Cortland Implementation of SmartPort

Revision History.....

March 18, 1986 Ver. 00.10
March 20, 1986 Ver. 00.11
April 17, 1986 Ver. 00.12

April 29, 1986 Ver. 00.13

R. Montagne
R. Montagne
R. Montagne

R. Montagne

Inidal release.
Quark QC-10 support.
Dynamic deivce assignment.

Interface to ROMDISK drivers. Extended and Non Extended
Control calls. Typos in examples on page 2.

Written by Ray Montagne - April 23, 1986

© Apple Computer, Inc 1986

SmartPort Implementation on Cortland April 23, 1986

PREFACE

This document describes the implementation of both the extended and non extended
SmartPort Interface in Cortland. For specific information on the non extended and
extended CBUS architecture, please refer to the CBUS specifications.

This document includes descriptions of the command sets, and specifics of passing
parameters in absolute zero page for built in driver support of devices not residing
on the CBUS. These devices include Unified Disk3.5, RamDisk and RomDisk. For
detailed information on the command sets supported by these devices, refer to the
device specifications.

GENERAL

The SmartPort provides a method of attaching a series of devices to the external
disk port of the Cortland. The SmartPort is a program that converts the calls made
to it into a format which can be transmitted over the disk port to control intellegent
devices such as the UniDisk3.5. Within the SmartPort, calls fall into one of two
groups. Extended calls, and non extended calls. This document details all calls
supported by the SmartPort in Cortland (e.g. extended and non extended).

To use the SmartPort interface, a program issues calls in a manner similar to that
used for ProDOS Machine Language Interface (MLI) calls. The topmost 'level’ of
one of these calls is a JSR' to the SmartPort entry point (DISPATCH), followed by
a single byte which specifies the SmartPort command type, followed by a pointer to
a table which contains the parameters necessary for the call. For a non extended call
this will be a word pointer, while for an extended call it will be a longword pointer.

Here is an example of an non extended call:

SP_CALL JSR DISPATCH ; Call SmartPort command dispatcher
DFB CMDNUM ; This specifies the command type
DW CMDLIST ; word pointer to the parameter list in bank SO0
BCS ERROR) ; Carry is set on an error

Here is an example of a extended call:

SP_EXT_CALL JSR DISPATCH . ; Call SmartPort command dispatcher
DFB CMDNUM+$40 ; This specifies the extended command type
DW CMDLIST ; Low word pointer to the parameter list
DW ACMDLIST ; High word pointer to the parameter list
BCS ERROR ; Carry is set on an error

Apple Computer, Inc. ddd CONFIDENTIAL éd ¢ PAGE 2

SmartPort Implementation on Cortland

Information concerning the DISPATCH address, the CMDNUM and the CMDLIST

appears below.

Upon completion of the call, execution returns to the RTS address plus three for a
non extended command, or the RTS address plus five for an extended command (the
'BCS' statement in the examples on the previous page). If the call was successful,
the C flag is cleared, and the A register is set to 0. If the call was unsuccessful, the C
flag is set and the A register contains the error code. The complete register status

upon completion is summarized below.

April 23, 1986

REGISTER STATUS ON RETURN FROM SMARTPORT

65816 Status byte

NVIBDIZC Acc Xreg Yreg PC SP

Successful Nonextended Call XX1X0UXO 0 n n ISR+3 U
Successful Extended Cail XX1X0UXOo 0 n n JSR+5 U
Unsuccessful Nonextended Call XX1X0UX1 Emor X X ISR+3 U
Unsuccessful Extended Call XX1X0UX1 Emor X X ISR+5 U

(Note: X = undefined, U = unchanged, n = undefined for tranfers to the device or number of bytes
transferred when the transfer was from the device to the host)

Apple Computer, Inc.

ddd CONFIDENTIAL dd s

PAGE 3

SmartPort Implementation on Cortland April 23, 1986

Determining the DISPATCH address

Regardless of whether you are operating in a machine with built in disk
support or a machine containing cards supporting the SmartPort Interface, the
existance of the SmartPort Interface may be determined by examining the signature
bytes as follows;

$Cn01 = $20 $Cn03 = $00 $Cn05 = $03 $Cn07 = $00

where n = the slot number. All cards or built in slot support firmware with these
values support SmartPort calls. In addition, the SmartPort ID Type byte can be
examined to obtain more information about what special support may be built into
the SmartPort firmware driver. The SmartPort ID Type byte located at SCnFB has
been encoded to indicate the type of devices that can be supported by the SmartPor
firmware. Note that a driver that supports the extended modes will also support the
existing non extended modes.

SmartPort ID Type
$CnFB |7 |6 |5 |4 |3 |2]11]0

————RamCard
SCSI

Reserved
Extended

Once having determined that a SmartPort interface exists in a slot or port, you need
to determine the entry point, or DISPATCH address, for this slot or port. This
address is determined by the valye found at $SCnFF, where n is the slot number. By
adding the value at $CnFF to $Cn00, one obtains the standard ProDOS entry point
for block devices. Information about this entry point is described in the ProDOS
Technical Reference manual. The SmartPort entry point, DISPATCH, is located
three bytes after the ProDOS entry point. Therefore, the SmartPort entry point is
$Cn00 plus 3 plus the value found at $SCnFF.

For example, if a the signature bytes for the SmartPort interface are found in slot 3,
and $CSFF contains a $0A, the ProDOS entry point will be $C50A, and the
SmartPort entry point is three larger than $CS0A. or $C50D. '

Apple Computer, Inc. ddd CONFIDENTIAL éd @ PAGE 4

SmartPort Implementation on Cortland April 23, 1986

ProDOS Interface

A new implementation of ProDOS called ProDOS16 will be available for the
Cortland CPU. This new implementation will recognize and be able to
communicate directly with a SmartPort driver. The current implementation of
ProDOS does not recognize SmartPort Interfaces. In order to have SmartPort
interfaces supported by ProDOS, it is necessary to support the ProDOS entry point
as well as ProDOS comands. :

ProDOS Implementations

ProDOS entry points are supported by converting the input to the ProDOS
driver into a format compatable with the non extended SmartPort, and then have the
ProDOS driver call the SmartPort driver. The non extended format is chosen
because the majority of devices support the non extended protocol rather than the
extended format. Also, ProDOS is runs in a 6502 environment that may not easily
support direct tranfers between the SmartPort and any bank of memory. In
Cortland, the ProDOS device driver for slot 5 has been implemented as a block
device. All calls to the slot 5 ProDOS device driver will be mapped into non
extended SmartPort calls. On return from the SmartPort, the ProDOS driver maps
all non fatal SmartPort errors into a non error condition (ACC=300 with carry

clear). In addition, any fatal SmartPort error is converted by the ProDOS device
driver into standard ProDOS error codes.

Apple Computer, Inc. ddd& CONFIDENTIAL & PAGE 5

SmartPort Implementation on Cortland ' April 23, 1986

DNUM and CMDLIST

The CMDNUM specifies the command type and is in the range of $00 - $09 for
non extended commands, or $40 - $49 for extended commands. The parameter list,
CMDLIST, varies for each call, though the first byte in the list always specifies the
number of parameters in the call. This is NOT the physical number of bytes; it is
the logical number of pieces of information passed in the list. A summary of
command numbers and their associated parameter lists can be found in an appendix.

Unit Numbers

A part of every parameter list is the Unit number. The unit number specifies
which device connected to the SmartPort will respond to the command you are
giving. Calls which allow you to reference the SmartPort itself require thr
specification of Unit $00 (Status, Init, and Control allow you to do this). Cortlanc
assigns unit numbers to devices in ascending order starting with a unit number of
501. Devices are assigned unit numbers starting with the Unified Disk 3.5,
RamDisk, RomDisk and finally the UniDisk3.5 type devices. Then, depending on
the device that is selected as the boot device, the unit numbers for the first four
devices may be remapped to place the boot device as the first device in the chain
(unit $01). If remapping is required, then all devices previously located in front of
the boot device are relocated after the boot device. This will be discussed in greater
detail later in this document.

