Cortland Menu Manager

Dan Oliver

02/18/86 Initial release

05/08/86 Many parameter changes to accommodate menu speedups. Menu record changes and an
alternative method of defining menus, see MENU STRINGS. Additional Mac type calls
to help portability. Many unnecessary features that slowed things down have gone
away. Someone, I'm not sure who, suggested the name Fall Down' menus instead of -
Hot' menus. I think ‘fall down' is more precise and relates better to ‘pull down'
menus, so it has now replaced the term 'hot. New calls CheckItem, SetltemMark,
GetltemMark, Enableltem, Disableltern, NewMenu, DisposeMenu, SetMenulD,
SetltemlID, SetSysBar, GetSysBar, and InitPalette.

This ERS describes the Menu Manager, the part of the Cortland Toolbox that allows you to create
sets of menus, and allows the user to choose from the commands in those menus.

You should already be familiar with the Cortland Toolbox Event Manager.

B THE ME MANAGER

The Menu Manager supports the use of menus which can be part of the Cortland user interface.
Menus allow users to examine all choices available to them at any time without being forced to
choose one of them, and without having to remember command words or special keys. The
Cortland user simply positions the cursor in the menu bar and presses the mouse button over a
menu title. The application then calls the Menu Manager, which highlights selected title (by
redrawing it with its InvertColor) and "pulls down" the menu below it. As long as the mouse
button is held down, the menu is displayed. Dragging through the menu causes each of the menu
items (commands) in it to be highlighted in turn. If the mouse button is released over an item, that
item is "chosen". The item blinks briefly to confirm the choice, and the menu disappears.

When the user chooses an item, the Menu Manager tells the application which item was chosen,
and the application performs the corresponding action. When the application completes the action,
it removes the highlighting from the menu title, indicating to the user that the operation is complete.

If the user moves the cursor out of the menu with the mouse button held down, the menu remains
visible, though no menu items are highlighted. If the mouse button is released outside the menu,
no choice is made: The menu just disappears and the application takes no action. The user can
always look at a menu without causing any changes in the document or on the screen.

[File View)
May 8, 1986 2

MENU BAR

A menu bar is an outlined rectangle that holds the titles of all the menus associated with the bar. A
menu may be enabled or temporarily disabled. A disabled menu can still be pulled down, but its
title and all the items in it are dimmed and not selectable.

Keep in mind that if your program is likely to be translated into other languages, the menu titles
may take up more space. If you're having trouble fitting your menus into the menu bar, you
should review your menu organization and menu titles.

THE SYSTEM MENU BAR

There can be one special type of menu bar which is called the System Menu Bar. There can only be
one system menu bar on the screen at one time. The system menu bar always appears at the top of
the Cortland screen; nothing but the cursor ever appears in front of it. In applications that support
desk accessories, the first menu should be the desk accessory menu (the menu whose title is a
colored apple symbol). The desk accessory menu contains the names of all available desk
accessories. When the user chooses a desk accessory from the menu, the title of a menu belon ging
to the desk accessory may appear in the menu bar, for as long as the accessory is active, or the
entire menu bar may be replaced by menus belonging to the desk accessory.

Color number 1 is reserved for drawing the Apple logo as the title for the desk accessory menu.

Therefore, color number 1 should not be used as the BarColor, InvertColor, or the Qutline color.
The color can be used for menus, items, nonsystem menu bars, and the rest of the screen.

Titles of Enabled Menus Titles of Disabled Menus

R

Menu

Bar | File Edit Goodies Font fontSize Styte

Figure 1. The System Menu Bar

[File View)
May 8, 1986 3 ’

NONSYSTEM MENU BARS

In addition to the System Menu Bar your application can have various nonsystem menu bars.
These can appear any where on the screen and in windows. Nonsystemn menu bars are provided to
give you more flexibility and to address the limited resolution in 320 mode. Nonsystem menu bars
should be used moderately, if at all. Nonsystem menu bars perform in the same manner as the
System Menu Bar, although the fall down feature (discussed later) should generally not be used for

nonsystem menu bars.
System Menu Bar
/ l_ Nonsystem Menu Bar

File Edit Style Font 7

Layout Arrange’Color

This is my memo that I want to send to
everyone.

