõ"t
the LAP software a¡¡d ha¡dwarc withoirt rcquiring changes to the application-writer ^

Pjo8rams. The firmwarc entry-points.a¡e lri a nxË¿ r"ãtión i" trt."f,CìoO f6zoo;"
Cortland) spacc that is compali6le with Apple IL

User Interface

The DÞP accesses the LAP in the following way:

Hlþt{-aj"-reqlircs 9nly. one entry point into the $Cn00 space. Futu¡e maintainabiliry is
stmPie because we need only to ensure that the AppieTalk eritry point is maintained.

p e lk

LDY #<PARAIvII-S'T
LDX bPARAIvÍLS'T
LDA #$Cn

JSR APPLETALK

;Y = hi byæ of paramerer list addrcss
;X = lo byæ of pammeær list addrcss
;A = the slot # of the AppleTalk interface+$C0
($C7 in Cortland)

;C_all the interface (in Apple tr ROI\4/RAI4 and in
Conland)

BNE ERRROUTINE ;<>0 then an error occurred

Noæ: Ðecimal mode will always bc clear upon exit from the AppleTalk routines.

AppleTalk PARAMLST
ÐFB #COMIvÍAI.{DNUM function rcquestcd

- All Com¡nand Calls -
S01 = INTI

kritialize thc interface
$02 = READREST

Read rcst of buffer
s03 = WRITE

Preliminary Notes 75 L/t5/86

DWIDEB

PARAMLSTs for Each CaII

INTT Comma¡rd Number I

DFB 51
DS 1,0

V/rib a buffer
$04 = STATUS

Check if AppteTalk inæmrpted SeuReset
internrpt masks

$05 = READPROT
Read protocol from buffer

Ðata pointenlactual data to pass to/from AppieTalk
buffer

;Command number for INTT cail.
Jtdisc information ro p¿tss to the AppleTaik firmware

1. $00, then normal inir -

2. $FF, then find new node address using a
random number and do normal inir

3. $xx if I to SFE (1 to 254), then find new
node addrcss but use $xx as starting
address when determining a new station
address.

Note: .$01-$7F (1-127) are valid node ID
addresses. S80-$FE (128-ZS4) a¡e used for
selven; oniy. This $rr option therefore lets
you set up Cortland as either a normal node
or a server node.
4. Returns AppleTa1k starion address.

ÐFB 51
DV/ BUFFAÐDR ;

DS 1,0

Ðs 2,0

\ryRITE Command Number 3

;Command number for READREST call.
;Add¡ess in user's program to hold the rest of the
data packer

1. Addrcss of read buffer (buffer to which
packet is transferred).

Jt4isc information ro pass to the AppleTaik firmware
1. =0, then read rest of thè data f¡om the

AppleTalk firmwa¡e RAM buffer.
2. <> 0, then purge and don't ¡ead current

packet to be tansferred.
J.Iumber of byæs read during READREST cajl.

DFB $3 ;Command number for'WRITE call.
DTVWRITETBL ;Addrcss in 6502 of pointer table containing

data to tansmi¿
1. Address of wriæ buffer pointer.

wRffETBL Eeg * ;Generic form
DV/ NIJMDATABYTES ;Number of byæs to read
DV/ ÞATABUFFER f,oinrer to daia buffer
ÞV/ NUMDATABYTES2 ;Number of byæs to read

heliminary Notes 76 1/15/86

DW DATABUFFER2 fointer to data buffer
a

a

a

DV/ $FFxx f oinær table terminator

Sample WRITETBL (DESTADR, SRCADR, LAPT1PE need nor
be separaæd as this example shows).

