
e,

Gorûlanel Vüûnclow l\flanager
Dan Oliver

(

I¡iual reiease 0l/30i 8ó

U

ABOTIT THE WTN'DO\\/]\{ANAGFR

The Window Manager is a tool for dealing with windows on the Conland screen. The screen
represents a working surface or desktop; gfaphic objccts appcar on the dcslrop and can be
manipulated with a mouse. A windorv is an objcct on the deslrop that p'resenis information, suc
as a document or a message_.. 'Windows can be any size or shape, and there can be one or man)' o
them, depcnding an the application.

Some standard types of windows are prcdefined; square cornered, rounded corner, and
alert.

Square Cornered Round Cornered Ale¡t

Inside the square a¡d round cornered windows can be standard rrindow conlrols, r*'hich are;
title bar. close box. zoom box. righl scrc,ll bar. bottom scroll bar. gros'box, informatjon b,r.. l:f:
ba¡, and drop shadow. The title bar displa¡'s the windou"s ti¡ie, can hold the close and zoom
boxes, and can be a drag region for moving the windou'. The close box is selected bl, the user ro
remove the u'indou'from the sc¡een. The ioom box is selected by the user to make tire u,incjorr r

maximum size and then to return it to its previous size ar¡d position. The right scroll bæ is used r,
scroll verticall¡'through the data in the u'indos'. The bottom scroll bar is uied ro scroll horizonta
through the data in the *'indou'. The grow box is dragged by the user ro change rhe srze of rile
window. The information bar is a place an application can displa¡' some information that \\'on'r b
effecæd^b¡' the scroll ba¡s. The lefr bar is a tluckened ieft side of a window *'hich can help sepaii
data in different u'indorvs u'hen thev overlap. The drop shadoq, helps separates q'indorvi froi,
one another and can also be used as'a moveiegion for movrng *re dinaofu off ¡he top of rhe
desktop.

lirl¡ Ê c.

Close Bor Zoom Box
I¡rforma¡¡n Li¡ç

Lefi Bar

-D¡op
SMov

Box

A square window may havc any or all of the standa¡d window controls. The oniy rcstricrion is tl:
if thcre is a close or zoom bo>, there must aiso bc a úûe bar. Common sense *'ouid i;;l-:, i,,-.
there onl¡' be a zoom box if there is a grow box, although this is not a requiremenr.

o

Right sc¡oü bcr.
B otom se¡oll ba¡

V'indow

January 30, 1985
l-
llYeC ?IT

The only standa¡d controls that may be added to a round cornercd window is a titlc bar, close box,
information bar, and drop shadow.- And no standa¡d contols may be added to a alert window.

È Vindov:

Somc possibl¡ wi¡tdow
combi¡utiors.

Your applicarion can easii¡' create standard window types, or define your o,*m window types (see
Creare Your Or.rn Windorr s), Son:e r¡'indows ma¡' be created indirectly for you when you use
other pans of rl:e Toolbox; ar: exa:npìe is the s rndou' the Dialog Manager creates to dispia¡ a¡: ale:':
box. rWindows created either directly or indirectly by an application a¡e collectively called
application n'indt¡us. Thi'ri''s also ¡ ciass of u'indos's called s¡'stem u'indol's; these are the
windo*,s in which desk accessories are displa¡'ed.

A window that is frontmost is called the active window. h appears highlighted - displayed in a
distinctive wa)', so ir sunds out from other windo*'s. There cân only bè one active u'indorr on thc
screen at any one time. This u'ill be the one that will be actcd on when the user tvpes, gives
col'¡::i¡nds,oru'l:3rrvrrisa¡'*'¡'''..:. i,rthe a¡plicationbeingused. Anvotheruindo\\\í.:'-
inactive, appear behind the active window and are not highlighted.

lnecl YE

r- Aetive

I}

FIf:'.El¡1':I¡¡I¡IT.I
ffi,ñE I¡GñEF

January 30, 198ô
||!eqe't-
li 3 r

The Window Manager's main function is to keep track of overlapping windows. You ca¡ d¡aw i
any window without running over onto windows in front of it. You can move windows to
diffe¡ent places on the scrren, change their plane (fronçteback order), or change thei¡ size, all
without concern for how the various windows overlap. The Window Manager kepps track of an,
newly cxposcd a¡eas and provides a convsnignt machanism for you to cnsure that they are proper
ædrawn.