(File View)
May 8, 1986 4

APPEARANCE OF MENUS

A standard menu consists of a number of menu items listed vertically inside a shadowed rectangle.
A menu item may be the text of a command, a solid color, or just a line dividing groups of choices
(see Figure 2). Menus always appear in front of everything else, except the cursor. The menu in
figure 2 is a menu with 6 items including one dividing line.

Figure 2. A Standard Menu.
File Edit Font FontSize Style

Al o ,
Mark ~VGrid %6, |
FﬂtB'ts‘\‘l\ﬂ< c d
: ey Comman
Hotght Show Page?mms

Edit Pattern\\—- Dividing Line
Brush Shape e———Disabled item

- J

Menu Width

Each item can have a few visual variations from the standard appearance:

- A mark may appear on the left side of the item, to denote the status of the item or of the mode
it controls. See SetltemMark, GetItemMark, and CheckItern.

- A apple symbol on the right side of the item, to show that the item may be invoked from the
keyboard (that s, it has a keyboard equivalent), followed by a capital letter. Pressing this
key while holding down the Command key invokes the item just as if it had been chosen
from the menu. See MenuKey .

- Each item’s text may have its text style. See SetItemStyle and GetltemStyle.

- A dimmed appearance, to indicate that the item is disabled, and can't be chosen (dividing
lines should always be disabled). See DisableItem and Enableltem.

- . - Each item may be just a solid color.

- Any menu may be drawn directly by the application and might contain anything (see
DEFINING YOUR OWN MENUS).

Note: If an item without text is dimmed it will appear as the menu background (I'm in need of
something better).

If the standard menu doesn't suit your needs—for example, if you want more graphics, or perhaps
a nonlinear text arrangement—you can define a custom menu that, although visibly different to the
user, responds to your application's Menu Manager calls just like a standard menu (see DEFINING
YOUR OWN MENUS).

[File View)
May 8, 1986] 5]

KEYBOARD EQUIVALENTS FOR COMMANDS

Your program can set up a keyboard equivalent for any of its menu commands so the command can
be invoked from the keyboard with the Command key (apple key). The character you specify for a
keyboard equivalent will usually be a letter. The user can type the letter in either uppercase or

lowercase. For example, typing either "C" or "¢" while holding down the Command key invokes
the command whose equivalent is "C".

Note: For consistency between applications, you should specify the letter in uppercase in
the menu.

USING THE MENU MANAGER

To use the Menu Manager, you must have previously initialized QuickDraw. For user interaction
you must use the Event Manager.

The first Menu Manager routine to call is the initialization procedure, InitMenus.

Your program then must define the menu bar, menus, and items by providing a Menu String to
NewMenu, see MENU STRING. Your application can set up a system menu bar by using
SetMenuBar to replace the system menu bar, or InsertMenu to add yours to the default system
menu bar. FixMenuBar may be of use in setting default sizes.

After created, DrawMenuBar will put the menu on the screen.
To handle user input your application calls MenuSelect, MenuKey, or CheckFallDown.

MenuSelect should be called with the system menu bar when the Window Manager's FindWindow
function returns an in System Menu Bar value after your application receives a mouse-down event.
Or, MenuSelect should be called with a pointer to any application menu bars your may have when
you detect a mouse-down event over them. MenuSelect will pull down the appropriate menu, and
retain control—tracking the mouse, highlighting menu items, and pulling down other menus—until
the user releases the mouse button.

When your application receives a key-down event with the Command key held down, it should call
the MenuKey function, supplying it with the character that was typed and the menu bar to check.
Applications should respond the same way to auto-key events as to key-down events when the
Command key is held down if the command being invoked is repeatable.

