C@T‘iﬁlazrm Window Manager

Dan Oliver

Inidal release 01/30/86

WINDOW MAN

The Window Manager is a tool for dealing with windows on the Cortland screen. The screen
represents a working surface or desktop; graphic objects appear on the desktop and can be
manipulated with a mouse. A window is an object on the desktop that presents information, suc
as a document or a message. Windows can be any size or shape, and there can be one or many o
them, depending an the application.

Some standard types of windows are predefined; square cornered, rounded corner, an
alert. ,

Square Cornered Round Cornered Alert

Inside the square and round cornered windows can be standard window controls, which are:
title bar. close box. zoom box. right scroll bar. bottom scroll bar, grow box, information bar. J2©
bar, and drop shadow. The title bar displays the window''s title, can hold the close and zoom
boxes, and can be a drag region for moving the window. The close box is selected by the user to
remove the window from the screen. The zoom box is selected by the user to make the window
maximum size and then to return it 1o its previous size and position. The right scroll bar is used t
scroll vertically through the data in the window. The bottom scroll bar is used to scroll horizon:z’
through the data in the window. The grow box is dragged by the user to change the size of the
window. The information bar is a place an application can display some information that won't b
effected by the scroll bars. The left bar is a thuckened left side of a window which can help separ.
data in different windows when thev overlap. The drop shadow helps separates windows from
one another and can also be used as a move region for moving the window off the top of the
desktop.

Tits Ber
Close Box —-%:E Window =_:__—==f_,;— Zoom Box
i

—— Informaton Line
O

[
—omeg — Grow Box

LeftBar — ‘
Right scroll bar —Drop Shdow

Botom scroll ber

R

A square window may have any or all of the standard window controls. The only restriction is tt -
if there is a close or zoom box there must also be a title bar. Common sense woulZ ¢icinie bt
there only be a zoom box if there is a grow box, although this is not a requirement.

JanUary 30, 1286

N

I

The only standard controls that may be added to a round cornered window is a title bar, close box,
information bar, and drop shadow. And no standard controls may be added to a alert window.

= Window T= V¥indow ==} [{= VWindow =0| |T= Yindow =
o
0
.7;:_
Q [®]

= Window =0 (== Window E==) |TE= Yindow E' TE= V¥indow ==

Lﬁ

Some possible window
combinatdons.

Your application can easily create standard window types, or define your own window types (see
Create Your Own Windows). Some windows may be created indirectly for you when you use
other parts of the Toolbox; an exampic is the window the Dialog Manager creates to dispiuy an aler
box. Windows created either directly or indirectly by an application are collectively called
application windows. Thero's alce ¢ class of windows called system windows; these are the
windows in which desk accessories are displayed.

A window that is frontmost is called the active window. It appears highlighted - displayed in a
distinctive way, so it stands out from other windows. There can only be one active window on the
screen at any one time. This will be the one that will be acted on when the user types, gives
commands, or whatever is ap;o i 0 the application being used. Any other window s ov.
inactive, appear behind the active window and are not highlighted.

lnacﬁ{i — g
(TIde)

O= Window =T}
o

January 30, 1980

The Window Manager's main function is to keep track of overlapping windows. You can draw 1
any window without running over onto windows in front of it. You can move windows to
different places on the screen, change their plane (front-to-back order), or change their size, all
without concern for how the various windows overlap. The Window Manager kepps track of an'
newly exposed areas and provides a convenient machamsm for you to ensure that they are proper
redrawn.

Finally, you can easily set up your application so mouse actions cause these standard responses
inside a document window, or similar responses inside other windows:

Clicking anywhere in an inactive window makes it the active window by bring it to the
front and highlighting it.

- Clicking inside the close box of the active window closes the window. Depending on
the application, this may mean that the window disappears altogether, or a represeniati
of the window (such as an icon) may be left on the desktop.

- Dragging anywhere inside the title bar of a window (except in the close or zoom boxe:
if any) pulls an outline of the window across the screen, and releasing the mouse buttc
moves the window to the new location. If the window isn't the active window, it
becomes the active window unless the Command key was also held down. A window
can never be moved completely off the screen; by convention, it can't be moved such
that the visible area of the title bar is less than four pixels square.