WRTETBLEqU *
DV/ $0001
DV/ ÐESTADR
DV/ $0001
DV/ SRCADR
DV/ 50001
DWIáPTWE
DW DDPLEN
DW DÐPBUF
DW ATPLEN
DW ATPBUF
DW MISCLEN
DW MISCBUF
DIV SFFxx

Number of bytes
f,oinær to destination add¡ess
J.Iumber of bytes
;Pointer to source address
ùfumber of bytes
foinær rc LAP tlpe
$iumber of bytes
foinær to DDP data
;Number of bytes
fointerto ATP dara
J{umber of bytes
foinærto misc daa
;Pointer tabie terminator

STATUS Com¡nand Number 4

DFB $4 ;Command number for STATUS cail.
DS 1,0 ;lvfisc informæion to/from the AppleTalk frmwarc.

This parameter byæ is explaineð below.

The STATUS call setlintemrpt masks and rcnrrns intem:pt
status to the user. If STATUS is cailed with a parameær byte
of -, thcn the call sers the intemrpt masks onþ If the
palamet€r byæ is +, then the call is requesting intemrpt
information.

BOB1B2B3B4B5B6B7

A'-'parameter byte is defrned as follows:

87=0
87=1
86 = 0/1
85 = 0/1
B4.BO

A'+'parumeter byte is defured as follows:

87 = 0 Return intemrpt staus requesl
BGBO Resen¡ed

Return intem:pt stafus requesl
Set intem¡pt mask requesi.
Enableidisable i/4-sec timer intenupr.
Enable/disable packet ready inæm.rpt.
Reserved

Preiiminary Notes 77 L/t5/86

Above call rcnrrns with parameær byæ defined as
foilows:

B7 = 0ll AppieTalk packet or/a¡rd timer event
occurred-
Ll*sec. timer went off.
Resewed

86 = 971
85.84
B3.BO

READPROT Command Number 5

DFB 55

DV/ BUFFADDR

bit set for each packet in buffer
packet maximum in Cortland).

;Com¡nand number for READPROT call.

;Address in user's program in which part of data
packet is stored

Address of rcad buffer (buffer to which
packet is transferred).

Jtlumber of byæs
Number of byæs to rcad

1

(r

DS 2,0

Noæs:

Error Codes

Command error = SFF for any call where the command # does not equal I,2,3, 4,
or 5.

1. REAÐPROT can.ryud ftog last position+l accessed. It cannot rcad dat¿ prior to the
last read data postition in the current packer

2. For all calls, carry will return SEf if an eror occur¡ed; the accumulator will contain
the error code.

INIT cail erors:
4 = Could not_get,unique AppleTalk address for station or in the Apple tr

version. Couid not talk to the Apple iI AppieTalk protocol convèner
box.

READPROTcaII er¡on:
1 = No packets in buffer to rcad.

? = Yyt{purpose buffer ove¡flowed (not possible in Cortland).
3 = Tried to read past end of cur¡ent data packer

heliminary Notes 78 1/15/86

READREST call erors:
1 = No packets in buffer to rcad-
2 = Muitiprnpose buffer overflowed (not possible in cortland).

WRIE cail erron:
5 = Number of bytes to serid >603.
6 = Number of bytes <3.
7 = Excessive deferr¿ls.
8 = Too mafiy çellisie¡s.
9 = Illegai lap rype <>t27 ($F not allowed).

STATUS request call er¡on:
$A = Apn¡eTalk was nor the inæmrpting device.

STATUS set inæmrp mask call erron:
None possibie.

Description of Calls
INTT: start timer. Inhibin ail AppleTaik inæmrpts and resets AppleTalk

IRQ sources.

Note: srATUs musr be cailed with an inæmrpt mask to enabie
AppleTaik intanrpts to be rcturned

INTI call returns: C = 0 if no error occur¡ed-
C = 1 if an er¡or occurrcd
A = Er¡or code.
Xf'rN = Scrambled

READPROT: Ca1led to rcad xx number of bytes from the buffer beeinnine wirh
the lastread byte+l in thc buffer. This call is used by-ift" A?f.t nt
protryof i|Yqç to rcad their headers from the multi-pþosJUoff.t
into thcir buffer.