CheckFallDown should be called if you are using a fall down system menu bar. It should be called
everytime there is a null event. If CheckFallDown finds the cursor over the fall down area of a
menu title it will highlight the title and pull down the menu. It will then track the mouse,
highlighting any items it moves over and unhighlighting any it leaves. CheckFallDown will return
a selection if the user presses and releases the mouse button over an enabled item. The selection is
the item the cursor is over when the button is released, so the user can drag the cursor before the

[File View D
May 8, 1986 | 6

selection is made. CheckFallDown will also return if the cursor leaves the menu plus an invisible
border around the menu.

MenuSelect, MenuKey, and CheckFallDown will all return a WORD reporting what action the user
performed.

- If the WORD returned is 0, the application should just continue to poll for further events.

- If the WORD is nonzero, the high BYTE will be a menu ID and the low BYTE an item ID of
the menu and item selected by the user. Your application should then envoke an action
which is specific to the selected item. Only after the action is completely finished (after all
dialogs, alerts, or screen actions have been taken care of) should the application remove the
highlighting from the menu bar by calling HiliteMenu, signaling the completion of the action.

Note: The Menu Manager will try to automatically save and restore the screen behind the
menu, or tell the Window Manager to update the screen. However, if you are not using the
Window Manager and the Menu Manager can not allocate a buffer large enough to save the
screen behind the menu, your application will have to update the screen area after a menu has
been pulled down. See CheckRedraw.

If your menu bar, or items in a menu, are going to change while on the screen you can use
SetMenuTitle, InsertMenu, DeleteMenu, Setltern, Insertltemn, and Deleteltem to rearrange the
MenuList and the ItemList.

There are several miscellaneous Menu Manager routines that you normally won't need to use.
CalcMenuSize calculates the dimensions of a menu and is called by FixMenuBar. CountMItems
counts the number of items in a menu. GetMPtr returns a pointer to the menu in the menu list.
FlashMenuBar inverts the menu bar, or just a menu title. SetItemBlink controls the number of
times a menu item blinks when it's chosen.

[File View)

May 8, 1986

MENU STRINGS

Menus may be created by passing a text string to NewMenu which will parse the string, allocate
enough memory for necessary records, and initialize those records. The menu string can be edited
using a word processor, thus allowing users to easily customize their own menus. An example of
a menu string is:

>Title 1

-Item string 1
-Item string 2
-Item string 3
>Title 2

-Item string 1
-Item string 2

This is a simple menu list of two menus, the first with 3 items, and the second with 2 items. The
first character on a line denotes the start of a menu or an item in a menu. Lines are separated by
returns. The character to denote a title is whatever the very first character is. The character to
denote items is the first character on subsequent lines that is different from the title character. And
lastly, a third character, different from the menu and item character, denotes the end of the menu
string.

If you would like to get fancier, you can add some special characters.

Beginning of special characters.

Followed by a character to-be used as a keyboard equivalent.
Followed by a character to be used to mark the itern.

Bold the text.

Italize the text.

Underline the text.

Places a dividing line under the item without using a separate item.
To dim (disable).

Use special XOR highlighting.

xoO<cwn &~

All the special keys pertain to items, but only \, D, and X pertain to menu titles. The keys could be
used in the following manner:

>Title 1

-Item string 1

-Item string 2\BCV*RXDU
-Item string 3\I

>Title 2X

-Item string 1\X*BB

-Item string 2\X*UU

[File View)
May 8, 1986 8

Where:

- . se
B 5 p: El1Elz] 2
2513122383 |«%
285 |8 |5 |5 |8 |4 R=
>Title 1
-Item string 1
-Item string 2BCYV*RXDU | R | & | N N
>Title 2\X N
-Item string 3\I N
-Item string 1\X*BB B N N
-Item string 2\X*UU U N v

Some more special stuff. Using just the @ symbol in a title will give you the Apple logo.
Note: Don't use the X special key (XOR highlighting) with the Apple logo.
Note: To get the Apple logo the @ must follow the character denoting a
menu title, and then be followed by an end of line mark (return). Do

- not place a space before or after the @ like you might with other
menu ttles.