Finall¡', you can casily set up your application so mouse actions cause these standard responses
inside a document window, or simila¡ responses inside other windows:

- Clicking anywherc in an inactive window makes it the active wi¡dow by bring it to the
front and highlighting it.

- Clicking inside the close box of the active window closes the window. Dependin_e on
the application, this rn¡ry mean tl¡at the window disappcars altogether, or a representall
of the window (such as an icon) Tnãy bc left on the desktop.

- Dragging anywhere inside the title bar of a window (cxcept in the close or zoom boxe:
if any) pulis an outline of the window across the scrÊcn, and rcleasing the mouse burtc
moves the window to the new location. If the window isn't the active window, it
becomes the active window unless the Command key was also held doun. A r¡'indorr
can never be moved complerciy off tlre screen; by convention, it car¡'t be moveC sucìl
that the visible area of the utle bar is less than four pixels square.

- Dragging inside the size box of the acdve window changes the size of the windou,.

\\'I\DO\\' FR A\TIì COI.ORS AND PATTER\S
In additjon the to the standa¡d windou'types and controls, the color of the windou,ar¡d controls
can be sel¿cl.;i The d:l:: t¡p,'us::,'to set the f3:igrn and colo: js:

January 30

I¿91011T2131415 E EIEIEIEI s

Pe=r. Nu:ber Pattrr Color Bacþror::rd Cólor

llPast
ltAll q

Wherc thc colors a¡c indexcq into the cuÍÊnt color table. Changing what thc color is for the cunenr
color table is not done here. Pattern number is one of a standa¡d pattern tyPe generated b1' the
Window Manager. The sundard pattern tablc is:

0 Solid, this is the default for close box interior, contcnt region, and thumbs.I Dithcr.2 Dotted, default for scroll ban.3 Lined, default for title ba¡.4 7Ðo¡î, dcfault for zoom box.. 5 Sizer, default for grow box.

Hopefully this list will grow.

Thepanerns/colors, for each part of the frame, arc set by a call to SetFrame with a pointer ¡o this 23
word table:

0
t
2
3
4
5
6
?
6
9
10
1t

t2
t3
l4
t5
t6
t?
t8
t9
20
2L
22

GetFrame is used to eet the current settings of a u'indo'*'

\\'I\DO\\'S A]*D GR \T:PORTS

It's easy for applications to use u'indou's: To the application, a window is a grafPort ûrat ir car:
draw into like any other with QuicliDraw routines. When you cÉate a window, you specify a
rectangle that becomes the poniìu'ct of the grafPort in ',\'hich the window contenrs u'ill be drar'.::.
The bit map for this grafPon, iß pen pattern, and other characteristjcs are the same as rhe defai: l:
values set by QuicliDraw, except for the character font, which is set to the applicarion font. Tile >e
characteristics s'ill af,Pl)'1r,'þ3r¡'r'3r the application draq's in the'*'indou', and the¡, can easill' be
changed with Quic|Ðra\\ rouu¡¡es (SetPon to make ùe grafPort the current pon, and odrer roul:::.'.
as appropriate).

There is, however, more to a r¡'indow than just the grafPort that the appiication draws in. In a
sundard u'indou' ar¡)" standí::C cn:rols are drasn b1' the Window Manager, not b)' the a¡¡licaro:':.

vton
lox Ou'.lx.s
lox InÈrior

' coLor '

trTt{t
ov

T

Ou

January 30, 198î

The part of a window the Window Manager d¡aws is callcd the windorp frame, since it usually
surrounds the rest of the window. For drawÍng window frames, the Window Manager creates a
grafPort that has the enti¡e scr?en as its portRect; this grafPort is callcd the l{indorv lUanager
port.