Thc REAÐPROr carl rctums: c = 0 if no errors occured.
C=lifanerroroccurred
A = E¡ror code.
XIYN = Scrambied

Note: READPROT can read f¡om last , sirion+l accessed- It
cannot read data prior to the last read-data position in t¡e cunðnt
packet

heliminary Notes 79 r/15/86

READREST:

WRITE:

Reads from last position+l accessed (via READPROÐ, or from the
start of packet if no previous READPROT was called, and places
data in uqg-specifred br¡ffer. Allows user to purge the cu¡rent
packet without ¡eading it if desircd-

The READREST cail ¡eturns: C = 0 if no erors occured-
C=lifanerroroccur¡ed
A = Error code.
X|YN = Scrambled-

Cailed by the appropriaæ protocol lcvel to move'data from the
protocol bufferands-end. a datagram o'n AppieTalk. WRITE passes
a pointer to a table of poinæn ana Uyæ coiri:s that inciude
sequentially, a correct data packet with ¿l protocols intact and data
prefefi.t This tabie is buüt by each protocól above the I_Ap
including is pplocol data in the cor¡ect sequence in a common rable
found in the DDP.

Notq The sou¡ce nodc number is piaced over the second, byte in the
packet to bc writæn by the AppbTãk firmware" mé*iõr., you
don't need to lnow your statibn (n4e) number to transmjt aþacket
Y9u mgs¡ however, provide space for the source address to þo
whEn defining a packer

The WRITE call returns: C = 0 if no erors occr:¡ed.
C=lifanerroroccurred
A = Er¡or code.
XNN = Scrambied-

STATUS: Calted when an

tlf inæmrpt masks. In every case, whether the intem¡pt mask
{lows intcrnrpts olnot, the STATUS calt paramer€r uyte wiu rerurn
the cur¡s¡rt status of the events which have-taken place reiating to
Ap'pleTalk lhç-qilows cortlands AppleTatk auluty to be uíed in
a polling mode if for some reason the ùer decided not to use our
I^g^EI-_9","1protocols

(our higher-lev.el protocols requirc the use of
mtem¡pß) arid wrote ones not requiring intemtpts.

The STATUS call reûuns: c = 0 if AppleTaik was rhe inter-
{pting-device (clears intemrpÇ.
C = 1 if AppleTalk was nor the
intemrpting device.
A = Error code.
X|YN = Scrambled-

heliminary Notes 80 L/t5/86

Apple II AppleTalk fnterface General Diagram

ple ll J-Ð eripheral Card---+l-l

Arr-AP I6sc02 I

2K RAÀd I

4K (BK) noul

scc
VFPeriphaal

Ca¡d Bus

AppleTalk
Protocolo. s.

ple ll

ATLK

ATLK

ATIáP layeras
seen by ÞDP layer

Protocol Conv Box -rf

-lCortland -l

I
v/
M

I
VT
M ¡i

o. s. W
c

ATI.AP
6502
2KR.4,I\4
4K (8K) ROM

Apple II
Prot
Conv

ROM
PRE.
I-APProto

ApTalk

vv ¡g¡ Àwr¡ g r¡¡1E;¡,il
ï/F

sccROM ATI.APAppieTaik
Protocolo. s.

ATLAP layer
by DDP layer

a¡¡ seen

Receive Buffer
D*þg_q inæmrpt to the 65816, the firmwa¡e inæmrpt handler will deærmine i.í it is an
AppleTalk-related inæmrpt lf it is, jt callq AppleTalli firmwarc to handle the intemrpt,
rcad data into the rcgelye buffer, and call thc üier if required When the user is inter.irpted,,
he will call theSTATUS routine o determine the type oïAppieTalk inæmrpt thar occu¡ied
(apacket E$1qrcad or a l/4-second timer interrirpt). If á rcad is requirêd, rhe user fint
Slls READIROTT which enables the DDP to deær¡ñine which node ttie message is for.
Th+ p+i..ultt ?o{9 will call READREST, which will rcad the rcst of the data iacket. If no
packetis in the.buffer wheri READPROT or READREST is caile4 the user wiii receive a
no-packets-available error.