Determining the Number of Devices

You can determine the number of devices connected to the SmartPort by
executing a SmartPort status call (described later) with a unit number of $00.

imitati

There are two major constraints on the use of the SmartPort. The first is that
its stack usage is 30-35 bytes. Programs should allow this much stack space on a
call. Second, the SmartPort cannot generally be used to put anything into absolute
Zero Page locations. Absolute Zero Page is defined as Direct Page when the Direct
Register is set to $0000.

Apple Computer, Inc. d¢dd¢ CONFIDENTIAL de & PAGE 6

SmartPort Implementation on Cortland April 23, 1986

STATUS CMDNUM = $00
CMDLIST Byte O: parameter count = 3

Byte 1: unit number

Byte2: status list pointer low

Byte3: status list pointer high

Byte 4: status code

This call returns the status information about a particular device or the
SmartPort itself. There are defined status calls for returning general information.
In general, device specific calls can be implemented by a device for diagnostic or
other information.

On return from a status call, the eight bit X and Y registers contain a count of
the number of bytes tranferred to the host. X contains the low byte of the count,
while Y contains the high byte value of the count.

Required Parameters

unit num: 1 byte value
Range : $00, $01 - $7E

This is the unit number. Each device has a unique number assigned to it at
initialization time. The numbers are assigned according to the device's position in
the chain. A status call with a unit number of $00 specifies a call for the overall
SmartPort status. (The status list returned on this call is explained below.)

status list. pointer

This is a word pointer to the buffer where the status is to be returned in bank
500. Note that the length of the buffer will vary depending on the status request
being made.

Apple Computer, Inc. d¢dd CONFIDENTIAL dd & PAGE 7

SmartPort Implementation on Cortland April 23, 1986

status code: 1 byte value
Range: $00 - $FF

This is the number of the status request being made. All devices respond to the
following requests:

Code Status returned

$00 Return device status

$01 Return device control block

$02 Return newline status (character devices only)
$03 Return device information block (DIB)

Although devices must respond to the status requests listed above, the device may
not be able to support the request. In this case, the device should return an Invalid
Status Code error ($21).

Statcode = $00
The device status consists of four bytes. The first is the general status byte:

Bit Eunction

7 1 = Block device, 0 = Character device

6 1 = Write allowed

5 1 = Read allowed

4 1 = Device online, or disk in drive

3 1 = Format allowed

2 1 = Media Write Protected (block devices only)

1 1 = Device currently interrupting (not supported on Cortland)
0 1 = Device currently open (character devices only)

If the device is a block device, the next three bytes are the size in 512 byte blocks.
The least significant byte is first. The maximum size is SFFFFFF blocks, or about §
giga bytes. If the device is a non block device, these bytes are set to zero.

Statcode = $01

The device control block is device dependent. The DCB is typically used to control
various operating characteristics in a device. The DCB is set with the
corresponding control call. The first byte will be the number of bytes in the control
block. A value of $00 returned in this byte should be interpretted as a DCB length
of 256, while a value of $01 would be a DCB lenth of 1 byte. The length of the DCB
will always be in the range of 1 to 256 bytes excluding the count byte.

Apple Computer, Inc. dd¢d CONFIDENTIAL dd & PAGE 8

SmartPort Implementation on Cortland April 23, 1986

Statcode = $02 :
There are currently no character devices implemented for use on the SmartPort,
and therefore the Newline status is presently undefined.

Statcode = $03

This call returns the device's information block. It contains information identifying
the device, its type, and various other attributes. The returned status list has the
following form: .

STATLIST DFB DEVICE STATBYTE! ;Same as byte 1 in status code = $00

DFB DEVICE_SIZE LO ;Number of blocks on device (block device)

DFB DEVICE SIZE MED ;Number of blocks on device (middle byte)

DFB DEVICE_SIZE HI ;Number of blocks on device (high byte)

DFB ID_STR_LEN ;Length in bytes (16 max)

ASC 'device name' ;(16 bytes) upper case ascii, msb=0, blanks added

DFB DEVICE TYPE :
DFB DEVICE _SUBTYPE ;Bit 7 = Extended Support
DW VERSION ;Device firmware version number

Note that the first four bytes of the DIB are the same bytes returned in the Device
Status call. - Also, since the name string is always 16 characters, the position of the
bytes in the list is always fixed relative to the beginning of the DIB for non extended
calls. Bit 7 of the DIB subtype byte will be returned as a '1' if the device supports
extended calls. Bit 7 of the DIB subtype byte will be returned as a '0' if the device
does not supports extended calls. Bit 6 of the DIB subtype byte will be returned as a
0" if the device does not support disk switched errors (error code $2E). Bit 6 of the
DIB subtype byte will be returned as a '1' if the device does support disk switched
errors.

SmartPort Status

A status call with a unit number of $00 and a status code of SO0 is a
request to return the status of the SmartPort as a whole. The number of devices as
well as the current interrupt status is returned. The Format of the status list
returned is as follows:

STATLIST byte O: Number of devices
byte 1: Interrupt Status (Bit 7 clear => no interrupt)
byte 2: Reserved
byte 3: Reserved
byte 4: Reserved
byte 5: Reserved
byte 6: Reserved
byte 7: Reserved

The number of devices byte tells the caller the total number of devices connected to
this slot or port. This number will always be in the range of 0 to 127.

Apple Computer, Inc. ddd CONFIDENTIAL dé & PAGE 9

SmartPort Implementation on Cortland . April 23, 1986

The interrupt status byte is used by programs to determine if the SmartPort was the
source of an interrupt. If the most significant bit of this byte is set, there is a device
(or devices) in the chain that requress interrupt servicing. Which device is actually
interrupting cannot be determined from this value. The user's interrupt handler,
having determined that A SmartPort interrupt has occured must poll each device on
the chain to find out which device requires service.

The Extended SmartPort interface is currently not supported on either the Apple//c
or the Apple// SmartPort Interface card, however, if future revisions of these
products were to implement the Extended SmartPort, interrupts should be handled
as they currently are with the non extended implementation.

ibl r
$06 BUSERR Communications error
821 BADCTL Invalid status code
$30-$3F $50-$7F Device specific error

(Some user defined status calls may use other error codes.)

Apple Computer, Inc. dd & CONFIDENTIAL dé ¢ PAGE 10

SmartPort Implementation on Cortland April 23, 1986

READ BLOCK cmdnum = $01
CMDLIST Byte O: parameter count = 3

Byte 1: unit_num

Byte2: data_buffer pointer low

Byte3: data_buffer pointer high

Byte 4: blocknum low

Byte 5: block_num med

Byte 6: block_num high

This call reads one 512 byte block from the block device specified by unit_num into
bank $00 memory starting at the address specified by data_buffer.

Required parameters

unit num: 1 byte value
Range: $01-$7E

data buffer: pointer

This is a word pointer to the user's buffer in bank $00 that the data is to be read into.
The buffer must be 512 or more bytes in length.

block num: LongWord number

This is the logical address of a block of data to be read. There is no general
connection between block numbers and the layout of tracks and sectors on the disk.
The translation from logical to physical block is performed by the device. (Note
that this is a three byte number.)

Possible Errors

$06 BUSERR Communications error

$27 IOERROR /O Error

$28 NODRIVE No Device Connected

$2D BADBLOCK Invalid block number

$2F OFFLINE Device off line or no disk in drive

Apple Computer, Inc. dd & CONFIDENTIAL éd & PAGE 11

SmartPort Implementation on Cortland) April 23, 1986

WRITE BLOCK cmdnum = $02
CMDLIST Byte 0: parameter count = 3

Byte 1: unit_num

Byte2: data_buffer pointer low

Byte 3: data_buffer pointer med

~ Byted: block_num low
Byte 5: block_num med
Byte 6: block_num high

This call writes one 512 byte block to the block device specified by unit_num from
bank $00 memory starting at the address specified by data_buffer.

