Date: July 15, 1985
Author: Fern Bachman
Subject: Mouse ERS

Document Version Number: 00:10

Revision History

00:00 Initial Release
30:10 Soft switches to talk to the mouse have changed

MQUSE July 15, 1985 Page #1

General

The Columbia mouse uses front desk bus to communicate with the Columbia Keyboard
micro which in turn informs the monitor firmware of mouse actions. This is a
departure from the AppleMouse card and the //c mouse interface which depends
extensively on firmware to support the mouse. Columbia’s mouse has a true passive
mode like the AppleMouse but unlike the //c mouse which requires interrupts to do
anything. The true passive mode is definitely an advantage. It allows mouse
applications to operate while devices which have timing critical loops or which
can’t run if interrupted to operate. An interrupting communications card is a
good example of a device which must be the only interrupting device in a system
to operate. The true passive mode also prevents the 45814 from being
overburdened with interrupts from the mouse such as can occur in the //c i+
someone is moving the mouse rapidly while an application program is running.

Columbia’s mouse can cause an interrupt to the 45814 only if an interrupt mode
was selected, the mouse is on, and the interrupt condition has occurred. Unlike
the //c which interrupts whenever the mouse is moved, Columbia’s mouse interrupts
in sync with the Vertical Blanking signal (UBL) of Columbia only. The maximum
times that Columbia’s mouse can interrupt the 45814 is 40 times per second. This
cuts down on the overhead the mouse puts on the 45814. 14 an interrupt condition
(determined by the mode byte setting) occurs an interrupt will be passed to the
43814 when the next UBL occurs. This is consistent with the operation of the
AppleMouse card. This function is accomplished by sending a command to the
KeyGlu chip to tell it to interrupt the 45814 in sync with VBL only if a
predefined condition exits.

The FDB mouse (Columbia’s mouse) when giving pasition data returns a delta
position of up to +/- &3 counts (approximately 0.3 inches of travel). I[¢ is up
to Columbia’s firmware to convert this relative position (delta) to absolute
position. The FDB mouse also provides the tollowing features;

1. Current button0 and buttani data ¢(1 i+ down, 0 if up)

2. Previous button0 and button! data ¢! if was down, 0 if was up)

3. Interrupt data (whether VUBL, button0/1, or movement int)

At power up the FDB mouse, via the KeyGlu chip defaults to a mouse off, non
interrupt state for safety. Reset will also cause the KeyGlu chip to turn the
FDB mouse interrupt off and enter a non interrupt state.

MOUSE July 15, 1985 Page #2

Addresses Used

Address ' Function
$C027 KeyGlu status register defined as follows

bit 0 = d Must NOT be altered by mouse
bit ! =0 ‘X’ .- position available
(read only)
=1 ‘Y’ - position available
(read only)

bit 2 = K Must NOT be altered by mouse
Bit 3 = Kk Must NOT be altered by mouse
bit 4 = d Must NOT be altered by mouse
bit § = d Must NOT be altered by mouse
bit 4 = 1 Mouse interrupt enable (read/write)
bit 7 = | Mouse register full (read only) "
K = used by Keyboard handlers
d = used by FDB handlers
$C024 ‘Mouse data register

st read yields ‘X’ position data
and button ! data

2nd read yields ‘Y’ position data
~ and button 0 data

Program Restrictions/Requirements

To enable mouse interrupts set bit & of $C027 to 1.
To determine if an interrupt came from the mouse or not the user
reads bit 7 of 3C027 and bit 4 of $C027. 14 hath are a | then an
interrupt is pending from the mouse.
To read the mouse position the following conditions must occur or the
data is contaminated and corrective measures must be taken;
{. Read bit 7 of 3C027 -
[f Bit 7 =0 then “X’ and ’Y’ data is not available yet
I+ bit 72 =1 then data is available but may be contaminated
2. Read bit | of $C027 only if bit 7 was a |
If bit 1 =0 then “X’ and ‘Y’ data is not contaminated and may be
read. The first read of 3C024 returns X’ data and
button 1 data and the second read of $C024 returns
‘Y’ data and button 0 data. Be careful of indexed
instructions. The false reads and writes that some
indexed instructions do can cause the ‘X’ data to be
lost and the ‘Y’ data to appear when ‘X’ data was
wanted.
If bit ! is | and you have not read $C024 yet then the data in
3C024 is contaminated and must be considered useless.
[condition occurs do the following