- Dragging inside the size box of the active window changes the size of the window:.

WINDOW FRAME COLORS AND PATTERNS

In addition the to the standard window types and controls, the color of the window and controls
can be selecied The datuwvpe used 10 set the patiern and color is:

@sh4h31 hﬂ1d9]s 7|5|5|4||||||[]

Pe~=~ Number Partem Color Back.gmu.nd Color

sl
s id
m

cor

Jenuary 3C, 125

n

IF

Where the colors are indexes into the current color table. Changing what the color is for the current
color table is not done here. Pattern number is one of a standard pattern type generated by the
Window Manager. The standard pattern table is:

Solid, this is the default for close box interior, content region, and thumbs.
Dither.

Dotted, default for scroll bars.

Lined, default for title bar.

Zoom, default for zoom box.

Sizer, default for grow box.

MAWLWNN—O

Hopefully this list will grow.

The patterns/colors, for each part of the frame, are set by a call to SetFrame with a pointer to this 23
word table:

0 | Prame Outline 12 [Right Scroll Bar In®rior
1 ‘Frame Interior 13 | Right Thumb Interior
"2 ontentInerior 14 own Arrow Interior
3 Drop Shadow 15 | Right Scroll Bar Outline.
4 ”Tﬁﬂc Bar In®erior 16 | Grow Box Interior.
5 r__'f_\u.-. (color) 17 | Grow Box Outline
6 Close Box In*rior 18 | Right Arrow Interior
7 Close box Oul-s 19 { Botom Scroll Bar Intericr
8 Zoom Box Interior 20 | Botom Thumbd Interior
9 Zoom Box Quu-s 21 | Left Arrow Interior
10 | Informanon Bar In=r.or 22 [Botom Scroll Bar Outune
11

Up ArTow In®erior

GetFrame is used to get the current settings of a window.

YWINDOWS AND GRATPORTS

It's easy for applications to use windows: To the application, a window is a grafPort that it can
draw into like any other with QuickDraw routines. When you create a window, you specify a
rectangle that becomes the portRect of the grafPort in which the window contents will be drav.:.
The bit map for this grafPon, its pen pattern, and other characteristics are the same as the defau™:
values set by QuickDraw, except for the character font, which is set to the application font. These
characteristics will apply whenever the application draws in the window, and thev can easily be
changed with QuickDraw rouunes (SetPort to make the grafPort the current port, and other rouilnds
as appropriate).

There is, however, more to a window than just the grafPort that the application draws in. Ina
standard window any standzrd controls are drawn by the Window Manager, not by the applicanon.

January 30, 1887 —

The part of a window the Window Manager draws is called the window frame, since it usually
surrounds the rest of the window. For drawing window frames, the Window Manager creates a
grafPort that has the entire screen as its portRect; this grafPort is called the Window Manager
port. .

TN 4 N
Every window has the following two regions:
- The content region: the area that your application draw in
- The structure region: the entire window; frame plus content.
The content region is bounded by the rectangle you specify when you create the window (that s,
the portRect of the window's grafPort) This is where your application presents information to ths

user.

A window may also have any of the regions listed below within the window frame.

A go-away region , a close box in the active window. Clicking in this region closes
the window.

- A drag region, the title bar. Dragging in this region pulls an outline of the window
across the screen, moves the window to a new location, and makes it the active window
(if it isn't already) unless the Command key was held down.

- A grow region, the grow box. Dragging in this region pulls the lower night comer of
an outline of the window across the screen with the window's origin fixed, resizes the
window, and makes it the active window (if it isn't already) unless the Command key
was held down.

- A zoom region, the zoom box. Clicking in this region toggles between the current
position and size to a maximum size, and back again.

Clicking in any region of an inactive window simply makes it the active window.