Required parameters

unit num: 1 byte value
Range: $01-$7E

data buffer; pointer

This is a word pointer to the user's buffer that the data is to be read into in bank S00.
The buffer must be 512 or more bytes in length.

block num: number

This is the logical address of a block of data to be written. There is no general
connection between block numbers and the layout of tracks and sectors on the disk.
The translation from logical to physical block is performed by the device. (Note
that this is a three byte number.)

Possible Errors

$06 BUSERR Communications error

$27 IOERROR . /O Error

$28 NODRIVE No Device Connected

$2B NOWRITE Disk write protected

$2D BADBLOCK Invalid block number

$2F OFFLINE Device off line or no disk in drive

Apple Computer, Inc. d¢d& CONFIDENTIAL dé & PAGE 12

SmartPort Implementation on Cortland April 23, 1986

FORMAT cmdnum = $03
CMDLIST Byte O: parameter count = 1
Byte 1: unit_num

This call formats a block device. It should be noted that the format done by this call
is NOT linked to any operating system: it simply prepares all blocks on the medium
for reading and writing. Operating system specific catalog: information such as
bitmaps and catalogs are not laid down by this call.

Required parameters

unit num: 1 byte value
Range: $01-$7E

Possible Errors

$06 BUSERR Communications error

$27 IOERROR /O Error

$28 NODRIVE No Device Connected

$2B NOWRITE Disk Write Protected

$2F OFFLINE Device off line or no disk in drive

Apple Computer, Inc. ddd¢ CONFIDENTIAL éd PAGE 13

SmartPort Implementation on Cortland April 23, 1986

NTR cmdnum = $04
CMDLIST Byte O: parameter count = 3
Byte1: unit_num
Byte2: control_list low
Byte 3: control_list high
Byte 4: control_code

This call sends control information to the device. The information can be either
general or device specific. A control call with a unit number of zero has special
significance as noted below.

Required parameters

unit num: 1 byte value
Range: $01-$7E

control list: pointer

This is a word pointer to the user's buffer in bank $00 where the contro]
information is to be read from. The first two bytes specify the length of the control
list; the low byte is first. A control list is mandatory even if the call being issued

does not pass information in the list. A length of zero is used for the first two bytes
in this case, '

control code: 1 byte value
Range: $00-SFF

This is the number of the control request being made. This number and function i-
device specific, with the exception that all devices must reserve the following codes
for specific functions.

Code Control Function

500 Reset the device.

$01 ~ Set device control block

$02 Set newline status (character devices only)
$03 Service device interrupt

Code = $00

Performs a soft reset of the device. Generally returns 'housekeeping’ values to
some reset value.

Apple Computer, Inc. dd ¢ CONFIDENTIAL dd & PAGE 14

SmartPort Implementation on Cortland April 23, 1986

Code = $01

Allows the user to set the device control block. Devices generally use the bytes in
this block to control global aspects of the device's operating environment. Since the
length is device dependent, the recommended way to set the DCB is to first read in
the DCB (with the STATUS call), alter the bits of interest, and then write out the
same string with this call. The first byte is the length of the DCB (excluding the byte
itself). A value of 300 in the length byte corresponds with a DCB size of 256 bytes,
while a count value of $01 corresponds with a DCB size of 1 byte. A count value of
$FF corresponds with a DCB size of 255 bytes.

ni ntrol 11

A control call with a unit number of $00 specifies that the call applies to the
SmartPort as a whole. There are two calls currently available.

Code = 300 Enable Interrupts from the SmartPort

This call is used to enable interrupt hardware related to the SmartPort Interface.
This call is not supported by the built in SmartPort driver on Cortland, and will -
return a bad control code error ($21).

Code = $01 Disable Interrupts from the SmartPort

This call is used to disable interrupt hardware related to the SmartPort Interface.
This call is not supported by the built in SmartPort driver on Cortland, and will
return a bad control code error ($21).

Possible Errors

$06 BUSERR Communications error
$21 BADCTL Invalid control code
522 BADCTLPARM Invalid parameter list
$30-$3F Device specific error

Apple Computer, Inc. dd¢ CONFIDENTIAL &« PAGE 15

SmartPort Implementation on Cortland April 23, 1986

INIT - cmdnum = $05
CMDLIST Byte O: parameter count = 1
Byte1: unit_num

This call provides the application with a way of resetting the SmartPort.
Required parameters

unit noum: 1 byte value
Value: $00

The SmartPort will go through it's initialization sequence, hard resetting all devices
and sending each their device numbers. This call is made internally at first acces:
and it should never be necessary for an application to make this call. (Though it is
never recommended to connect new devices when the CPU power is on, this call
provides a method for the SmartPort to communicate with devices connected
midstream).

Possible Errors

$06 BUSERR Communications error
$28 NODRIVE No Device Connected

Apple Computer, Inc. d€ ¢ CONFIDENTIAL dd & PAGE 16

SmartPort Implementation on Cortland April 23, 1986

OPEN cmdnum = $06
CMDLIST Byte O: parameter count = 1
Byte 1: unit_num

This call is used to prepare a character device for reading or writing.

Note that block devices do not accept this call, and will return a BADCMD error
code ($21) to be returned.

Required parameters

unit num: 1 byte value
Range: $01-$7E

Possible Errors

$§01 BADCMD Invalid command
$06 BUSERR Communications error
$28 NODRIVE No Device Connected

Apple Computer, Inc. ddd CONFIDENTIAL dd & PAGE 17

SmartPort Implementation on Cortland April 23, 1986
CLOSE cmdnum = $07

CMDLIST Byte O: parameter count = 1
Byte 1: unit_num

This call is used to tell a character device that a sequence of reads or writes is over.
In the case of a printer, this call could have the effect of flushing the print buffer.

Note that block devices do not accept this call, and will return a invalid cémmand
error ($01).

Required parameters

unit num: 1 byte value
Range: $01-$7E

Possible Errors

$01 BADCMD Invalid command
$06 BUSERR Communications error
$28 NODRIVE No Device Connected

Apple Computer, Inc. ddd CONFIDENTIAL dd & PAGE 18

SmartPort Implementation on Cortland April 23, 1986

READ cmdnum = $08
CMDLIST Byte 0: parameter count = 4

Byte 1: unit_num

Byte 2: data _ buffer pointer low

Byte3: data _ buffer pointer high

Byte 4: byte_count low

Byte 5: byte_count high

Byte 6: address pointer low

Byte 7: address pointer med

Byte 8: address pointer high

This call reads a number of bytes from the device specified by unit_num into bank
$00 memory starting at the address specified by data_buffer. The meaning of the
address parameter depends on the device involved. Although this call is generally
intended for use by character devices, a block device might use this call to read a
block of a non standard size (greater than 512 bytes per block). The UniDisk3.3
will return 524 bytes with this call (Macintosh block).

Required parameters

unit num: 1 byte value
' Range: $01-$7E

data buffer; pointer

This is the word pointer to the user's buffer in bank $00 that the data is to be read
into. The buffer must be large enough to contain the number of bytes requested.

byte count: 2 byte number

This specifies the number of bytes which are to be transferred. The Cortland
implementation of the SmartPort has a limitation of 767 bytes for this call.

address: Word

This is a device specific parameter. An example of how this call might be
implemented with a block device, is to use the address as a block address for
accessing a non standard block (that is, to access a block larger than 512 bytes).