Preliminary Notes 81 I/15t86

Receive Buffer Packet Data Structure

LAP Header

ÐDP Headff

DÐPDaA

Ïì^ ^l- ^^t Tì - ! ^ ^r!

ÐiagramData

0 to 586 Bytcs Ma¡cimum

3 to 11 bytes long

msb

(2 bits)
Hop Cnt (4 bits)00

I*AP Type Field
l=Short Header
Z=I-ongHeader

Source Address

Destination Add¡ess

ñtr auÁtrl r\e I eçtlun Þrr()rat

The ñrmware automatically rcjects ur incoming packet undér the following cond,itions:

. Any SCC error.

. More than 603 bytes are in the incoming packet

. The number of byæs-3 received do not equal the length byte.

' No cha¡acters ¡eceived within 1 characær time (approximaæly 34.722 microseconds.)

. A WRITE operation is in progrcss.

þ every case, the operation is not inærnrpæd if any of the above conditions occur. The
firmwa¡e wiil reset its poinæn and wait fbr more fackets to be sen¿

Preliminary Noæs 82 t/15t86

Interrupting The User

Thc AppleTalk firmwarc inæmrpts the uscr when it has rcceived a datagnm the user should
knqw about or when l/4-second has elapsed- The timing intemrpt, like the SCC, cannot
directly inæmrpt the user for any re¿uion çIt intemrpts thð 65816, but it is not passed to the
user unless requesæd). Th9 AppleTalk firmwa¡e controls the user intemrpr During the
intemrpt routine, a call to STATUS will inform the user what type of intemrpt occurred.
If the inæmrpt was from AppleTalk, caÍr! = 0; if nog carry = 1.

The ability to inæmrpt the use¡Þ deærmined by the internrpt mask sent to AppleTaik
firmwa¡e during the last STATUS call. The mask can be sèt to allou¡ ti¡ner ihtemrpts
and/or packet-rcady internrpts in any combination.

It is possible (although not with or¡r higher-level drivers) to use AppieTaik in a non-use¡
inærmrpt mode_by¡o¡lioe tltç AppleTalk firmware. This is accomþlished by periodically
performing a STATUS call, ignoring the carry bit, and decoding the stanrs byæ.

. Bit 7 is set when an AppleTalk everit occurrcd-

. Bit 6 is set if the l/4-second timer lapsed-

. Bit 0 s€ts b indicaæ a packet was received since the l¿st READREST call

9ting the 1bov9gþ the uscr can call REAÐPROT and READREST to exûiact the packet
data from AppleTalk's firmwa¡e RAlvl buffer.

Noæ: For Cortland's AppieTalk to worþ intemrpts must be er¡abled whether the user
wants to be intem¡pæd or not If thc user doesn'i want to be intemrpted, the firmwa¡e
will trap, decode, and act on ail AppleTalk intemrpt sources ranspaient to the user.

Resetting Firmware and Hardware
AppleTaik firmwarc and ha¡dware c:xn be rcset in three ways:

1. Press CONTROL-RESET.

2. Press OPEN-APPLE-CONTROL-RESET.

3. Power up rhe system.

lapENQ, lapACK, lapRTS, lapCTS ,

LAP enquiry, acknowledge, rcquest to send, and clear to send will be handled
tansparently to the user. The AppleTalk firmwa¡e will process and respond when these
frames occur or should occur.

Applelalk firmwa¡e has recognizable ID bytes for F¡oDOS and Pæcai. Apple II
AppleTalk uqes th9 generic Pæcal 1.1 firmwa¡e entry points, however, ApþleTalk does not
s_upport any Pascal generic firmware calls directly, noidoes it support any Pascal 1.0
frrmwarc entry points. A machine-language driver must be writæn forPascal and PToDOS
for these operating sysæms to access AppleTaik

heliminary Notes 83 I/r5/86

Printer Hooks Yia AppleTalk Firmware
Ap. pleTaik firmwarc does not p{ovide all the protocol ar¡d routines necessary to ourput to a
print server. However, by providing proper ñooks in the AppleTalk interface firmwa¡e,
yotllari_ogtput !o.a prinær drive¡ located in Appie IIs main memory. This allows BASIC
a¡rd koDOS application pro$ams to access thCAppleTalk interfacd firmwarc as if it were a
normal^prinçr qat¿ Fntty at $Cn00 is for a¡r initiifiz-tion call for the printer driier, enûry
at $Cn05 is for inpuning a character, and enûry at SCn07 is for ouçuttiirg a cha¡acter to the
Pnnter.