Note: The results of clicking and dragging that are discussed here don't happen
automatically; you have to make the right Window Manager calls to cause them to happe

CONTENT REGTION AND WORK AREA

What is the purpose of windows any way? Windows are used to present more information . *
hardware (screen) can display at one time. The name window is used because the user sees
through the window onto a larger area. The power of windows is their ability to give the user a
standard device for scrolling through a large amount of data. Windows act like a microfiche
viewer. What is seen on the viewer is like what is seen in the window's content region. And
the window’s work arez i« what the microfiche is to the viewer. Through the content region tha

S

. |[Pege!’
6|

January 30, 1886

user can see part of the work area, unless the content region is large enough to view the entire
work area. Scroll bars are used to view different parts of the work area. The grow box and zoom
box are used to display more or less of the work area at one time. When the window is moved the
work area is moved with it, so the view in the content would remain the same.

Work ania's width

]
Wor)g area’s __
origin ~

Work area's
height

The origin, width, and height of the work area is set when the window is created, and changed if
needed by calling the Window Manager.

WINDOW SCROLL BARS

Window scroll bars are the devices used for scrolling the work area through the content region and
showing the relationship between the work area and content region. The Control Manager must be
installed in order to use scroll bars in windows. Scroll bars are defined by the Control Manager but
this document will go over how standard window scroll bars act relating to windows.

For clarity we will expand the names given to the parts of the scroll bar by the Control Manager.

(ﬁ*‘—Up Arrow
Right Scroll Bar < i e—Page Up
~t—Right Thumb
Botom Thumbd
Page Left Pege Right ;11 —Page Down

Left Arrow

Right Arrow @*— Down Armow

SRR

~]

B ommYScmll Ber

Scroll bars also show information about the work area. The size of the scroll thumb gives the ratio

January 30, 1986

of what is seen in the content region and what isn't and its position on the scroll bar shows the
exact location being viewed. The scroll bar is like a shrunken cross section of the work area.

Right Scroll Bar

g

Content Region

;ini D] Botom Scroll Ber

0]

WINDOW RECORDS

The Window Manager keeps all the information it requires for its operations on a particular wind«
in a window record. The record contains the window's grafPort, title pointer, position, size of
work area. a reserved long for the application, and other flags the Window Manager needs to
manage the screen.

(A detailed report about the record will be added when the Window Manager is further along.)

HOW A WINDOW IS DRAWN

When a window is drawn or redrawn, the following two-step process usually takes places: The
Window Manager draws the window frame, then the application draws the window contents.

To perform the first step of this process, the Window Manager manipulates regions of the Windc
Manager port as necessary to ensure that only what should be drawn is drawn. It then calls the
window definition function with a request that the window frame be redrawn. The window
definition function is either within the Window Manager or in the application for custom window
(see Create Your Own Windows).

Usually the second step is that the Window Manager generates an update event to get the
application to draw the window contents. It does this by accumulating in the update rezion the

)
&
o

January 30, 1986

(e8]

I

areas of the window's content region that need updating. The Toolbox Event Manager periodically
checks to see if there's any window whose update region is not empty; if it finds one, it reports (via
the GetNextEvent function) that an update event has occurred, and passes along the window
pointer in the event message. Update events will be issued to the front most window first and the
bottorn most last. The application should respond as follows:

1. Call BeginUpdate. This procedure temporarily replaces the visRgn of the window's
grafPort with the intersection of the visRgn and the update region. It then clears the
update flag for that window.

2. Draw the window contents.
3. Call EndUpdate, which restores the actual visRgn.

The Window Manager allows an alternative to the update event machanism that may be useful for
applications that want to use it. A pointer to a routine in the application that would handle the
drawing of the content can be passed when a window is created. The Window Manager would
handle the BeginUpdate and EndUpdate and will call the routine directly saving alittle time and your
application would never have to worry about BeginUpdate, EndUpdate, and checking the event for
update messages.

MAKING AWINDOW ACTIVE: ACTIVATE EVENTS

A number of Window Manager routines change the state of a window from inactive to active or
from active to inactive. For each such change, the Window Manager generates an activate event.
passing along the window pointer in the event message. The activeFlag bit in the modifiers field of
the event record is set if the wird v l2s become active, or cleared if it has become inactive.