Apple Computer, Inc. ddd CONFIDENTIAL € & PAGE 19

SmartPort Implementation on Cortland April 23, 1986

Possible Errors

$06 BUSERR Communications error

$27 IOERROR /O Error

$28 NODRIVE No Device Connected

$2B NOWRITE DISK WRITE PROTECTED
$2F BADBLOCK Invalid block number

$2F OFFLINE Device off line or no disk in drive

Apple Computer, Inc. d¢dd CONFIDENTIAL dé & PAGE 20

SmartPort Implementation on Cortland , April 23, 1986

WRITE cmdnum = $09
CMDLIST Byte O : parameter count = 4

Byte 1: unit_num

Byte 2: data _ buffer pointer low

Byte3: data _ buffer pointer high

Byte 4: byte_count low

Byte5: byte_count high

Byte 6: address pointer low

Byte 7: address pointer med

Byte 8 : address pointer high

This call writes a number of bytes to the device specified by unit num from bank |

$00 memory starting at the address specified by data_buffer. The meaning of the
address parameter depends on the device involved. Although this call is generally
intended for use by extended character devices, an extended block device might use
this call to write a block of a non standard size(greater than 512 bytes per block).

Required parameters

unit num: 1 byte value
Range: $01-$7E

data buffer: Word pointer

This is the word pointer to the user's buffer in bank $00 that the data is to be written
from. The buffer must be large enough to contain the number of bytes requested.

byte count: 2 byte number

This specifies the number of bytes which are to be transferred. The Cortland
implementation of the SmartPort has a limitation of 767 bytes for this call.

address: Word
This is a device specific parameter. An example of how this call might be
implemented with a block device, is to use the address as a block address for

accessing a non standard block (that is, to access a block larger than 512 bytes such
as a Macintosh block).

Apple Computer, Inc. ‘ ¢4 ¢ CONFIDENTIAL dé & PAGE 21

SmartPort Implementation on Cortland April 23, 1986

Possible Errors

'$06 BUSERR Communications error

$27 IOERROR /O Error

$28 NODRIVE No Device Connected

$2B NOWRITE DISK WRITE PROTECTED
$2F BADBLOCK Invalid block number

$2F OFFLINE Device off line or no disk in drive

Apple Computer, Inc. d¢dd CONFIDENTIAL deé e PAGE 22

SmartPort Implementation on Cortland April 23, 1986

EXTENDED STATUS CMDNUM = $40
CMDLIST Byte O: parameter count = 3
Byte 1: unit number
Byte2: status list pointer (low byte, low word)
Byte3: status list pointer (high byte, low word)
Byte 4: status list pointer (low byte, high word)
ByteS: status list pointer (high byte, high word)
Byte 6: status code

This call returns the status- information about a particular device or the
SmartPort itself. There are defined status calls for returning general information.
In general, device specific calls can be implemented by a device for diagnostic or
other information.

On return from a status call, the X and Y registers contain a count of the
number of bytes tranferred to the host. X contains the low byte of the count, while
Y contains the high byte value of the count.

Required Parameters -

unit pum: 1 byte value
Range : $00, $01 - $7E

This is the unit number. Each device has a unique number assigned to it at
initialization time. The numbers are assigned according to the device's position in
the chain. A status call with a unit number of $00 specifies a call for the overall
SmartPort status. (The status list returned on this call is explained below.)

status list. pointer

This is a long word pointer to the buffer where the status is to be returned.
Note that the length of the buffer will vary depending on the status request being
made.

Apple Computer, Inc. d¢dd CONFIDENTIAL dd & PAGE 23

SmartPort Implementation on Cortland April 23, 1986

status code: 1 byte value
Range: $00 - $FF

This is the number of the status request being made. All devices respond to the
following requests:

Code Status returned

$00 Return device status

$01 Return device control block

$02 Return newline status (character devices only)
$03 Return device information block (DIB)

Although devices must respond to the status requests listed above, the device may
not be able to support the request. In this case, the device should return an Invalid
Status Code error ($21).

Statcode = $00
The device status consists of four bytes. The first is the general status byte:

Bit Function

7 1 = Block device, 0 = Character device

6 1 = Write allowed

5 1 = Read allowed

4 1 = Device online, or disk in drive

3 1 = Format allowed

2 1 = Media Write Protected (block devices only)

1 1 = Device currently interrupting (not supported on Cortland)
0 1 = Device currently open (character devices only)

If the device is a block device, the next four bytes are the size in 512 byte blocks.
The least significant byte is first. The maximum size is SFFFFFFFF blocks, or
about 2.2 trillion bytes. If the device is a non block device, these bytes are set to
zero.

Statcode = $01

The device control block is device dependent. The DCB is typically used to control
various operating characteristics in a device. The DCB is set with the
corresponding control call. The first byte will be the number of bytes in the control
block. A value of $00 returned in this byte should be interpretted as a DCB length
of 256, while a value of $01 would be a DCB lenth of 1 byte. The length of the DCB
will always be in the range of 1 to 256 bytes excluding the count byte.

Apple Computer, Inc. ddd CONFIDENTIAL ¢ e PAGE 24

SmartPort Implementation on Cortland April 23, 1986

Statcode = $02

There are currently no character devices implemented for use on the SmartPort,
and therefore the Newline status is presently undefined. Since the Apple// SCSI
Interface card can support both character devices and block devices, and utilizes the
SmartPort interface, some definition may come out of that design.

Statcode = $03

This call returns the device's information block. It contains information identifying
the device, its type, and various other attributes. The returned status list has the
following form:

STATLIST DFB DEVICE STATBYTEl ;Same as byte 1 in status code = $00

DW DEVICE SIZE LO ;Number of blocks on device

DW DEVICE_SIZE HI ;Number of blocks on device

DFB ID_STR_LEN ;Length in bytes (16 max)

ASC 'device name' ;(16 bytes) upper case ascii, msb=0, blanks added

DFB DEVICE TYPE ;
DFB DEVICE SUBTYPE ;Bit 7 = Extended Support
DW VERSION ;Device firmware version number

Note that the first five bytes of the DIB are the same bytes returned in the Device
Status call. Also, since the name string is always 16 characters, the position of the
bytes in the list is always fixed relative to the beginning of the DIB for extended
devices. Bit 7 of the DIB subtype byte will be returned as a one if the device
supports extended calls. Bit 7 of the DIB subtype byte will be returned as a zero if
the device does not supports extended calls. Bit 6 of the DIB subtype byte will be
returned as a '0" if the device does not support disk switched errors (error code
$2E). Bit 6 of the DIB subtype byte will be returned as a '1' if the device does
support disk switched errors.

SmartPort Statys

A status call with a unit number of $00 and a status code of SO0 is a
request to return the status of the SmartPort as a whole. The number of devices as
well as the current interrupt status is returned. The Format of the status list
returned is as follows:

STATLIST byte 0: Number of devices:
byte 1: Interrupt Status (Bit 7 clear => no interrupt)
byte 2: Reserved
byte 3: Reserved
byte 4: Reserved
byte 5: Reserved
byte 6: Reserved
byte 7: Reserved

The number of devices byte tells the caller the total number of devices connected to

Apple Computer, Inc. d¢dd CONFIDENTIAL dd s PAGE 25

SmartPort Implementation on Cortland April 23, 1986

this slot or port. This number will always be in the range of 0 to 127.

The interrupt status byte is used by programs to determine if the SmartPort was the
source of an interrupt. If the most significant bit of this byte is set, there is a device
(‘or devices) in the chain that requress interrupt servicing. Which device is actually
interrupting cannot be determined from this value. The user's interrupt handler,
having determined that A SmartPort interrupt has occured must poll each device on
the chain to find out which device requires service.

The Extended SmartPort interface is currently not supported on either the Apple//c
or the Apple// SmartPort Interface card, however, if future revisions of these
products were to implement the Extended SmartPort, interrupts should be handled
as they currently are with the non extended implementation.

Possible Errors

S06 BUSERR Communications error
$21 BADCTL Invalid status code
$30-$3F $50-$7F Device specific error

(Some user defined status calls may use other error-codes.)