MOUSE July 1S, 1985 Page #3

1. Read $C024 one time only
2. lgnore the byte read in
3. Exit your mouse read routine without updating
the X’ and Y’ or button data. This will not
hurt any program and will guarantee that the
next time you read the mouse positions
everything should be accurate.
3. To data read in is encoded as follows
‘X’ data byte -
i bit 7 =0 then mouse button 1 is up
1 then mouse buttorn ! is down
bits 0-4 delta mouse move
bit 4=0 then a positive move up to $3F (43)
ticks
bit &=!{ then negative move in two’s
complement up to $40 (&4)

‘Y’ data byte -
bBit 7 = 0 then mouse button 0 is up
1 then mouse button 0 is down
bits 0-4 delta mouse move :
bit é=0 then a positive move up to 33F (42>
ticks
bit &=1 then negative move in two’s
complement up to %40 (44D

4. The main ‘screen holes can be in either bank 300 or bank 3E0 depending on
whether shadowing is on or off. If it is on the screen holes used wil]
Se in bank 300. If shadowing is off the screen holes used will be in

bank 3EQ.

The mouse is resident in Columbia in internal slot 4. UWhen the mouse is in use
the main memory screen holes for slot 4 are used by the mouse to hold X and Y
apsolute position data, current mode, button0/! status, and interrupt status,
Eight other brtes are needed for mouse information storage. They will hold the
maximum and mini=um clamps for the mouse’s absolute position. Following is a
break down of screen hole usage by the mouse when Columbia firmware is used ONLY.

MOUSE July 1S, 1985 ' Page #4

Main Memory Screen Holes Used

Address Use
$47C Low byte of absolute X position
$4FC Low byrte of absolute Y position
$57C High byte of absolute X position
$3FC High byte of absolute Y position
347C Reserved and used by firmware
34FC Reserved and used by firmware
3$77C Button0/! / interrupt status
Bit 7 = Currently button0 is up/down ¢0/1)
Bit 6 = Previously button0 was up/down ¢0./1)
Bit 5 = X/Y moved since last READMQOUSE
New =-=-=>)> Bit 4 = Currently button! is up/down ¢0/1)
Bit 3 =VUBL interrupt
Bit 2 = Button0/! interrupt
Bit | = Movement interrupt
New ==-=>> Bit 0 = Previously button! was up/down (0/1)

Button0/!-Interrupt Status Byte

|] I]] | | I I
[Current IPrevious!X/Y movelCurrent | VUBL | Button IMovement!Previcus!
IButtonQ (ButtonO0 | since |IButton! | int | int I int IButton! |
I Status | Status !1st read! Status loccurredloccurredloccurred! Status |
| | [] | | | ! I

37FC " Mode byte
Bit 7 = Reserved
Bit 4 = Resarved
Bit § = Reserved
Bit 4 = Reserved
Bit 3 = Interrupt on UBL
Bit 2 = Interrupt on next UBL if hButton pressed
Bit | = Interrupt on next UBL if mouse moved
Bit 0 = Mouse of$/0n (0/1)
Mode Byte
I | I I I | | J I
I [| | ! VBL | Button IMovement! Mouse |
IReservedlReserved(Reserved!Reserved] int | int I int | |
| | | | | mode | mode | mode | off/on |
| I

! | | ! ! I !

MOUSE July 1S, 1985 - Page #5

Firmuare RAM Used

The mouse clémps are Kept in the auxiliary screen holes in these locations.

Address

$EOxxxX
$EQ0xxxXx
3EOQ0XXXX
SEQxxxx
SEO0xxxXX
$ED0xxxxX
3E0xxxX
$EOxxxX

Use

Low byte of low X clamp
High brte of low X clamp
Low byte of high X clamp
High byte of high X clamp
Low byte of low Y clamp
High byte of low Y clamp
Low byte of high Y clamp
High avte of hig. Y clamp

These locations are NEVER to be changed by the user directly. They are to be
changed only via CLAMPMQUSE.

Firmuare calls

To use the mouse firmware the user must enter via the user interface provided
below. It conforms to the PASCAL 1.1 protocol for peripheral cards.