Entry at SCn00 is to initialize the prinær drivq interface, if one is loaded into main
memory. To determine if a driver is available, perform the foilowing step:

Test the fust screc¡ hole, $47T, to veriS thæ it is $C7 ($C7 is the flag which indicaæs
that a driver has been installed).

If a driver is not ¿veilaþlg, the Monitor ROM is mapped in a¡rd a JMP to the Monitor
RESET routine is execuæd-

If a driveris avaitaþts, the AppleTaik interface frrmwarc performs the following:

1. I¡ads the printer driver add¡ess-l low byte from screen hole location $71tr and
pushes it on the stack

A?pleTalkProDOS drivers reside in the maia language card, bank 2, at locations
$DFFF. The AppleTalk driverforPascal rcsides on ihe heap.

$D400-

2. Loads the prinrerdriver add¡ess-l high byte f¡om screen hole STFF and pushes it on

3. Iru+ the prinær driver barik add¡ess from ssreen hoie S6FF and pushes it on the
stack

4. Pe¡forms an RTS thich B!e1 to the driver if shadowing is on; performs an RTL
which goes to the driver if shadowing is off.

The following depicts the information AppleTalk interface fi.rmware passes to the printer
driver

Y=uS€fY
X=uSerX
A=uS€fA
P = Print character status:

V=1 if init prinær driver rËquested
C=l if input to prinrer
C=0 if ouçut to prinær

It it pto+ed lhat part_of the printer-driver initialization code will be to place $Cn at scre€n
hole location $47F and its exècution address-l into screen holes $77F (iow byte), $77F
(high byte), a¡d $6FF (bank byte).

Preliminary Notes 84 1/15/86

Appendix B

Commands to uC

Init commands arc to be ffio-byæ commands.Bir 76543210

0CI000001
00000010
0000001 1

00000100
00000101

00000110,r.
Byte 1:

Byæ2:

ABORT COMtvfA¡.iÐ
RESET KEYBOARD uC
FLUSH KEYBOARD
SET MODES using next byte as in Table B-1.
CLR MODES using next byte as in Table B-1.

SET CONFIGIJRATION BYTES using nexr 3 byæs ás follows:

HI nibble: FDB mouse add¡ess
LO nibble: FDB keyboa¡d address

HI nibbie: Characær set (needed for certain languages)
msb set if keypad '.' swapped with ',' - -

LO nibble: Set keybõárd hyout Ëriguage us itr Table B-2

HI nibblq Set delay to rep€at raæ (3 bits)
Byæ 3:

0: l/4 second
1: 1/2 second
2: 314 second
3: 1 second
4: NO REPEAT

LO nibbie: Set auto-repeat raæ (3 bits)

0: 40keys/second
1: 30 keys/second
2: Z4keys/second
3: Z}keys/second
4: 15 keys/second
5: 11 keys/second
6: 8 keysisecond
7: 4keys/second

00000111 SYNCHCOMI{AI\¡D
SetslfODES byæ (See command 4 or 5 above) followed by confrguration bytes (command
6). This cornmand is issued by the system after a keyboard reset -After receiving the
command, the uC resets itself back to its inærnal power-up state, and then resets FDB
devices.