Apple Computer, Inc. ¢dd CONFIDENTIAL ds e PAGE 26

SmartPort Implementation on Cortland April 23, 1986

EXTENDED READ BLOCK cmdnum = $41
CMDLIST Byte 0: parameter count = 3
. Byte 1: unit_num

Byte2: data_buffer pointer (low byte, low word)
Byte 3: data_buffer pointer (high byte, low word)
Byte 4. data_buffer pointer (low byte, high word)
Byte 5: data_buffer pointer (high byte, high word)
Byte 6: block_num (low byte, low word)
Byte 7: block_num (high byte, low word)
Byte 8: block_num (low byte, high word)
Byte 9: block_num (high byte, high word)

This call reads one 512 byte block from the block device specified by unit_num into
memory starting at the address specified by data_buffer. -

Required parameters

unit num: 1 byte value
Range: $01-$7E

data buffer: pointer

This is a longword pointer to the user's buffer that the data is to be read into. The
buffer must be 512 or more bytes in length.

block num: LongWord number

This is the logical address of a block of data to be read. There is no general
connection between block numbers and the layout of tracks and sectors on the disk.
The translation from logical to physical block is performed by the device. (Note
that this is a four byte number.)

Possible Errors

$06 BUSERR Communications error

- $27 IOERROR /O Error
$28 NODRIVE No Device Connected
$2D BADBLOCK Invalid block number
$2F OFFLINE Device off line or no disk in drive

Apple Computer, Inc. ddd¢ CONFIDENTIAL dd & PAGE 27

SmartPort Implementation on Cortland April 23, 1986

EXTENDED WRITE BLOCK cmdnum = $42

CMDLIST Byte O: parameter count = 3
Byte 1: unit_num
Byte2: - data_buffer pointer (low byte, low word)
Byte 3: data_buffer pointer (high byte, low word)
Byte 4: data_buffer pointer (low byte, high word)
Byte 5: data_buffer pointer (high byte, high word)
Byte 6: block_num (low byte, low word)
Byte 7: block_num (high byte, low word)
Byte 8 : block_num (low byte, high word)
Byte 9: block_num (high byte, high word)

This call writes one 512 byte block to the block device specified by unit_num from
memory starting at the address specified by data_buffer.

Required parameters

unit num: 1 byte value
Range: $01-$7E

data buffer: pointer

This is a longword pointer to the user's buffer that the data is to be read into. The
buffer must be 512 or more bytes in length.

block num: LongWord number

This is the logical address of a block of data to be written. There is no general
connection between block numbers and the layout of tracks and sectors on the disk.

The translation from logical to physical block is performed by the device. (Note
that this is a four byte number.)

Possible Errors

$06 BUSERR Communications error

$27 IOERROR /O Error

$28 NODRIVE No Device Connected

$2B NOWRITE Disk write protected

$2D BADBLOCK Invalid block number

$2F OFFLINE Device off line or no disk in drive

Apple Computer, Inc. ¢4 & CONFIDENTIAL de e PAGE 28

SmartPort Implementation on Cortland April 23, 1986

EXTENDED FORMAT cmdnum = $43
CMDLIST Byte O: ~ parameter count = 1
Byte 1: unit_num

This call formats a block device. It should be noted that the format done by this call
is NOT linked to any operating system: it simply prepares all blocks on the medium
for reading and writing. Operating system specific catalog information such as
bitmaps and catalogs are not laid down by this call.

Required parameters

unit num: 1 byte value
Range: $§01-$7E

Possible Errors

$06 BUSERR Communications error

$27 IOERROR /O Error

$28 NODRIVE No Device Connected

$2B NOWRITE Disk Write Protected

$2F OFFLINE Device off line or no disk in drive

Apple Computer, Inc. dd&€ CONFIDENTIAL ¢ s & PAGE 29

SmartPort Implementation on Cortland April 23, 1986

XTENDED NTR ‘cmdnum = $44

CMDLIST Byte O: parameter count = 3
Byte 1: unit_num
Byte 2: control_list (low byte, low word)
Byte 3: control_list (high byte, low word)
Byte 4 : control_list (low byte, high word)
Byte5: control_list (high byte, high word)
Byte 6: control_code

This call sends control information to the device. The information can be either
general or device specific. A control call with a unit number of zero has special
significance as noted below.

Required parameters

unit num; 1 byte value
Range: $01-$7E

control list: pointer -

This is a longword pointer to the user's buffer where the control information IS to
be read from. The first two bytes specify the length of the control list; the low byte
is first. A control list is mandatory even if the call being issued does not pass
information in the list. A length of zero is used for the first two bytes in this case.

control code: 1 byte value
Range: $00-$FF

This is the number of the control request being made. This number and function is

device specific, with the exception that all devices must reserve the following codes
for specific functions.

Code Control Function

$00 Reset the device.

$01 Set device control block

$02 Set newline status (character devices only)
$03 Service device interrupt

Code = $00

Performs a soft reset of the device. Generally returns housekeeping' values to
some reset value.

Apple Computer, Inc. d¢d ¢ CONFIDENTIAL € & PAGE 30

SmartPort Implementationi on Cortland April 23, 1986

Code = $01

Allows the user to set the device control block. Devices generally use the bytes in
this block to control global aspects of the device's operating environment. Since the
length is device dependent, the recommended way to set the DCB is to first read in
the DCB (with the STATUS call), alter the bits of interest, and then write out the
same string with this call. The first byte is the length of the DCB (excluding the byte
itself). A value of $00 in the length byte corresponds with a DCB size of 256 bytes,
while a count value of $01 corresponds with a DCB size of 1 byte. A count value of
$FF corresponds with a DCB size of 255 bytes.

nit_$0 ntrol 11

A control call with a unit number of $00 specifies that the call applies to the
SmartPort as a whole. There are two calls currently available.

Code = $00 Enable Interrupts from the SmartPort

This call is used to enable interrupt hardware related to the SmartPort Interface.
This call is not supported by the built in SmartPort support on Cortland, and will
return a bad control code error ($21).

Code = $01 Disable Interrupts from the SmartPort

This call is used to disable interrupt hardware related to the SmartPort Interface.
This call is not supported by the built in SmartPort support on Cortland, and will
return a bad control code error ($21).

Possible Errors

$06 BUSERR Communications error
$21 BADCTL Invalid control code
$22 BADCTLPARM Invalid parameter list
$30-$3F Device specific error

Apple Computer, Inc. ddd CONFIDENTIAL € & PAGE 31

SmartPort Implementation on Cortland April 23, 1986

EXTENDED INIT cmdnum = $45
CMDLIST Byte O: parameter count = 1
- Byte 1: unit_num

This call provides the application with a way of resetting the SmartPort.

Required parameters

unit num: 1 byte value
Value: $00

The SmartPort will go through it's initialization sequence, hard resetting all devices
and sending each their device numbers. This call is made internally at first acces
and it should never be necessary for an application to make this call. (Though it is
never recommended to connect new devices when the CPU power is on, this call
provides a method for the SmartPort to communicate with devices connected
midstream).

Possible Errors

$06 BUSERR Communications error
$28 NODRIVE No Device Connected

Apple Computer, Inc. ddd CONFIDENTIAL dé & PAGE 32

SmartPort Implementation on Cortland April 23, 1986

EXTENDED QPEN | cmdnum = $46
CMDLIST Byte O: parameter count = 1
Byte 1: unit_num

This call is used to prepare a character device for reading or writing.

Note that extended block devices do not accept this call, and will return a invalid
command error ($01).