Location

3C400
$C40E
$C40F
3C410

30411 = $00

Routine Definition

PINIT PASCAL init device (Not implemented)

PREAD PASCAL read character (Not implemented)
PWRITE PASCAL write character (Not implemented)
PSTATUS PASCAL get device status (Not implemented)

Indicates that more routines follow

Standard routines implemented on Columbia (same as //c and AppleMouse card)

32202
30413
3414
3415
3414
3417
$C418

3C419

SETMOUSE Set mouse mode
SERVEMQUSE Service mouse interrupt
REAOMQUSE Read mouse position
CLEARMOUSE Clear mouse position to 0 (For delta mode)
POSMOUSE ' Set mouse position to user defined position
CLAMPMOUSE Set mouse bounds in a window
HOMEMOQUSE Set mouse to upper left corner of clamping
window
INITMOUSE Reset mouse clamps to defaults, positions ta
g,0
In addition to the above the following locations are significant.
$C400 BINITENTRY Initial entry point when coming from 2ASIC
3C405 = 338 BASICINPUT (opcode SEC) PASCAL 1.D. byte
BASIC input entry point
$C407 = 318 BASICOQUTPUT (opcode CLC) PASCAL 1.D. byte
MOUSE

July 1S5, 1985 Page #4

BASIC output .entry point

$C40B = 30! PASCAL generic signature byte
$C40C = 320 Apple Tech Support I1.D. byte
3C4FB = 304 Additional I.D. byte

PASCAL firmware calls

Enough of the firmware has been set up so that PASCAL recognizes the mouse as a
valid device, however PASCAL is not directly supported by the firmware. A PASCAL
driver for the mouse is available from Apple to interface programs with the

mouse. The standard PASCAL calls PINIT, PREAD, PWRITE and PSTATUS if called will
return with the X register set to 3 (PASCAL illegal operation
error) and carry set.
PINIT
Function: Not implemented (just an entry point in case user calls
it by mistake.)
INPUT H All registers and status bits don’t care
QUTPUT X = 303 == Error 3 = Bad mode: Illegal operation
C=1--Always
Screen holes: Unchanged
PREAD
Function: Not implemented (just an entry point in case user calls
it by mistake.)
INPUT : All registers and status bits don’t care
QUTPUT X = 303 -- Error 3 = Bad mode: Illegal operation
C=1 --Always
Screen holes: Unchanged
PWRITE
Function: Not implemented (just an entry point in case user calls
it by mistake.)
INPUT : All registers and status bits don’t care
QUTPUT X = 303 -- Error 3 = Bad mode: Illegal operation
. C=1 -- Always
Screen holes: Unchanged
PSTATUS
Function: Not implemented (just an entry point in case user calls
it by mistake.)
INPUT All registers and status bits don’t care
QUTPUT X = 303 -- Error 3 = Bad mode: Illegal operation

Assembly lanquaqe

C=1 --Always
Screen holes: Unchanged

firmuare calls

MOUSE

July 15, 1985

Page #7°

The Apple // mouse standard interface as pointed out earlier is taken from the
PASCAL firmware interface protocol. To use a mouse routine from assembly
language the user must first read the location corresponding to the routine he
wants to call. The value he reads is the offset to the actual entry point of the
routine to be called. This interface guarantees that programs written for the
Apple // family of mice will be able to get to the required firmware routine the
same way in all machines. It allows Apple to update the firmware routines
without obsoleting any software applications. It also means that programs
written for one machine will work on the entire family of Apple // computers
assuming the program does not make use of any machine specific hardware.

The firmware calls available on Columbia, the AppleMouse card and the //c are:

NOTES: ‘

1. n = slot number mouse is in === n = 4 for Columbia and //c mice

2. These bits are not changed by mouse firmware: e,m,l,x, direct
register, data bank register, program bank register.

3. The user MUST NOT change any mouse screen hole at anvy time
except during POSMOUSE when the user is required to put new
mouse coordinates directly in the screen holes. No other mouse
screen hole can be changed without sericusly affecting the
mouse .,

4. Interrupts MUST be disabled before each mouse call.

3. If shadowing is on the screen holes in bank 300 are used. 14
shadowing is off the screen holes in bank $EQ0 are used.

SETMOUSE
Function: Set mouse operation mode
Input: A = mode (300 to 30F only valid modes)
X = Cn for std interface (Columbia mouse doesn’t care)
Y = n0 for std interface (Columbia mouse doesn’t care)
Qutput: A = mode if illegal mode entered - else A is scrambled
' X,Y,U,N,2 = scrambled

C=20 if legal mode entered (mode is <= 30F)
C=1if illegal mode entered (mode is > 30F)
Screen holes: Mode byte updated only

SERVEMOUSE :

Function: Tests for interrupt from mouse and resets mouses
interrupt line.
Input: A,X,Y = don’t care
Qutput: A,X,Y,U,N,2 = scrambled

C=20if it was a mouse interrupt
C=1if it was not a mouse interrupt
Screen holes: Interrupt status bits updated to show
current status

READMOUSE

MQUSE July 1S, 19835 . Page 48

Fu

CLEARMOUSE
Fu

POSMQUSE
Fu

nction:

Input:

Qutput:

nction:

Input:

Output:

nction:
Input:

Qutput:

CLAMPMOUSE

Fu

MOUSE

nction:

Input:

Reads delta X/Y positions, updates absolute X/VY
positions, and reads button statuses from FDB mouse.