When the Toolbox Event Manager finds out from the Window Manager that an activate event has
been generated, it passes the event on to the application (via the GetNextEvent function). Activate
events have the highest priori® ol eny type of event.

Usually when one window becomes active another becomes inactive, and vice versa, so activars
events are most commonly generated in pairs. When this happens, the Window Manager generates
first the event for the wind v becoming inuctive. and then the event for the window becoming
active. Sometimes only a single activate event is generatred, such as when there's only one
window in the window list. or when the active window is permanently disposed of (since it no
longer exists).

Activate events for dialog and alert windows are handled by the Dialog Manager. In response to
activate or inactivate events for windows created directly by your application, you might take
actions such as the following:

- In a window that contains controls like scroll bars, other than those in the window
frame, erase the invid ~“ 2 control to show it can not be used on an inactivare eve™:
The controls can then oe redrawn in full on an activate event.

- In a window that con:..'n< text being edited, remove the highlighting or blinking cursor
from the text when the window becomes inactive and restore it when the window
becomes activ¢.

]
—————

Page !

January 30, 1965

e
——

- Enable or disable a menu or certain menu items as appropriate to match what the user
can do when the window becomes active or inactive.

USING THE WINDOW MANAGER

To use the Window Manager, you must have previously called InitGraf to initialize QuickDraw.
The first Window Manager routine to call is the initialization routine InitWindows with a page in
bark zero it can use as its zero page (the Event Manager and Menu Manager need to have the same
page number).

Where appropriate in your program, use NewWindow to create any windows you need. You can
supply a pointer to the storage for the window record or let it be allocated by the Window Manager.
When the window is no longer needed call CloseWindow if you supplied the storage, or
DisposeWindow if not.

Then you just wait for an event by calling GetNextEvent and handle the following events in the
following ways:

- For an update event call BeginUpdate, draw the visRgn or the entire content region, ai
call EndUpdate.

- For a mouse-down event, call the FindWindow function to find out which part of
which window the mouse button was pressed in.

- If it was pressed in the content region of an inactive window, make that
window the active window by calling SelectWindow.

- If it was pressed in the grow region of the active window, call GrowWind
to pull around an image that shows how the window's size will change. and
then SizeWindow to actually change the size.

- If it was pressed in the drag region of any window, call DragWindow, which
will pull an outline of the window across the screen, move the window to a
new Jocation. ard. if the window is inactive, make it the active winc.)
the Command key was held down).

- If it was pressed in the go-away region of the active window, call
TrackGoAway to handle the highlighting of the go-away region and to
determine whether the mouse is inside the region when the button is releasec.
Then do whatever is appropriate as a response to this mouse action in the
particular application. For example, call CloseWindow or DisposeWindow if
you want the window to go away permanently, or HideWindow if vou want:
to disappear temporarily.

The MoveWindow procedure simply moves a window without pulling around an outline of it.
Note, however, that the application shouldn't surprise the user by moving (or sizing) windows
unexpectedly. There are other routines that you normally won't need to use that let you change tb

title of a window, place one window behind another, make a window visible or invisible, anc

I

January 30, 1880

—a
(@]

access miscellaneous fields of the window record.

There is a rourine that may be of some use to applications that have standard window that act in
standard ways. The routine is called TaskMaster and is called with a pointer to the event record
right after a valid event has been received from the Event Manager. The TaskMaster will handle
activate and inactivate messages, button down on inactive windows. The TaskMaster will also
handle all button downs and drags on the active window frame and standard window controls. If
the TaskMaster handles the event it will return a null event and your application can return to pollin
GetNextEvent. TaskMaster will return handle event if the event didn't effect any Window Manager
functions, if the button was down in the content region, or the close box was selected. By using
TaskMaster your application would only need to call InitWindows, NewWindow and
CloseWindow in order to have full function windows with user interaction.

7 N WINDOW

You may want to define your own type of window - maybe a round or hexagonal window, or even
a window shaped like an apple. QuickDraw and the Window Manager make it possible for you to
do this.