Required parameters

unit num: 1 byte value
Range: $01-$7E

Possible Errors

$01 BADCMD - Invalid command
$06 BUSERR Communications error
$28 NODRIVE No Device Connected

Apple Computer, Inc. ddd CONFIDENTIAL dé @ PAGE 33

SmartPort Implementation on Cortland April 23, 1986

EXTENDED CLOSE ~ cmdnum = $47
CMDLIST Byte O: parameter count = 1
Byte 1: unit_num

This call is used to tell an extended character device that a sequence of reads or
writes is over. In the case of a printer, this call could have the effect of flushing the
print buffer.

Note that extended block devices do not accept this call, and will return a invalid
command error ($01).

Required parameters

unit num: 1 byte value
Range: $01-$7E

Possible Errors

$01 BADCMD Invalid command
'$06 BUSERR Communications error
$28 NODRIVE No Device Connected

Apple Computer, Inc. d¢dd CONFIDENTIAL dd e PAGE 34

SmartPort Implementation on Cortland April 23, 1986

EXTENDED READ cmdnum = $48
CMDLIST Byte O: parameter count = 4
Byte 1: unit_num
Byte2: data _ buffer pointer (low byte, low word)
Byte3: data _ buffer pointer (high byte, low word)
Byte 4: data _ buffer pointer (low byte, high word)
Byte 5: data _ buffer pointer (high byte, high word)
Byte 6: byte_count low)
Byte 7: byte_count high
Byte 8: address pointer (low byte, low word)
Byte9: address pointer (high byte, low word)
Byte 10: address pointer (low byte, high word)
Byte 11: address pointer (high byte, high word)

This call reads a number of bytes from the device specified by unit_num into
memory starting at the address specified by data_buffer. The meaning of the
- address parameter depends on the device involved. Although this call is generally
intended for use by extended character devices, an extended block device might use
this call to read a block of a non standard size (greater than 512 bytes per block).

Required parameters

unit num: 1 byte value
Range: $§01-$7E

data buffer; LongWord pointer

This is the four byte pointer to the user's buffer that the data is to be read into. The
buffer must be large enough to contain the number of bytes requested.

byte count: 2 byte number

This specifies the number of bytes which are to be transferred. All of the current
implementations of the SmartPort utilizing CBUS have a limitation of 767 bytes for
this call. Other peripheral cards supporting the SmartPort interface, and using this
call may not have this limitation.

address: LongWord

This is a device specific parameter. An example of how this call might be
implemented with an extended block device, is to use the address as a block address
for accessing a non standard block (that is, to access a block larger than 512 bytes).

Apple Computer, Inc. ddd CONFIDENTIAL ¢ ¢ PAGE 35

SmartPort Implementation on Cortland April 23, 1986

Possible Errors

$06 BUSERR Communications error

$27 IOERROR /O Error

$28 NODRIVE No Device Connected

$2B NOWRITE DISK WRITE PROTECTED
$2F BADBLOCK Invalid block number

$2F OFFLINE Device off line or no disk in drive

Apple Computer, Inc. dd & CONFIDENTIAL dé e PAGE 36

SmartPort Implementation on Cortland April 23, 1986

EXTENDED WRITE cmdnum = $49
CMDLIST Byte O: parameter count = 4
Byte 1: unit_num
Byte2: data _ buffer pointer (low byte, low word)
Byte3: data _ buffer pointer (high byte, low word)
Byte 4 : data _ buffer pointer (low byte, high word)
Byte5: data _ buffer pointer (high byte, high word)
Byte 6: byte_count low
Byte 7: byte_count high
Byte 8: address pointer (low byte, low word)
Byte 9: address pointer (high byte, low word)
Byte 10: address pointer (low byte, high word)
Byte 11: address pointer (high byte, high word)

This call writes a number of bytes to the device specified by unit_num from
memory starting at the address specified by data_buffer. The meaning of the
- address parameter depends on the device involved. Although this call is generally
intended for use by extended character devices, an extended block device might use
this call to write a block of a non standard size (greater than 512 bytes per block).

Required parameters

unit num: 1 byte value
Range: $§01-$7E

data buffer; LongWord pointer

This is the four byte pointer to the user's buffer that the data is to be written from.
The buffer must be large enough to contain the number of bytes requested.

byte count: 2 byte number

This specifies the number of bytes which are to be transferred. All of the current
implementations of the SmartPort utilizing CBUS have a limitation of 767 bytes for
this call. Other peripheral cards supporting the SmartPort interface, and using this
call may not have this limitation.

address: LongWord
This is a device specific parameter. An example of how this call might be

implemented with an extended block device, is to use the address as a block address
for accessing a non standard block (that is, to access a block larger than 512 bytes).

Apple Computer, Inc. dd & CONFIDENTIAL &« PAGE 37

SmartPort Implementation on Cortland April 23, 1986

Possible Errors

$06 BUSERR Communications error

$27 IOERROR /O Error

$28 NODRIVE No Device Connected

$2B NOWRITE - DISK WRITE PROTECTED
$2F BADBLOCK Invalid block number

$2F OFFLINE Device off line or no disk in drive

Apple Computer, Inc. dd¢ CONFIDENTIAL dé & PAGE 38

SmartPort Implementation on Cortland April 23, 1986

roD ntr in

The ProDOS entry point can be thought of as simply a 'front end' to the non
extended SmartPort which is tuned to the whims of the ProDOS device manager.
The parameters are passed in fixed absolute zero page locations, and device
numbers are mapped from ProDOS conventional unit numbers to the sequential unit
numbers required by the non extended SmartPort. All errors which the non
extended SmartPort can return are mapped on ProDOS calls to the following error
codes:

$27 /O Error

$28 No Device Connected

$2B Device is Write Protected
$2F Device is Offline (No media)

Any 'fatal’ error (bit 6 clear, bits 5-0 non-zero) that is not $28, $2B, or S2F is

mapped to /O Error ($27). All 'non-fatal' errors (bit 6 set; codes $50-$7F) is not
considered an error and is mapped to $00.

Apple Computer, Inc. ddd€ CONFIDENTIAL é¢d @ PAGE 39

SmartPort Implementation on Cortland » April 23, 1986
if rameter vi ific Driver

Call parameters are passed to device specific drivers from SmartPort through fixed
memory locations in absolute zero page. All input to device specific drivers are
passed in an extended format. This is done so that no matter what type of call the
device specific driver is receiving, the input parameters will always be found in
fixed locations. This does not mean that a non extended call will be changed to an
extended call. Only the organiztion of parameters is affected. Some parameters do
not occupy contiguous memory when presented in an extended format. This occurs
because the order of parameters has been prepared so that the parameters can be
transmitted over CBUS to intellegent devices. Absolute zero page locations $40-62
have been saved by SmartPort prior to dispatching to the device specific driver, and
will be restored by SmartPort after returning from the device specific driver. This
means that these locations are available for use by the device specific driver. Inpu*
parameters are passed to the device specific driver as shown below:

Location Parameters Call Type

$42 | Buffer Address (bits 0-7) All

$43 Buffer Address (bits 8-15) . All

$44 , Buffer Address (bits 16-23) All

$45 Command All

$46 Parameter Count ' All

$47 Buffer Address (bits 24-31) All

$48 Extended Block (bits 0-7) ReadBlock & Writeblock
Status Code or Control Code Status & Control
Byte Count (bits 0-7) Read & Write

$49 Extended Block (bits 8-15) ReadBlock & Writeblock
Byte Count (bits 8-15) Read & Write

$4A Extended Block (bits 16-23) ReadBlock & Writeblock
Address Pointer (bits 0-7) Read & Write

$4B Extended Block (bits 24-31) ReadBlock & Writeblock
Address Pointer (bits 8-15) Read & Write

$4C Address Pointer (bits 16-23) Read & Write

$4D Address Pointer (bits 24-31) Read & Write

Apple Computer, Inc. dd ¢ CONFIDENTIAL ¢ ¢ PAGE 40

SmartPort Implementation on Cortland April 23, 1986

t the RamDisk Driver

The RamDisk driver has been implemented as a ToolSet (tool set #13). The input
parameters for this tool are passed through zero page as shown on the previous
page. The SmartPort will make a tool call to function #10 of the RamDisk Tool Set
when SmartPort determines that the call is directed toward the RamDisk. The
Direct Page Register and the Data Bank Register are set to a value of zero prior to
dispatching to the RamDisk tool. The tool passes output information back to the
SmartPort driver through zero page as follows:

Location Qutput Parameter Passed

$000050 Error Code

$000051 Low byte of count of bytes tranferred to host
$000052 High byte of count of bytes tranferred to host

All output information being passed to the application making the call to the
SmartPort driver will be passed through the buffer specified by the application in
the parameter list. For more information on calls supported by the RamDisk
driver, see the RamDisk ERS.