A = don’t care
X = Cn for std interface (Columbia mouse doesn’t care)
Y = n0 for std interface (Columbia mouse doesn’t care)

A,X,Y,UN,Z = scrambled

C=20 -- Always

Screen holes: XLO, XHI, YLQ, YHI, Buttons and movement
status bits updated -- Interrupt status bits are
cleared

Resets to 0, X and Y, the buttons, movement and
interrupt status., This mode is intended for use when
the user wants to do delta mouse pasitioning instead of
absolute positioning which is normal.

A = don’t care
X = Cn for std interface (Columbia mouse doesn’t care)
Y = n0 for std interface (Columbia mouse doesn’t care)

A,X,Y,U,N,2 = scrambled
C =20 -- Always

Screen holes: XLO, XHI, YLO, YHI, Buttons / movement /
interrupt status set to 0

Allows user to change current mouse position,
User places new absolute X/Y positions directly in
appropriate screen holes,

A = don’t care

X = Cn for std interface (Columbia mouse doesn’t care)
Y = n0 for std interface (Columbia mouse doesn’t care)
A,X,Y,VU,N,2 = scrambled

C=0 -- Always .
Screen holes: User changed X and Y absolute positions
only bytes changed

Set up clamping window the mouse should use. Power up
defaults are 0 to 1023 (30000 - $03FF).

A =10 if entering X clamps .

A =1 if entering'Y clamps’

Clamps are entered in slot 0 screen holes By the user
as follows:

3478 = low byte of low clamp

34F8 = low byte of high clamp
3378 = high byte of low clamp
33F8 = high byte of high clamp

X = Cn for std interface (Columbia mouse doesn’t care)

July 13, 1985 Page #9

Y = n0 for std interface (Columbia mouse doesn’t care)
Qutput: A,X,Y,U,N,2 = scrambled :

C=20 -- Always

Screen holes: X / Y absolute posxtlon set to upper left

hand corner of clamping window. Clamping RAM values in

bank $EQ0 are updated.

TAKE NOTE:
This means that the Columbia mouse does an automatic
HOMEMQUSE after a CLAMPMOUSE. This is not done by
either the AppleMouse card or the //c. It is highly
recommended that a HOMEMOUSE follow a CLAMPMQUSE when
dealing with the //c or the AppleMouse. The execution
.of an automatic HOMEMOUSE is required due to the fact
that deltas are being fed to the firmware instead of
+/=1’s as is the case for the //c and for the 4805
microprocessor on the AppleMouse card. The delta from
Columbia’s FDB mouse can alter the absolute position to
a point where the clamping techniques used by the other
2 mice are useless for Columbia.

HOMEMOUSE
Function: Sets X / Y absolute position to upper left hand corner
of clamping window.
Input: A = don’t care
X = Cn for std interface (Columbia mouse doesn’t care)
Y = n0 for std interface (Columbia mouse doesn’t care)
Cutput: A,X,Y,VU,N,2Z = scrambled
C=20 -- Always
Screen holes: X / Y absolute position changed
INITMOUSE . ,
Function: Sets screen holes to defaults, and sets clamping window

to default of 0000-1023 (30000,$03FF) in both the X and Y
directions., Resets KeyGlu mouse interrupt capabilities.
Input: A = don’t care

X = Cn for std interface (Columbia mouse doesn’t care)

Y = n0 for std interface (Columbia mouse doesn’t care)
OQutput: A,X,Y,U,N,2 = scrambled

C=0 -- A]wavs

Screen holes: X/Y.DOSItIOnS, button statuses, interrupt
status set to O

As with the other Apple // mice the X and Y positions, button statuses and
movement status are guaranteed to be valid only after a READMOUSE and, if the
application program is to be compatible with the //¢, only until 435816 interrupts
are enabled again. Interrupt status bits are guaranteed to be valid only after a

MOUSE July 15, 1985 Page #10

SERVEMOUSE and, if the application program is to be compatible with ‘the //c, only
until 43816 interrupts are enabled again. Interrupt status bits are reset after
a READMOUSE. The user should, read and use, or read and save, the appropriate
mouse screen hole data before enabling or reenabling 45814 interrupts.