To define vour own tvp2 of wind~ . vou write a routine that can will dupicate some Window
Manager functions. When the Window Manager needs to do something it will call your routine and
not its own. The address of the routine is passed to CreateWindow. The inputs to your routine
will be:) :
theWindow:LOXNG - pointer to the window's record.
message:WORD - operation needed to be performed.

Param:LONG - flag used by some messages.

Output will be: outCome:LONG - returned flag depending on message outcome.

message will be:

w Draw =0 Draw window frame.

wHit =1 What region is at the point passec.
wCalcRgrn: =2 Calculate window and content regions.
wNew =3 Initialization.

wDispose =4 Take any pisposal actions.

wGrow =5 Draw outline of window.
wDrawGlcon =6 Draw size box in content region.

The following sections tell you what is expected is response to the message.

wDraw - Draw Window Frame

Param:
[Pegel
January 30, 1882 EER
g:"

[1s[14f13fi2]11fi0] o8| 7] 6[S[4[3]2[1]0]| If TRUE then:

L highlighted full region.
highlighted go-away region.
wvindow is active

Your routine should draw the window frame in the current grafPort, which will be the Window
Manager port. This routine should make certain checks to determine exactly what it should do. If
the visible field in the window record is FALSE, the routine should do nothing. Otherwise, it
should draw the entire window frame. If the window active flag is TRUE in Param the frame
should be drawn highlighted in whatever way is appropriate to show that this is the active window
If the highlighted flag in Param is TRUE for either zoom or go-away, the window frame should be
highlighted in whatever way is appropriate to show it.

wHit - Find What Region a Point Is In

Param equals the point to check. The vertical coordinate is in the high-order WORD and the
horizontal coordinate in the low-order WORD. Your routine should determine where the point is i
your window and then return:

wNoHit =0 None of the following.

winContent =1 Inthe content region.

winDrag =2 Indragregion.

winGrow =3 In grow region, active window only.
winGoAway =4 In go-away region, active window only.

Usually. wNoHit means the given point isn't anywhere within the window, but this is not
necessarily so.

wCalcRgns - Calculate Window's Regions

Your routine should calculate the window's entire region asn its content region based on the curre:
crafPort's portRect. The Window Muanzger will request this operation only if the window i<
visible. When you calculate regions for your window, do not alter the clipRgn or visRg: ol the
window's grafPort. The Window Manager and QuickDraw take care of this for vou. Altening th¢
clipRgn or visRgn may result in damage to other windows.

~ wNew - Initialization

After initializing fields as appropriate when creating a new window, the Window Manager sends
the message wNew to vour routine. This gives yourroutine a chance to perform any s oo
may require. For example, if the content region is unusually shaped, the initialize routine might
allocate space for the region and store the region handle in the application's reserved LONG in the
window record. v

l

;

January 30, 1986

.

wDispose - Remnove Window

The Window Manager's CloseWindow and DisposeWindow procedures send this message so your
routine can carry out any additional actions required when disposing of the window. The routine
might, for example, release space that was allocated by the initialize routine.

wGrow - Draw the Qutline of the Window

Param is a pointer to a RECT (rectangle). Your routine should draw an outline image of your
window that would fit the given rectangle. The Window Manager requests this operation
repeatedly as the user drags inside the grow region. Your routine should use the grafPort’s curren:
pen pattern and pen mode, which are set up so one call will draw the outline and next will erase it
(XOR mode). ‘

wDrawGIcon - Draw the Size Box

Param:

[115[14[13112@]10[9[8[7[515[413[2[1 0]

1 if window is active, O If inecuve.

Your routine should draw the grow region in the window. The active flag in Param should bz
check to draw an inactive grow region if the window is inactive.

WINDOW MANAGER ROUTINES

Textin Jualic reflers to features notyet imlemenicd.
Conventions:
Zero page must be in bunk zero.
The Window Manager's zero page must always be on a page boundary.
A window record cannot straddle a memory bank.
A window record cannot start at $0000 in any bank.

These conventions are to cut code size but may be too restrictive, let's wait a bit and see.

s

m
~q

v

January 30, 1687 -

A}

-

Initialization and Termination

BootWmgr Call #1

input: None.
output: None.

Called only by SetTSPtr.