I4'¡TNnOW REGIONS

Every window has the following two rcgions:

- The content region: the arca that your application draw in

- The structure region: the entire window; frame plus content

The content region is bounded by the recunglc you specify when you crcatc the window (that is,
the portRect of the window's gzfPort) This is wherc your application presents information ro rhs
user.

A window may also have any of the rcgions listed bclow within the window frame.

- A go-arla¡' region , a close box in the active window. Clicking in rhis region closes
the u'indorv.

- A drag region. the title bar. Dragging in this region pulls an outline of the o'indoo,
actoss the screen, moves the window to a new location, ar¡d males it the acuve'*'inCot
(if it isn't al¡eady) unless the Command key was held down.

- A grorr region, the grou' box. Dragging in this region pulls the iou,er nght conre:' of
an outline of the window across the scrcen with the window's origin fixed, resizes rhe
u'indos, and makes it the active s'indos'(if it isn't alread¡,) unless the Command kc-r
u'as held dou'n.

- A zoom region, the zoom box. Clicking in this rcgion toggles between the currenr
posiuon and size to a maximum size, and back again.

Clicking in an¡ region o1 an i¡lacrive wrndorv simply makes it the acdi'e *'il:dorr.

Notc: The results of clicking and dragging that are discussed here don'r happe:r
automatically; you have to make the right Window Manager calls to cause them to happ:::

CO\TE*T REGTO\ AND \\'ORK AREA
\\'hatisthepurposeof u'indo\\'san)'rva¡? \\tindo\\'sareusedtopresentmo¡einfor::i:1jo:;i''.
ha¡du'are (screen) can display at one time. The name window is used bccause rhe user sees
through the wi¡dow onto a larger area. The power of windows is thei¡ ability to give rhe user a
sundard device for scrolli¡g through a large amount of data. Windou's act [Íi,e a injcrof¡cire
vieu'er. rù/hat is seen on the viewer is like what is seen in the window's content region. And
the rr'indos"s u'ork a¡cr i. rr l'¡¡l th: m:crofiche is to the vieu,er. Through the content re¡ron t]::

January 30, 1986 ll Pe€e'
ll6 lr

user can see part of the work area, unles-s _the conænt regign is large cnough to vicw the entire
wort a¡ea. Scroll ba¡s are used to view differcnt parts of the work area. The grow box and zoom
boi a¡e used to display mort or less of the work aiea at one time. rü/hen the window is moved the
work a¡ea is movcá with it, so the view in the conænt would rcmain thc same.

rffo¡k a¡!a't wiAûI
Y/ork E¡!a's

origin

V/o¡k ¡¡ÊÀ't
þight

The origin, width, and height of the work area is set when the window is created, and changed if
needed b¡' calling the \A'indos' Ìr{anager.

\Vü\NOW SCROLI BARS

rilindow scroll ba¡s a¡e tt¡e devices used for scrolling the work area through the content region and
showing the relationship betu,een the r*'ork area and-content rcgion, T!9 Cqntrql Mana-ger muqt be
insnileã in order ro usgsc¡oil bars in windou's. Scroll ba¡s are defined by the Conuol \lanager bui
this document r¡'ill go over ho\¡, standard '*'indo*' scroll bars act relating to windos's.

For claritv we will expand the names given to the parts of the scroll bar by the Conu'ol \{anager.

Arrov

Right sc¡oü Ber sge Up

tThumb
Bo Thumb

Page RghtPag e Lefi rge Dovn
Lefi R¡ght Ar¡ov Dovn Ar¡ov

Bonom Scroll Be¡

Scroil bars also show informarion about ùe u'ork area. The size of the scroll thumb gives tlte ra::c'

Vindov

+t= E)

January 30, 1986
ll P ege ll

lri t!

of what is seen in the contcnt region and what isn't ar¡d its position on the scroll ba¡ shows the
cxacr location bcing viewed. The scroll bar is likc a shrunken cross scction of the work area.