Standard Firmware Call Example

Note: Interrupts must be disabled on every call to the mouse firmware.
SETMOUSEQFF EQU 3$Cni?2 jQffset to SETMOUSE offset (3$C412 for Columbia)

LDA SETMOUSEQOFF ;Get offset into code
STA TOMOUSE+1 jModify operand

LDX Cn jWhere Cao = C4 in Columbia
LDY no jWhere n0 = 40 in Columbia
PHP jSave interrupt status
SEI jGuarantee no interrupts during call
LDA #301 ;Turn mouse passive mode on
JSR TOMOUSE iJSR to a modified JMP instruction
BCS ERROR iC =114 illegal mode entered errcr
PLP jRestore interrupt status
RTS sExit

ERROR PLP jRestore interrupt status

JMP ERRORMESSGE ;Exit to error routine

TOMQUSE JMP 3Cn0Q .sModified operand for correct entry point
' $C400 for Columbia

BASIC Firmware Entry

The mouse and BASIC have the following interface. To turn the mouse on do the
following.

1. PRINT CHR3(4);"PR#4" :REM Ready mouse for cutput

2. PRINT CHR (1) :REM Send the mouse a | to turn it on from BASIC

3. PRINT CHR$(4);"PR#0" :REM restore screen output. NOTE use
PRINT CHR$(¢4);"PRH3" to return to 80 columns

Whenever the mouse is turned on from BASIC to accept outputs, firmware changes
the output hooks at 334 and $37 tg point to 3C407 and does an INITMOUSE which is
described above, ' :

To turn the mouse off do the following,
1. PRINT CHR3(4);"PR#4" :REM Ready mouse for output
2. PRINT CHR (0) :REM Send the mouse a 0 to turn it off from BASIC

3. PRINT CHR3(4);"PRH0" :REM restore screen output. NOTE use
PRINT CHR3(4);"PR#3" to return to 80 columns

MOUSE July 15, 1985 Page #11

To read mouse position and button statuses from BASIC do the following.

1. PRINT CHR$(4)"INH4" :REM Ready mouse for input

2. INPUT X,Y,B :REM Input mouse position

3. PRINT CHR3(4)"INH0" :REM Return Keyboard as input device when
done reading mouse positions

Whenever the mouse is turned on from BASIC to do inputs, the firmware changes the
input hooks at 338 and 339 to point to $C405. When an INPUT statement is invoked
while talking to the mouse the firmware does a READMOUSE before converting the
screen hole data to decimal ASCI! and placing it in the input buffer beginning at
$200.

In BASIC the mouse runs in passive mode (that is a non interrupt mode), its
clamps are set automatically to 0000-1023 (30000-303FF) in both the X and Y
‘directions and position data in the screen holes is set to 0. Ouring a BASIC
INPUT statement the firmware reads the deltas from the FTD mouse adds them to the
absolute position in the screen holes (clamping the positions if necessary) and
then converts the absolute positions in the screen holes to ASCII and places that
data with the button0 status data into the input buffer followed by a carriage
return and returns to BASIC. Button! status cannot be returned to SASIC since
doing so would add another input variable to the intput buffer which will result
in an ?EXTRA IGNORED error being printed in existing mouse BASIC programs. A
BASIC program wanting to read button! status can PEEK the screen hole containing
that data. The data returned in the input buffer is in the following form

s xl x2-x3 x4 x§ , s ¥yl ¥2 ¥3 y4 yS , sb B8O Bl cr
S = sign of absolute position
x1...x3 = § ASCII characters giving the decimal value of X
yloo.y3 = 5 ASCII characters giving the decimal value of Y.
sb = - if Key on Keyboard was pressed during input statement
+ if none was pressed
BO = ASCII space character
b3 =1 if buttonl is pressed now and was pressed on last INPUT
statement :
= 2 if button0 is pressed now but was not pressed on last INPUT
statement
= 3 if button0 is not pressed now but was pressed on last INPUT
statement
=4 if button0 is not pressed now and was not pressed on last INPUT
statement
cr = Carriage Return - Required as terminator before passing

control form firmware back ts SaSIt

[t is up to the BASIC program to reset the Key strobe at 3C0!10 if sb comes back
negative. A POKE 49148,0 will reset the strobe.

MOUSE July 15, 1985 Page #12