InitWindows Call #2

input: wZeroPage:WORD - page number Window Manager can use for zero page.
‘ Zero page must be on page boundary.
output: None

Calls SetWAP to inform the Tool Locator which zero page number the Window Naonage
will use.

Clears the window lict

Sets the default desktop pattern and color.

Opens the Window Manager's port.

Draws the desktop which 1s the entire screen or the area below the system menu ber if the:
1S a system menu bar.

TermWindows Call#

w

input: None.
output: None.

Free anyv mom- 2llocosed by the Window manager.

1

~~ ~ ‘re\?e
January 2C, 1886

]

W

NewWindow Call 45

inputs: - wParams:LONG - pointer to initialization block (defined on the next page).
Menwry will be allocared for the record if the pointer is zero.
wPlane:LONG - pointer to window that this window should appear behind or:
0 1o not display window (nserted as top window in list).
-1 makes it the top most.
-2 makes it the bortom most.
wStorage:LONG - pointer to memory for window record.

output: theWindow:LONG - pointer to window record (in case it was allocated).
Zero if error.

Opens a port for the window.
Adds the window to the window list according to wPlane.
Displays the window if wPlane is not zero.

)
I
Y
o

January 30, 1€6<

—
(@]

wParams - Initialization Block:

RECT - initial position and size of window:

Top
Leftside
Botom
Rightside

If Top = $7FFF then the window manager will position the window and
Bottom and Right side will be used as Width and Height.

If Bottorn = $7FFF then the window manager will select a size for the window
and Top, Left side will be used as the window's origin.

If both Top and Bottom = $7FFF then both the position and size will be

selected by the window manager.

LONG - zero to get update events for redrawing the content, or the address of a
routine that can be called directly by Window Manager that would redraw

window's content.
POINT - origin of the work area.
WORD - width of the work area in pixels.
WORD - height of the work area in pixels.
WORD - window frame type:

l1sliali3i2]11l10] ol87]6]5]4(3]2]1]0]

LONG - pointer to window's title.

L Highlighed

Left bar

Alert Freme
Round comered
Squere comered
Visidble

Move on drop shel

Move on tte ber
Full window box
Deskwop window
Grov btox
Botom scroll be
Rightscroll ber
Drop shelow
Close bdox

Tide bar

LOXNG - pointer to window's contro] list (not standard window controls

January 30, 18805

~we
- -

e

CloseWindow Call #7

input: theWindow:LONG - pointer to window's record.
output: None.

theWindow must be in the window list.

Removes theWindow from the screen.

Removes theWindow from the window list.

Called to remove a window that was created by NewWindow using a non-zero
wStorage pointer.

DisposeWindow Call 58

input: theWindow:LONG - pointer to window's record.
output: None.

theWindow must be in the window list.

Calls CloseWindow

Freces memory used by window's record.

Called to remon e « window tharwes created by NewWindow usiung 2 zere
wStorage pointer.

Window Displav

SetWTitle Call #9

inputs: title:LONG - pointer to string for new ttle.
theWindow:LONG - pointer to window's record.
output: None.

theWindow must be in the window list.

Updates window's record with new title.
Redraws window's frame.

GetWTitle Call ¥10

input: theWindow:LONG - pointer to window's record.
output: title:LONG - pointer to string of window's title.

SetFrame "Call #11

inputs: newColor:LONG - pointer to 23 word pattern/color table.
theWindow:LONG - pointer to window's record.
output: None.

See WINDOW FRAME COLORS AND PATTERNS.

GetFrame Call #12

inputs: newColor:LONG - pointer to 23 word table that will be set with the color table.
theWindow:LONG - pointer to window's record.
output: None.

See WINDOW FRAME COLORS AND PATTERNS.

SelectWindow Call #13

input: theWindmu :LONG - pointer to window's record.
output: Nonc.

theWindow must be in the window list.
Inactivates current top window.
Activates theWindow.

Redraws the screen.

HideWindow Call#l4

input: theWindow:LONG - pointer to window s record.
ouput: None.

the Window must be in the window list.

Removes theWindow from the screen.