00001000 IVRITE uC MEMORY
Send l-byte address (for RAM) foilowing by 1 byæ of data

. .iiminary Noæs 115 1/15/86

00001001 READ UCMEMORY
Send 2-byte add¡ess of uC location ßOM orRAI4).

00001010 READ MODES BYIE (See command 4 or 5 above)
00001011 {' READ CONFIGIIRATION BYTES ß.eturned in data latch)

Note: Returned in ¡evene orderf¡om comm¿¡d 6 above.
Byæ 1:

HI nibble: EDB mouse add¡ess
LO nibble: FDB keyboa¡d addrcss

Byæ2:
HI nibble: Cha¡acær set (needed for certain languages)

LO nibbie: S_et keyboard layout language
Byæ 3:

HI nibble: Set delay to repeat rare (3 biß)
LO nibble: Set autórepeát raæ 6 Èits)

00001100 READ TIÍEN CLEAR FDB ERROR BYTE (returned in data taæh)00001101 GET \ERsIoN NUMBER (renrned in data iàtch)
Also, rcnrms port R, which is an undefined input port on uc; in HI nibbie.

OOOO11 lO READ C}ÍARACTER SNTS AVAII.ABLE
Returns number of bytes, then the data This com¡nand is used by Control Panel to
deter¡ninc which cha¡acter sets arc avaüable in ttre system. This ãssumes that each uC is
P$edrith a.spe.cific. mega chip (Ifowever, mega ðirips may be paired with more than one
uC). The ordcr that the cha¡acter scts are rctumed is important The fmt number retumed,
corresponds-to charactcr set 0 in the mega chip, while the next number is character set 1.

OOOO1111 REAÐ I-AYOT]TS AVÀII.{BLE
Returns number of bytes, lt-ren the data This command is used by the Contol panei to
determine which keybog{ layouts a¡e available in the syserl Again,like thccharacter-
seB-available comman4 the onderin which the numberi a¡e retuäed is ;rnponant. f:fre
fint number returned rep{qsents iayout 0 in the uC. A prcdefined tabte ¿ãfiãü which
number corresponds to whictr layout language. The fó[owing commands will Ueã¿¿e¿,
however, the exact protocol has irot been-detérmine*

OOO1OOOO
-

RESET TÍJIF CYqTtrM
Pulls the rcset line low for 4 ms.

OOO1OOO1 SEI\ID FDB KEYCODE
Pretcnd that the second byæ is the FDB keycode. This command can be used to emulate an
FDB keybo{S by accepting^keycodcs from a dcvice and then send.ingt¡em to the uC to be
processed as keystrokes. This command wiil not process eithe¡ RESËT-up or RESET--

- -

down codes; thereforc, they m¡rs-t be rapped out bèfore using this comm"tr¿ f¡is
command can be used to watch for key up sequences.

0001-1
001---
O1OOOOOO RESET FDB

Puils the EDB low for 4 ms. Ca¡e must be taken with this com¡nand because resetting an
{DB.]<eyboa¡d will clear.any. pending.commands including all key-up.u"ns. T}ris m-eans
tha.t if a.feystroke is used tolãunch tñis command while ttr'e tey ii reìeased, the fey-up

-

code will be lost and tl¡e key wül auþ-rcpeat until another key is pressed. ÁU teyj shãuld
be up bcfore this command is executed-

O1OO1OOO RECEÑE BYTES
Command with address js ol second byte._ The sysærn starts by sending a command byæ
on the FDB, then wain for the uC to p-ass back airy data that it receivesl The commaná
renrns byæs in opposite order (n->1).

01001num . TRAò¡SMIT num ByTES
Command with address is in second byæ. Noæ: If num = 0, then the command is
RECEI\E BYTES described above. 1lç sy¡lrg.starts by sending a command iollowed by
from 2 to 8 data bytes (num+l) to the uC, ri,tricir is tansirined ovãr the FDB. The

minary Noæs 116 L/t5/86

comrund sent will be transmitæd dircctly æ the FDB comm¡rnd byæ, which is the fust
byæ received after the TRAITISMIT num BYTES command-