Right Scroll Ba¡

Botom Sc¡oll Bs¡

I4'INDO\\' RECORDS

The Window Manager keeps all the information it rcquires for its opcrations on a particula¡ u'inCr
in a n'indorr rect¡rci. Ttle record contai¡rs the *'indo*"s grafPort, title pointer, posiuon, size of
u,ork area. a resen'ed long for the application, and other flags the Window Manager needs ro
nanage dle screen.

(A derailed repon about the record u ill be added when the \\¡indow lr{anager is further aiong.¡

HO\\' A \\'I\DO\\' IS DRA\\'N
When a window is d¡awn or redrawn, the following twù'step process usually takes places: The
rilindow Manager draws the window frame, then the application draws the window contents.

To perform the first step of this process, the Window Manager manipulates regions of the \\tindc
Manager pon as necessary to ensure that only what should be dnwn is draq'n. It then calls the
u'indou'definition functjon s'ith a requesl that the rvindorl frame be redraivn. The rlilCi,r'.
definition function is either within the Window Manager or i¡ the application for custom *'i¡dorr
(see Crcate Your Own Windows).

Usually the second step is that the'Window Manager generates an update event to tel the
application to drau'thc u'indou conii'ills. it does iltis b¡ accumulaling in the updl:.,' rr'!ro:r the

tr)C=

Conunt Region

ltrork A¡ea

January 30, 1986

areas of the window's content rcgion that necd updating. The Toolbox Evcnt Manager.periodicalli'
ãneãfi to see if there's any windów whose updaie rcgión is not emPty; if it finds one, it repons (via
the GetNcxtEvent functioi¡) that a¡r update event has-occurred, and passes along the window
pointer in the event message. Updató events will bc issued o the front most window ft¡st and the-bottom most last. The application should respond as follows:

l. Call BeginUpdate. This procedure æmporarily replaces the visRgn o{the window's
grafPori'witli the intenection of the visRgn a¡¡ð Uê update rcgion. It thcn clears the
update flag for ¡hat window.

2. Draw thc window contents.

3. Call EndUpdate, which restorcs the actual visRgn.

The V/indow Manager allows an atternative to the update event machanism that mal' be useful for
applicarions rÌ¡at want to use it. A pointer to a routine in the appticanoqthat would ha¡¡dle the
aiåwing of the contcnt can be pass-ed when a window is creatcd- The \l/indow M3naggr would
handlelhe BeginUfraæ and EñdUpdate and will call the routine_dircctly saving alinle time and your
application would never have to \r'orry about BeginUpdate, EndUpdaæ, and checking the event for
updaæ messages.

A number of ltJindow Manager routines change the state of a windou' from inactive to active or
from acdve to inacrive. For each such change, the S/indow Manager Senerates an activate el'enl
passing along the windou'pointer in the event message. The activeFlag bit in the modifien field of
ihe er,ãnr recórd is ser if ùè u'ir:r'.','. l:es become aclive, or cleared if it has become inactive.

it'h.n the Toolbox Evenr ltlanager finds out from the Window lr{anager thar an activate eve¡it h:s
been generared, it passes the er'énr on to the ap¡licarion (via thc GeNcxtEvent function). Acdvate
events have tl¡e highest prion:. c,l ¿:r.r t¡'pe of event.

Usually when one u'indo'*, becomes active another becomes inactive, and vice versa, so activalS
evenrs are most commonly generated in pain. tJ/hen this happens, the Window Manager generales
fust the eve¡lt for th!. rr i:, j ,i' b-;.'(,;ij:tg ir:ictive. and then the event for the'*'indorr becomin-c
active. Sometimes onl¡' a single acr¡r aie event is generatred, such as when there's only one
q,indorv in the windo,¡; list. oi s'hen the active window is permanently disposed of (since it no
longer exists¡.