Makes next window activate if theWindow was the current active window.
Redraws the screen.

theWindow is taken out of the window list.

Jenuary 39, 1860 =

ShowWindow Call 815

inputs: showFlag:WORD - TRUE = show, FALSE = hide.
theWindow:LONG - pointer to window's record.
output: None.

theWindow must already be in the wndow list.
Draw theWindow on the screen under the top window if there is one.

SendBehind Call #16

inputs: behindWindow:LONG - pointer to window record or:
-2 to put theWindow behind all others.
theWindow:LONG - pointer to window's record.
output: None.

Both theWindow and behindWindow must be in the window list.

Window list is reordered.
Screen is redrawn.

FrontWindow Call #17
input: None.
output: theWindow:LONG - pointer to the active window's record.
HiliteWindow Call £30
input: hilite:WORD - TRUE to highlight window frame, FALSE to unhighlight.
theWindow:LONG - pointer to window's record.
output: None.
Sets or clears the highlight bit in the window's frame and redraws the frame. The bi will
kecp its state until another HiliteWindow or SelectWindow call.
ShowHide Call #31
input: visFlag:WORD - F_VIS (80020) to show, zero to hide.
theWindow:LONG - pointer to the window's record.

ouput: None.

Never changes the highlighting or window order.

ere

January 30, 18690 3

C

BringToFront Call #32

input: theWindow:LONG - pointer to window's record.
output: None.

Draws theWindow in front of all the others but does not highlight.

DrawGrowlIcon Call #18 (not completed)

input: theWindow:LONG - pointer to window's record.
output: None.

theWindow must be in the window list.
Draws the grow box in the window.

User Interaction

FindWindow Call #19 (not completed)

inputs: whichWindow:LONG - address of where to store pointer of window..
thePT:POINT - x.v coordinate on screen to check.
outputs: Location:WORD:

0 = on desktop. whichWindow = 0.

1 = on system menu bar. whichWindow = 0.

2 = on system window. whichWindow = window.

3 = on content region. whichWindow = window.

4 = on drag region. whichWindow = window.

5 = on grow box. whichWindow = active window.
6 = on cloce by whichWindow = active window.,
7 = on frame. whichWindow = window.

On frame is a part of the window that isn't a move, grow, content, or close region.

TrackGoAway Call 20 (not completed)

inputs: startPuPOINT - starting point of cursor (where the button went dow:n).
theWindow:LONG - pointer to window's record.
ourput: GoAway:WORD - TRUE = go away selected, else FALSE.

theWincdow must be in the window list.
Watches cursor while button is held down.
Highlights close box when cursor 1s inside, normal when not inside.

Pege |
January 30, 1986 » =

MoveWindow Call #21 (not completed)

inputs: newPos:POINT - new origin of window.
theWindow:LONG - pointer to window's record.
output: None.

Window must be in window list.
Window is moved on the screen.

DragWindow Call #22 (not completed)

inputs: startPt:POINT - start point of cursor.
Bounds:RECT - cursor boundary.
theWindow:LONG - pointer to window's record.
‘output: None.

Window must be in window list.
Qutline of window is drawn.
Cursor is tracked while the button is down.
Qutline 15 moved:
(current cursor position bounded by Bounds) - startPt.
When cursor is released the outline is erased and the window moved via MoveWindow

GrowWindow Call #23 (not completed)

inputs: minHeight:WORD - minimum height of window allowed.
munWidiiu W Oivw - minimum width of window allowed.
maxHeight:WORD - maximum height of window allowed.
maxWidth:WORD - maximum width of window allowed.
startPT:POINT - starting point of cursor.
theWind. 777 . pointer 1o window s record.

output: newSize:LONG - high WORD = new height, low WORD = new width.

Window must be in window list.

Outline of window is drawn.

Cursor is tracked while the button is down.

Lower right comer of outline is moved: current cursor position - startPt.

When cursor is released the outline is erased, the new size computed and returned.
See SizeWindow to resiz. the window.

Peage'l

January 30, 1885

g

SizeWindow Call #24 (not completed)

inputs: newWidth:WORD - new width of window.
newHeight:WORD - new height of window.
theWindow:LONG - pointer to window's record.
output: None.