\hout the Unified Disk 3.5

The Unified Disk 3.5 driver resides at a fixed location on a page boundry within the
firmware rom, and is contiguous to the SmartPort driver. By definition, this is a
Cortland specific driver. The Unified Disk 3.5 recieves call parameters exactly the
same way as the RamDisk. Output is passed to the application through the buffer

specified in the parameter list. Output is passed to the SmartPort Driver as
follows:

Location Qutput Parameter Passed

$000050 Error Code

$E10FB4 Low byte of count of bytes tranferred to host
$E10FBS5 High byte of count of bytes tranferred to host

For more information on calls supported by the Unified Disk 3.5 driver, see the
Unified Disk Firmware ERS.

Apple Computer, Inc. dé ¢ CONFIDENTIAL ¢ o u PAGE 41

SmartPort Implementation on Cortland April 23, 1986

About the RomDisk

This document describes how the SmartPort firmware locates a RomDisk driver,
and how parameters are passed to and from that driver. It also describes how a
RomDisk driver might be implemented.

Installing a RomDisk Driver

A RomDisk driver must reside at address $F0/0000. The base address of the driver
must contain the ascii string 'ROMDISK' in upper case with the MSB on. Entry to
the RomDisk driver will be through address $F0/0007 (immediately following the
ascii string). The SmartPort firmware will search for a RomDisk driver during
device initialization time. This could occur during system boot at powerup, as a
result of CTRLGRESET or by dispatching through $C500. If the ascii string
'ROMDISK' is found at address $F0/0007, an initialization call will be executed
the via the RomDisk entry point. If the RomDisk returns with no error, the
RomDisk driver will be installed into the SmartPort device chain. If the RomDisk
initialization call returns an error, the RomDisk driver will not be installed in the
.SmartPort device chain.

RombDisk
Blocks
$Fn/ XXXX+1
.$Fn / XXX
RombDisk
Driver
SFO0007 W—
$SFO0000 ascii string ROMDISK'

Apple Computer, Inc. dd ¢ CONFIDENTIAL dd e PAGE 42

SmartPort Implementation on Cortland April 23, 1986

It is possible to use the expansion ROM for both a RomDisk and ROM based
extensions to the tool set by partitioning the ROM into three areas (Driver, Blocks
and Tools) as shown below: ,

ROM Based
Tools

RomDisk
Blocks

RomDisk
Blocks

=

N\

SFn / XXXX+1
SFn/ XXXX

RomDisk
Driver

SF00007 — -
$SF00000 . ascit string ROMDISK' |

The initialization call made to the RomDisk driver should make a call to the
ToolLocator to install the ROM based tool set extensions. This then allows the tool
locator to dispatch to the ROM based tool set extensions directly rather than down
loading the tool set to RAM.

Call parameters are passed to the RomDisk driver in a manner identical to the
RamDisk driver. The Direct Page Register and the Data Bank Register are set to0 a
value of zero prior to dispatching to the RamDisk tool. The tool passes output
information back to the SmartPort driver through zero page as follows:

Location Qutput Parameter Passed

$000050 Error Code
$000051 Low byte of count of bytes tranferred to host
$000052 High byte of count of bytes tranferred to host

All output information being passed to the application making the call to the
SmartPort driver will be passed through the buffer specified in the parameter list.

Apple Computer, Inc. dd¢d CONFIDENTIAL d e & PAGE 43

SmartPort Implementation on Cortland April 23, 1986

A block diagram of a RomDisk that occupies 128k of ROM (including the driver
itself) is shown below;

ROM bank boundry >

BLOCK SFE
BLOCK SFD
BLOCK SFC

BLOCK $83
BLOCK $32
BLOCK $81
BLOCK $80

ROM bank boundry > gﬁé :_7/;
BLOCK $7D
BLOCK $7C

Total number of blocks = Romsize

BLOCK §13
BLOCK $12
BLOCK $11
BLOCK $10
BLOCK SOF
BLOCK SOE
BLOCK S0D
BLOCK $0C
BLOCK $0B
BLOCK $S0A
BLOCK $09
BLOCK $08
BLOCK $07
BLOCK $06
BLOCK 305
BLOCK S04
BLOCK 303
BLOCK s02
BLOCK $01

BLOCK $00
Driver in base 512 byte block 23

of ROM bank SFO j ROMDISK driver

ignature bytes
evice size (number of blocks)

N
3

Note that no ROM space has been reserved for toolset expansion in this example.

Apple Computer, Inc. d¢dd& CONFIDENTIAL dé ¢ PAGE 44

SmartPort Implementation on Cortland April 23, 1986

Dynamic Allocation of Device Unit Numberg

The Cortland implementation of SmartPort must interact with the control panel
selection of boot devices. For any given port, a boot can only occur from the first
logically connected device on that port. SmartPort must support booting from any
of three types of devices which include:

RamDisk
RomDisk
Disk type device (Unified Disk 3.5 or UniDisk 3.5)

At device initialization time, unit numbers are assigned to devices in ascending
order according to the device type as follows:

RamDisk
RomDisk
Unified Disk 3.5
UniDisk 3.5

Depending on what devices are connected to the SmartPort, the selected boot device
may not be the first logical device in the chain. In order to boot from the selected
device, the selected device must be moved logically to the first unit in the device
chain. This means that all devices that were previously ahead of the selected boot
device must now be moved logically so that they are now located behind the selected
boot device. This is handled by the initialization call by actually assigning unit
number in two stages. The first stage assigns unit numbers as described above. The
second stage remaps the units so that the selected boot device is always the first
logical device in the chain. If the 'scan’ is selected as the boot option in the control
panel, SmartPort will place the first physical disk device as the first logical device in
the device chain.

Remapping of devices has some interresting implications when running with
ProDOS 1.1.1. Current implementations of ProDOS only support two devices per
port or slot. If more than two devices are logically connected to the device chain,
devices beyond the second device can not be accessed with ProDOS 1.1.1. The
interim version of ProDOS for Cortland that will be available before ProDOS'16 is
ProDOS 1.2. ProDOS 1.2 will support up to four devices on SmartPort. ProDOS
1.2 will map the to two devices beyond the second device in the device chain so that
the additional devices will appear as if they are connected to slot 2. Due to the
affects of the logical remapping that places the boot device as the first device in the
chain, the relationship of devices and slots with ProDOS 1.2 varies with the boot
configuration as set by the control panel. The affects of this is best illustrated by
experimenting with the boot configuration, and listing volumes with the FILER or
FINDER.

Apple Computer, Inc. dd¢ CONFIDENTIAL ¢ ¢ PAGE 45

SmartPort Implementation on Cortland April 23, 1986

Interaction between the control panel and the logical assignment of unit numbers to
devices on the SmartPort device chain will also be visable with ProDOS'16,
however all the devices will appear in slot 5. No remapping of units to slot 2 will be
neccessary with ProDOS'16 since ProDOS'16 will support more than two devices
per port or slot.

Several illustrations follow which shows remapping of devices based on the selected
boot device v.s. the device configuration. Only a few of the derivations of the
device mapping are shown.