Do not press the Open Apple key when entering a key for keyboard equivalents.

There is no way to include a \' in a text string. It will always be seen as the beginning of special
characters.

(File View B)
May 8, 1986 .] 9

Color Menus

You can create a color menu by using a single lower case letter, a-p,
Lower case letter 'a’ would be color number 0, letter
not mix color items with text items. So, if the first item is a single lower case letter the menu will

be considered a color menu. Otherwise the menu will be an all text menu.

A color item can be disabled, checked, and have a keyboard equivalent.

ID Number Assignment

ID numbers are assigned in the order of appearance. The firs
first item. After that, the menu ID is incremented and assi

same for items.

The next example shows a menu bar with two menus and th
the menus and items.

as an item's text string.
'’ is color number 15. However, you can

t menu has an ID of 1, as does the
gned to the next menu found, and the

e ID numbers that would be assigned to

File Edit
MenuID =1 | File MenuID=2 | Edit
IemD=1 | New IemID=7| Undo
lemID =2 Dpen IemID =8
lemDa-3 | Close lemD =9 | Cut
IemD -4 | Save lemD - 10| Copy
lemD-5| Save RAs... IemID=11| Paste
lemD=6 | Quit lemD =12} Clear
ItemID = 13
IemID = 14| |nuert
IemID = 15| Fill

ID numbers could be changed to anything you would like after the NewMenu call, see SetltemID,
GetlternID, SetMenulD, and GetMenulD. :

[File View)
May 8, 1986 10

MENU RECORDS

Direct access to records should be limited to custom menus.

The Menu Manager uses three different kinds of records; MENUBAR, MENU, and ITEM. A
MENUBAR contains a MenuList, a linked list of pointers to MENUs, and a MENU contains a
ItemList, a linked list of pointers to ITEMs. Each record also has data telling how each object is
drawn. See CREATING A MENU IN YOUR PROGRAM to see how each parameter relates to
what the menu does. :

MENUBAR record:
NextCtrl LONG Pointer to next control (see Control Manager).
CuiType BYTE Control type, 1 = menu bar.
Bar RECT Rectangle of the menu bar.

FallDown BYTE Number of pixels of fall down area, zero = no fall down area.
BarColor BYTE Color of menu bar and text.
InvertColor BYTE Color of menu bar and text when inverted.

Qutline BYTE Color of outlines and underlines.
BarFlag BYTE See figure 3.
MenuL.ist LONG Pointer to first MENU in menu bar, or zero if no menus.
MENU record:
NextMenu LONG Pointer to next menu in menu bar, zero if this is the last
MenulD WORD Set by application, returned when a selection is made.

MenuWidth WORD Width of menu.

MenuHeight WORD Height of menu.

MenuProc LONG Address of menu definition procedure, zero for noncustom.
TitleWidth WORD Width of dtle in menu bar.

TitleName LONG Pointer to title's string, where the first byte is the length.
MenuFlag BYTE Enabled, normal, xor, and type flags (see figure 4).

ItemList LONG Pointer to first [TEM in menu, or zero if no items.

ITEM record:
Nextltermn LONG Pointer to next item in menu, zero if this is the last.
ItemID WORD Item's ID number, selected by application (non zero).

ItemName LONG Either a pointer to string or color value.

ItemChar BYTE Key board equivalent.

ItemCheck BYTE Character to used to mark an item, zero = no mark.
ItemFlag BYTE Enable, underline, xor, text style (see figure 5).

[File View]
May 8, 1986 | 11

MENU BAR RECORD

NextCtrl - LONG

CtiType - BYTE

Bar - RECT

FallDown - BYTE

Pointer to next control in list, zero means this is the last control. Can
be set to zero if you are not using the Control Manager.