Window must be in window list.
Window's size is changed while its origin remains the same.
Screen is redrawn.
TaskMaster Call #25 (not completed)
input: theEvent:.LONG - pointer to an event record just returned from the Event Manage:
output: Flag:WORD - FALSE for null event (may have been handled), TRUE if the
event is valid and should be acted on.

See TASKMASTER.

Update Region

BeginUpdatc Cail £26 (not completec)

mput: theWin.2onw :LONG - pointer to wingow's recorc.
output: None.

theWindow must be in the window list.

Window's visRgn 1s replaced with the union of visRgn and update region.
Update region is then emptied.

The window's visRgn 1¢ then reudy for upZoning,

EndUpdate Call £27 (not completed)

input: theWindow:LONG - pointer to window's record.
output: None.

theWindow must be in the window list.
Restore visRgn 1o fol visibie regicn.

January 30, 1686 —>

Miscellaneous Routines

WmgrVersion

input:
output:

GetWMgrPort

input:
output:

PinRect
inputs:

output:

CheckUpdate

nput:
output:

Call #4

None.
wVersion:WORD - Window Manager's version number.

Call #28

None.
wPort:LONG - pointer to window manager's port.

Call £29 (not completed)
Bounds:RECT - boundary of given point.

thePUPOINT - any puint.
ng:th:POL\"T - point inside Bounds nearest to thePt.

Call 50 (not completed)

theLvenLONG - puinter 1o an even record.
Falg:WORD - TRUE if update event found. else FALSE.

This routine is called by the Event Manager. From the front.to the back in the window It
it looks for a visible window that needs updating. If it finds one whose window recorc
has a pointer to a redraw routine it calls it to complete the update and looks for the nex:
visible Window thclt... uri.ung 1Ditever finds @ window needing to be upduici L
whose window record coesn't contain a redraw routine, it stores an update event for th:
window in theEevnt and re-um TRUE. If it doesn't find such a window, it return FALSE.

January 30, 1985 O

SetWRefCon Call # (not completed, and in debate)

inputs: refCon:LONG - reserved LONG for application’s use
theWindow:LONG - pointer to window's record.
output: None.

This call is used to set a LONG value that is inside the window record and is reservered
for the application's use. This call, and calls like it, is in debate because it may be easier
for the the application to access the data directly from the record. By eliminating these

types of calls there would be fewer calls the application programmer would have to read
and digest.

GetWRefCon Call ¢ (not completed and in debate)

input: tthindbw:LONG - pointer to window's record.
output: refCon:LONG - reserved LONG for application’s use

Scc SetWRefCon.

WmgrResChy Call # (not completed)

input: newRes:WORD - 0 go to 16 color mode, 1 go to 4 color mode.
output: None.

Tell the Window Manager the zpplication would like 1o change screen resolution. The

Window Manager will make any interal adjustments needed and also adjust all window
positions so their orgins keep the same spot on the screen.

ReFresh Call # (not completed)

input: None.
output: None.

Redraws the entire desktop and all the windows. Useful when the screen was clodbic:iol
or after changing screen resolutions.

Pege |
January 30, 1886 >

&

Mac Functions in debate:

Here are some Mac functions that made or may not be needed in Cortland. Many of them were
referred to by Inside Macintosh as "Normally you won't have to call this procedure” or "special
circumstances”. Icould not think of any common uses for these calls and suggest they not be
implemented unless someone comes up with a use. They all would require extra flags, code,
programming time, and bugs. It may be that these calls will unintensionally appear from code in
which case they can be included without further efford.

GetNewWindow - without resources this is meaningless.

SetWindowPic - extra little goody.
GetWindowPic - if SetWindowPic goes, so does this.

DragGrayRgn - let's see where this falls in, most likely it will be in, I just don't know wha:
form.

Mac Functions waiting:

These functions are on hold and will be implemented when the Window Manager is further along.

InvalRect
InvalRgn
ValidRect
ValidRgn
Pege!
January 30, 1285 Feee