Unified Disk 3.5 Unified Disk 3.5
1st stage unmit 1 lst stage unit 2

ﬁu

RamDisk
1st stage unit 3

SmartPort

RamDisk
20d stage unit 2

Unified Disk 3.5
2nd stage unit 1

If Disk is boot device
then no change

Unified Disk 3.5
2nd stage unit 3

SmartPort

=

SmartPort

If RamDisk is boot
device then:

SmartPort

Apple Computer, Inc.

=

RamDisk
1st stage unit 3

Unified Disk 3.5
Ist stage unmit

isk
2nd stage unit 1

-}

|

Uniﬁcd%isk 3.5
2nd stage unit 2

Unified Disk 3.5
Ist stage unit 2

ﬁ\

k4
Unified Disk 3.5

2nd stage unit 3

¢d € CONFIDENTIAL e«

]

PAGE 46

SmartPort Implementation on Cortland

RambDisk
1st stage unit 1

ﬁ

If RamDisk is boot RamDisk
device then: 2nd stage unit 1

SmartPort

RambDisk
Ist stage unit 1

If RomDisk is RomDisk

boot device then:

SmartPort

2nd stage unit 1

—

RambDisk
Ist stage unit |

If Disk is UniDisk 3.5
boot device then: 2nd ‘stage unit |

RomDisk
1st stage unit 2

q

RombDisk
2nd stage unit 2

RombDisk
Ist stage unit 2

RamDisk
2nd stage unit 2

—

RombDisk
Ist stage unit 2

RamDisk
2nd stage unit 2
e —"

SmartPort . -

Apple Computer, Inc.

-]

ddd CONFIDENTIAL ¢«

April 23, 1986

UniDisk 3.5
Ist stage unit 3

o

UniDisk 3.5
2nd stage unit 3

UniDisk 3.5
st stage unit 3

UniDisk 3.5
2nd stage uanit 3

UniDisk 3.5
1st stage unit 3

RomDisk
2nd stage unit 3

PAGE 47

SmartPort Implementation on Cortland April 23, 1986

uark -1 u r

Support of the QC-10 presents some interresting problems for SmartPort. The
QC-10 uses several phase line combinations that are in conflict with SmartPort
devices such as the Unified Disk 3.5 and the UniDisk 3.5. By definition, Unified
Disk 3.5 devices must be the first physical devices in the device chain. The Unified
Disk hardware blocks the phase lines from being passed to devices further down the
device chain during any access to the Unified Disk devices. This should prevent any
phase collisions with the QC-10. However, one of the active phase conditions used
by the QC-10 will reset all devices physically connected to the device chain such as
the UniDisk 3.5. The net effect of an access to the QC-10 is that all intellegent
devices connected to the SmartPort device chain will no longer communicate with
SmartPort unless the device chain is reinitialized. This presents some problems
with the normal initialization sequence. If a full initialization sequence is executed
on SmartPort, dynamic reallocation of unit numbers based on the control pane’
selected boot device could cause the device chain order to change if the control pane.
setting had changed. What really is neccessary is to restore the original state of the
device chain. In order to support the QC-10, a flag byte is maintained in the slot 5
screen holes (S0006FD) with a value of $AS. It is neccessary for the QC-10 device
driver to modify this flag byte after each access to the QC-10. The SmartPort
firmware will examine this byte on each call to the SmartPort device driver. If this
byte is not set to $AS, then SmartPort will reassign the unit numbers only to the
intellegent devices physically connected to the device chain. SmartPort will not
reassign unit numbers based on control panel settings since this reassignment has
already occured. This is done to restore the device chain to the same state that
existed before the QC-10 was accessed.

Apple Computer, Inc. ddd CONFIDENTIAL ¢ PAGE 438

SmartPort Implementation on Cortland

April 23, 1986

Command Status ReadBlock | WriteBlock Format Control
CMDNUM $40 $41 $42 $43 S44 $45
CMDLIST Byte
0: $03 $03 $03 s01 $03 $01
1: Unit # Unit # Unit # Unit # Unit # Unit #
2: StatList Ptr | Buffer Pr | Buffer Pr CrriList Prr
3: StatList Ptr | Buffer Pr | Buffer Pir CtriList Ptr
4: StatusCode | Block Addr | Block Addr Ctri Code
S: Block Addr | Block Addr
6: Block Addr | Block Addr
7:
8:

ed Cond and aramezcr
Command Open Close -W 1 A T
CMDNUM $46 $47 S48 $49
CMDLIST Byte

0: $01 s01 S04 $04

1: Unit # Unit # Unit # Unit #

2: Buffer Pr | Buffer P

3: Buffer Ptr | Buffer Pr

4: Byte Count | Byte Count

s: Byte Count | Byte Count

6: . .

72 * .

8: * »

* This parameter is device specific
Notes:

1) The read byte count and the Control call list contents cannot be larger than 767 bytes.
2) Upon return from the Read call, the byte count bytes will contain the number of bytes actually read from the
device. '

Apple Computer, Inc. dd ¢ CONFIDENTIAL s & & PAGE 49

SmartPort Implementation on Cortland

April 23, 1986

Command Status | eadBlock WriteBlock
CMDNUM $40 $41 $42 843 S44 345
CMDLIST Byte
0: $03 $03 $03 so01 s03 S01
1: Unit # Unit # Unit # Unit # Unit # Unit #
2: StatList Ptr | Buffer Pr | Buffer Ptr CtriList Ptr
3: StatList Ptr | Buffer Pr | Buffer Pr CulList Ptr
4: StatList Ptr | Buffer Pr | Buffer Prr CtriList Ptr
5: StatList Ptr | Buffer Ptr | Buffer Prr CrriList Ptr
6: StatusCode | Block Addr | Block Addr Ctrl Code
7: Block Addr | Block Addr
8: Block Addr | Block Addr
9: Block Addr | Block Addr
10:
11:
. Summary of Exiended Commands and Parameter Lists £ 2
Command Open Close Read Write
CMDNUM $46 $47 $48 $49
CMDLIST Byte
0: $01 $01 $04 S04
1: Unit # Unit # Unit # Unit #
2: Buffer Pr Buffer Prr
3: Buffer Ptr Buffer Ptr
4: Buffer Ptr Buffer Pir
5: Buffer Pr | Buffer Pir
6: Byte Count | Byte Count
7: Byte Count | Byte Count
8: . N
9: * .
10: . .
11: . *
* This parameter is device specific
Notes:
1) The read byte count and the Control call list contents cannot be larger than 767 bytes.
2) Upon return from the Read call, the byte count bytes will contain the number of bytes actually read from the

device.

Apple Computer, Inc.

dd ¢ CONFIDENTIAL s«

PAGE 50

SmartPort Implementation on Cortland . April 23, 1986

SUMMARY OF SMARTPORT ERROR CODES

Acc Value Error Type Description

$00 No error -

$01 BADCMD A nonexistent command was issued.

$04 BADPCNT Bad call parameter count. This error will occur
only if the call parameter list was no properly
constructed. ~

$06 BUSERR A communications error with the IWM occured.

$11 BADUNIT An invalid unit number was givien.

$1F NOINT Interrupt devices not supported.

$21 BADCTL The control or status code is not supported by the

- device.

$22 BADCTLPARM The control list contains invalid information.

$27 IOERROR The device encountered an I/O error.

$28 NODRIVE The device is not connected. This can occur if
the device is not connected but its controller is.

$2B NOWRITE The device is write protected.

$2D BADBLOCK The block number is not present on the device.

$2E DISKSW Disk was switched.

$2F OFFLINE Device off line or no disk in drive.

$30-$3F DEVSPEC These are device specific error codes

$40-$4F RESERVED

$50-$5F NONFATAL A device specific 'soft’ error. The operation
completed successfully, but some exception
condition was detected.

Apple Computer, Inc. ¢4« CONFIDENTIAL ¢d & PAGE 51