Activate events fór dialog and alerr windows are handled by the Dialog Manager. ln response to
activate or inactivate events for u'indou's crcated direaly by your application, you might take
actions such as the foilowing:

- ln a windo'*' tha¡ contains controls like scroll ba¡s, other than those in the windou'
frame, erase the in.iC. nrn control to shorr'it can not be used on an inactivate eve'::
The conrols can the¡r oe redrawn in full on an activate event.

\\ c

In a u'indow thar conl-:;is text being edited, remove the highlighring or blinking cuÍso:'
from the text when the rr rndow becomes inactive and rcstore it when the ç'indorr
becomes aci:r c'.

January 30, 1986
l[Pase l'

llO iill9Jl

tlSI*G TI{E \ryT,¡.'nOW M A\ AGFR

To use the rs/indow Manager, you must have prcvioug]y catled InitGraf to initialize Quicklhau'.
i1,. r"ri winào." Máagei ¡óútine to call is tlie inirialiàtion routine lnit\ffindows with a page in
bank zcro it can uss as iti zcro page (rhe Evc¡t Manager ar¡d Mcnu Manager necd to have the same
page number).

Wherc appropriate in your prograry, use New'Window to crea-tc afrY windows.you need. You can
supply a'poitr'ær to thestoráge ior the window rccord or let it bc allocated b-v the \ilindow Manager.
W'Éí g¡J *io¿o* is no lonler nccdcd call CloseS/indow if you supplied the storage, or
Disposerü/indow if not.

Then you just wait for an evenr by calling GeNcxrEvent and handle the following events in the
following ways:

- For an updare eve nr cail BeginUpdate, dra*'the visRgn or the entire conlent regio::. a::i
call EndUpdate.

- For a mouse-down event, call the FindWindow function to find out which part of
which *'indou'the mouse button was pressed in.

If it was pressed in the content region of an inactive windos', make that
u'indos ihe acdve u{ndou'b¡ calling Seject\\'¡ndos'.

If it rlas pressed in the grou' region of the active rr'indos', call C:on \\':n j 'r''
to pull ar'ound an imagJthat shóws how the windou"s size wili change. and
then Size\\'indou'to actuall¡ change the size.

- If ir u,as pressed in the drag region of an¡'l'þdou', call Dng\\¡indou', u'hjci:
will pull än outline of the únd-ow across the scrcen, move the windou' to a
n:r. ic,c:tio;1. ¡.:'. j. if tlis rçinCog is irl¿lliye. make it the a:iir.r' 11j:;; ''
üre Command key was held down)'

If it was pressed in the go-away.rggiol of the.active windo'*', cali
TrackGoAway to handlé the highlighting of the go-au'a1, region and to.
dearmine whäther the mouse il inli¿e the region when the bunon is rcieasei.
Then do whatever is appropriate as a rcsPonse to this mouse action in the
panicu¡ar appiication.' For'example. caii Ç1e5E\\'indotÀ' oI Dispose\\'rndorr ji
i,o, ..'ant the u'indow 1o 8o aìvva)' permanentl¡', or HideWindou' if 1ou \À a:',: ;

io disappear temPorarilY'

The N{oveWindou, procedure simpl¡' moves a window u'ithoutpulling around an outline of it.
Ñ;i., ioo'.".t, rhairhe applicarionihouldn't surprise the user.by moving (o¡ sizin-q) u jndorr:
;;;;;;dt>i fi,ãi".. åii,et rourines that.you riormally won't need to uie that let yo.u.change tir

ùrie ðf a u'indor*,, place one u'indou' behind-another, mãÌ:e a u'indou'visible or invisible, a:':c

Enable or disable a menu or certain menu items as appropriate to match what the user
can do when the window becomes active or inactive.

January 30, 19biti
ll Þ¡ecì'-'lre

access miscellancous fields of the window ¡ecord.