Control type, 1 = menu bar. See Control Manager for other types of
controls. Can be set to zero if you are not using the Control
Mainager.

TopSide, LeftSide, BottomSide, RightSide. This bar will have a
solid background with the color in BarColor if normal, and
InvertColor if inverted. The invert bit is found in BarFlag. The
rectangle will be outlined with a solid line of the color in Outline.
Menu bars all have square corners except the system menu bar which
has round corners in the upper left and upper right corners.

Number of pixels in fall down area. Used by CheckFallDown to see
if the user has moved the cursor into the fall down area of the menu.
The fall down area is the TopSide, LeftSide, and RightSide in Bar,
and the TopSide plus fall down for the bottom side. If fall down
equals zero a menu can not be activated in this way.

BarColor - BYTE

. InvertColor - BYTE

Qutline - BYTE

May 8, 1986

Possible fall down Area

The high-order NIBBLE is the background color of the menu bar
when not inverted, and menu background color. The low-order
NIBBLE is the color of menu titles when not inverted, and the color
of item text. Color number 1 should not be used if the menu bar is to
be a system menu bar.

The high-order NIBBLE is the background color of the menu bar
when inverted, and item background color when highlighted. The
low-order NIBBLE is the color of menu titles when inverted, and the
color of item text when highlighted. Color number 1 should not be
used if the menu bar is to be a system menu bar.

Low-order NIBBLE is the color used to draw the outine for the menu
bar, menu, and any item dividers. Color number 1 should not be
used if the menu bar is to be a system menu bar.

[File View - B
12

/Tiﬂe color in lower nibble of BarColor

Color of inverted (—Bacquound color in upper nibble of Bar
title from lower
nibble of InvertColor

Edit* Goodies Font

‘New
Open...
Rl lnre

Outline color from upper
nibble of Outline

Color of inverted
background from
upper nibble of
InvertColor

BarFlag - BYTE Bit 7, the high-order bit, is the current state of the menu bar, 1 means

the bar should be drawn as inverted. FlashMenuBar flips this bit
every time itis called To start with, this bit should be 0.

Bits 6-0 is the number of pixels from the left side of the menu bar to
the left side of the first menu title. The maximum number is 127.
For menu bars with square comners a 1 should be used to get the titles
as far to the left as possible. For menu bars with round corners at
least a 10 should be used to keep the inverted title inside the menu
bar. A zero will write over the menu bar's left outline.

Figure 3. MENUBAR.BarFlag
L7i6lsla[3]2]1]0]
—]

I . . .
X starting position for titles.
Menu dar state, 1 = inverted.

MenuList - LONG Pointer to first menu, left most in the menu bar. After this pointer

May 8, 1986

each menu points to the next menu on the menu bar.

[File View]
13

ME RECORD
NextMenu LONG

TileWidth WORD

MemuID WORD

MenuWidth WORD
MenuHeight WORD

MenuProc LONG
TitleName LONG

May 8, 1986

Pointer to next menu in menu bar, or zero if this is the last menu in
the menu bar. The pointer points to the menu to the right of its self.

Width of a title area. This is the selectable area for a title and is the
area inverted when a title is highlighted. Title height is the height of
the menu bar.

Any value you would like. This value is returned when a selection is
made. Value should not be zero.

One possibility is to store the low address of the handling routine
here. That way it can be pushed and RTSed to.

Width of the menu. This value can be computed and set by calling
CalcMenuSize.

Height of the menu. This value can be computed and set by calling
CalcMenuSize.

Address of routine that handles menu draw, zero for standard.

Pointer to string to.use as menu's title. It will be drawn using the
system with the colors found in the MenuBar record: ’

Normal: Background from high order nibble BarColor.
Text color from low order nibble of BarColor.

Selected: Background from high order nibble InvertColor.
Text color from low order nibble of InvertColor.