0101abcd ENABLE SRQ ON FDB DE\rICE AT ADDRESS abcd
lSend com¡nand = abcd Listen R3 (abcd1011)]
I Data = 00t0abcd 00000000 I

0110abcd FLUSH BI¡Fnrn oN FDB DEvIcE AT ADDRESS abcd
This command is dangeloris-see RESET FDB description
lSend com¡nand = abcd0001j

011labcd DISABLE sRQ oN rDB DEVICE AT ADDRESs abcd
This command may be dangerqus. If dat¿ is pending when this command is executed, then
{g.nenaing dlta may be loír For.*a*pte i?SRQir ¿iràurø on the FDB keyborr¿,'t¡"n
lJ key-up codes may be_losr See RESET FDB desìription.
lSend command = abcd Lisrpn R3 (attcd1011)]
[' data = 0000abcd 00000000 IlCxyabcd Poll FDB device
Address: abcd
Regisæn xy
Command: lC
C = l, t¿lk
C = 0, listen

This assumes that the FDB command, is to Either Taik or Lisæn. Other FDB commands are
implønenæd using. a}-byæ protocol (see above). If the com¡nand is Lisren, rhd;2-btt.-
tansfer is assumed
[Send command = abcdlCxy I[¿ata = lst byte,2nd byæ (if Usten command)]

Returns byæs in opposite order than received (n->1).
Note: All commands that require moF qg! I l-_byte ransfa, will auromatically timeout in
10 ms if there is no.responseèxcept the SYNCI{ ðommarrd that may reqnite ZO ms ro
process the FÐB áaareis byte.

rminary Noæs tt7 L/15/86

iminary Notes 118 U15t86

Appendix C

FDB Keycodes

Code Key Differences Code Key Differences

o
1

)
3
4
)
6
7
I
9

10
t1
t2
13
L4
15
16
L7
18
19

4E
49
50
51
52
)J
54
)J
)o
57
58
59
60
61
62
63
&
05
66
67

A
s
D
F
H
G
z
X
c
v

B
a
V/
E
R
Y
T
1

2

,I. INTERNATTONAL

.I'AA

SPAG

DELETE
RETIJRN
ESCAPE
CONTROL
OPEN.APPLE
SHIFT
LOCK
SOLID.APPLE
LEFT ARROS/
RIGITT ARROV/
DOWN ARRO1V
UP ARROV/

DELETE

RT ARRO1ñ/(*)
rt

*ENTER
*NA
i.NA

'.COMI\4AND

*Option

KEY?AD *NA
KEY?AD
KENAD
KEA/?AD *NA

RETTIRN

4
6
5

9

!
8
0
l
0
U
t
I
P

L
I
K

27

37

2T
7')

23
24
25
26

28
29
30
31
32
33
34
35
36

38
39
40

*N
*NA

69
70
7L
72
73
74
75
76
77
78
79
80
E1
82
83
84
85
86
87
88

I.nf enROw(+)
ESCAPE
DN ARROTV()
,

SPACE
/
RETURN
LJP ARROV/(Ö

(

)

0
I
7

3
4
5
6

KE1?AD
KENAD
KE1?AD
KEl?AD
KEEAD
KEEAD
KEY?AÞ
KE1?AD
KEWAD
KEl?AD
KEY"AD
KEIæAD
KEY?AD
KEl?AD
KENAD
KEEAD
KEl?AD
KEY?AD
I(El?AD
KEWAD

*NA

,t NA
*NA
*NA
*ENTER

A

.__ iminary Noæs 119 t/t5t86

O Code Key Differences Code Key Dífferences

4L
42
43
4
45
46
47

U9
90
91
92
93
94
95

t
\
t
/
N
M

7

I
9

ÐorwN ($7F7Ð.

KtsYPAI)
KE}?AD
KEWAÐ
KEY?AD
KENAD
KEWAD
KEYPAD

Other keypad codes (>95)Codc for RESET UP ($FfFÐ and RESET
arc passed dircctly through to the keylaæh.

(^

(-

U.i-inary Noæs t20 Ll15t86