The first BYTE of the string has to be the length of the string

followed by ASCII characters.

[File View A
14

MenuFlag BYTE

ItemList

May 8, 1986

LONG

Bit 7 can be set to disable a menu. If set, the menu's title will appear
dimmed but still selectable, and all the menu's items will be dimmed
and not selectable.

Bit 6 is set to invert the menu's title when drawn, if it is clear the title
will be drawn normally.

Bit 5 is set to use special XOR mode highlighting. When set the title
area will be inverted. For example: black text on white would
become white text on black. However, some color combinations may
yield undesirable effects. If bit 5 is set InvertColor will not be used
for drawing the title. If bit 5 is clear the title and its background will
be redrawn using InvertColor when selected.

Note: You should not use XOR with the Apple logo on the
system menu bar.

Bit 4 is set if you want to draw and track your own menu. See
DEFINING YOUR OWN MENUS.

If bit 4 is clear the Menu Manager will draw and track the menu for
you. There are two standard menus. If bit 3 is clear, the menu is all
text. If bit 3 is set the menu is all color items. See SPECIAL
EFFECTS.

Figure 4. MENU.MenuFlag

o
b5

0 = text, 1 = color menu
0 = standard, 1 = custom menu
0 = redraw, 1 = XOR highlighting
0 = normal, 1 = selected
0 = enabled, 1 = disabled

h9Rs

Pointer to the first item, top most, in the menu, or zero if there are no
items in the menu. After this pointer, each item points to the item
below it in the menu. The item number returned by MenuSelect and
MenuKey is how far down this list the item is.

[File View]
15

ITEM RECORD

Nextltem LONG

ItemID - WORD

ItemName - LONG
ItemChar - BYTE

ItemCheck - BYTE

May 8, 1986

Pointer to the next item in the menu, or zero if this 1s the last item in
the menu. This pointer will point to the item appearing below this
one in the menu.

Any value you would like. This value is returned when a selection is
made. Value should not be zero, and is of no matter if the item is
always disable, like a divding line.

One possibility is to store the low address of the handling routine
here. That way it can be pushed and RTSed to.

For text menus: Pointer to the item's string.
For color menus: The low WORD is the item's color.

Character to use as keyboard equivalent, zero for none. See
KEYBOARD EQUIVALENTS.

Character to mark item. Appears to the left of the item. Zero for no
mark. ’

[(File View]
16

ItemFlag - WORD Bit 7 is clear if the item is enabled (selectable), it is set if the item is
disabled (dimmed).

Bit 6 should be set to use an underline as a dividing line. See
SPECIAL EFFECTS for more information about underlines.

Bit 5 is set to use special XOR mode highlighting. When set, the
item area will be inverted. For example:-black text on white would
become white text on black. However, some color combinations may -
yield undesirable effects. If bit 5 is set, InvertColor will not be used
for drawing the item. If bit 5 is clear, the item and its background
will be redrawn using InvertColor when selected. XOR should be
used whenever possible.

Bit 2 is set to underscore the item's text. This is not the same thing as
underline as a divider.

Bit 1 is set to italicize the item's text.
Bit O is set to bold the item's text.

Figure 5. ITEM.ItemFlag

1{0
L— 1 =bold text
L0781 = italic text
e 1 = underscore text

1 = XOR highlighting
1 = underline (divider)
1 = disabled

[File View)
May 8, 1986 17

DEFINING YOUR OWN MENUS

You can create your own custom menu if you'd like by writing a menu definition procedure and
storing its address in MENU.MenuProc.

The Menu Manager will call your routine when something involving your menu needs to happen.
You will have the opportunity to perform the action yourself, or tell the Menu Manager to go ahead
and complete the operation.

Input to your routine will be:
PUSH:LONG RetumnFlag - space for return flag.

PUSH:WORD TaskNum - task number to perform.
PUSH:LONG Parameter - parameter.
PUSH:LONG BarPtr - pointer to menu bar.
PUSH:LONG MenuPtr - pointer to menu.

.
b4

The tasks you will be asked to perform:
Highlight the menu's title.

Task = $0001
Parameter = $00000000 to draw title normal,
$00000001 to draw title selected.
ReturnFlag = $00000000 for Menu Manager to perform task.

Draw the menu. The screen will have already been saved and the menu framed.

Task = $0002
Parameter = pointer to menu's RECT.
ReturnFlag = $00000000 for Menu Manager to perform task.

Tracking the user.

Task = $0003

Parameter = POINT of cursor, low WORD is Y, high WORD is X.

RetumnFlag = $00000000 to continue tracking, else return to caller with
ReturnFlag = Menu ID in high WORD, ItemID in the low.

Selection made. The screen will be restored for you after you complete this task.

Task = $0004
Parameter = POINT of selection, low WORD is Y, high WORD is X.
ReturnFlag = Menu ID in high WORD, ItemID in the low WORD.

[File View)
May 8, 1986 18

PECIAL EFFE

Here are a couple of different ways to approach functions already covered.

Eall Down Menus

The standard way to allow the user to make menu selections is to move the cursor over the menu's
title, press the mouse button, drag down over the items, and release the button over the desired
item.

Another way is to allow the user to make menu selections by moving the cursor into a 'fall down’
area on the menu bar, this would cause the menu to come down without the user pressing the
button. Now the user can move the cursor down over the items, press and release the mouse
button over an item to select it. To leave the menu without making a selection the user would move
the cursor out of the menu and the menu would go away. Actually there is an invisible border
around the menu that would have to be crossed before the menu went away.

Fall down menus have a limited use. They should only be used in the system menu bar, and then
only as an option. A control in the Control Panel could be used to select the height of the fall down
area on the system menu bar so that experienced user's could experiment with the fall down menus
and decide if to use it.

(File_view 23 n
May 8, 1986 19 |

Dividing Li

There are two standard ways to partition groups of items from one another. The first is a dividing
line, selected by an ItemName which is a single dash. It uses the space of an entire item and a
whole item record. The second way is a underline, defined by setting bit 13 in ItemFlag in the
item's record. This will draw a solid line on the bottom most line of the item. The underline
doesn't use any more space, on the screern or in memory, than the item would without it..

The disadvantage with an underline is there isn't as much space separating items, which is the
dividing line's function.

The advantage of an underline is you can get more items in the menu and still have dividing lines.
Also, the user would have a shorter distance to go from the menu's title to the last item in the menu,
it would save a little memory, and the menu would draw faster.

In the example below are two menus, both showing the same information. Menu A uses dividin g
lines and has 9 items. Menu B uses underlines and has 7 items. Menu B looks alittle crowded and
would look even worse if one of the uderlined items had descending lower case lerters.

Menu A - Dividing Lines Menu B - Underlines
Undo = . Undo
Cut Cut
u
Copy
Copy : Paste
Paste Clear
‘Clear Invert
Fill
Invert
Fill
[File View]

May 8, 1986) 20

COMPARISON OF CORTLAND MENU CALLS AND MAC'S

These comparisons are in general terms. The biggest changes on the Cortland are; no resources,
color, multiple menu bars, resolution, menu bar included into control list. Because of these
changes the inputs to Cortland Menu routines are different from the Mac inputs. Further disparity
is caused because the difference bewteen the 65816 and 68000, and the way to optimize for each of
them. Once it's clear that emulating the 68000 with a 65816 is not the way to go, me may as well
take advantage of the 65816 strengths. Also, if something made more sense doing it differently on
the Cortland it was done that way. The important thing was that it act like a Mac on the screen.

For porting code from the Mac to the Cortland I think glue routines would be in order. Hopefully,
myself, or someone else, will create a library of these glue routines.

[File View]
May 8, 1986 _ 21