There is a ror¡rinc that may be of some use to applications that have standard window that act in
srandard ways. TLe routine is cailed Tasklvlastci and is called with a poiqter to thc event record
right afær a valid cvent has been rcccived from the Event Manager. !e Tasklvla-sær will handie
activate and inactivate messages, button down on inactive windows. The Taslclvfaster will also
handle all bunon downs and drags on the active window frame and standa¡d window controls. If
the TaskJr4aster handles the event it will retum a null evørt and your application can rerum ro pollin
GetNextEvmr Taslclvfasær wiil rcturn handle event if thc event didn't effect any Window Mänaeer
functions, if the button was down in the content region, or the close box was selected. By usini
Tasklr4asier your application would only need to caÍl InitWindows, New'Window a¡rd ' Q

CloseV/indow in order to have full function windows with user interaction.

NFtrINTÀ¡G YOUR OWT\ \ryINNOWS

You may warit to define your own type of window - maybe a round or hexagonal window, or even
a window shaped like an apple. Quicl.-Draw and the V/indow Manager make it possible for you to
do this.

To define)'our o\\'n n'¡: of \'.'ir.^'^'' . r'ou urile a routine that can s'ill dupicate some \\'i¡j¡1'.
Manager functions. When ùe \\'indow Manager needs to do something it will call your rouune and
not its or¡'n. The address of the routine is passed to Create'Windoç'. The inputs to your routine
will be:

the\\'indos':LO\G - pointer to the window's record.'
message:\\'ORl - o¡reration needed to be performed.
Param:LO.\G - flag used by some messages.

Ouçut *'ill be: outCome:LO\G - ¡eturned flag depending on message ou¡come.

message s'ill be:
lr Dras
*,Hir
ri CalcRgr::
wNew
wDispose
wGrow
rr'DrarvCIcon

=0
-l-',
=4-(
=(r

Draw wi¡doq'frame.
rWhat rcgion is at the point passed.
Calculate s'indo'*'and content re g;.',:'.s
lnitialization.
Take any pisposal acdons.
Draw outline of windorv.
Þrarv size box in content resjotl.

The following sections tell ¡'ou ri'hat is expected is response to the messate.

wDrarv - Drarv lVindon' Frame
Param:

January 30, 1985
llPese li
lt'_.ltlll

3456?I9t011L213L415 21110 If TRUE thCN:

hrghbghÈü fi¡Ìl ¡egion.
hig!¡lighlÊô go'rvaY n gion.
r¡i¡rdov il ¡cti'æ

Your routine should draw the window frame in the curîent grafPort, which will be the'Windou'
Manager port. This routine should make ce¡ain checks to determine-exactly what it should do. If
tfre viíiUlê field in the window record is FAIJE, the routine should do nothing. Otheru'ise, it
should draw the entire window frame. If the window active flag is TRUE in Param the frame
should be drawn highlighted in whatcvcr way is appropriatc to show that this is the active windorr
If the highlighted fÉg in Pa¡am is TRIJE for eithcrloom or go-away, the window frame should be
highiighlcd in whatever way is appropriate to show it.

wHit - Find lVhat Region a Point Is In
Pa¡am cquals the point to check. The vertical coordinarc is in the high-order WORD and the
horizontãl coordinatc in the low-o¡der WORD. Your routine should dctcrmine where the point is i
your window and then rcturn:

wNoFlir = 0 None of the following.
r¡'lnConreni = I In the content region.
wlnÐrag = 2 ln drag region.
wlnG¡ou' = I In grow rcgion, active window only.
wlnGoAu'a¡' = 4 ln go-away region, active window onll'.

Usualh. u'NoHit means rhe -siven poinr isn't anvu'here u'jthin the n'indou', but this is not
necessaril¡' so.

n'CalcRgns - Calculate \\'indorr''s Regions

Your routinc should calculate the window's enti¡e rcgion asn its contcnt region based on the cúrre:
grafPon'sporrRect. Thr'\\'indorr \1a:'¡:ters'illrequestthiso¡erationonh if theu'indou is
visible. Whcn you calculare regions for your'*'indow, do not alter the ciipRgn orvisRg:: c'j ti',e
windou,'s grafPort. The]trindou'lr{anager and QuickÐraw take ca¡e of this for vou. Altering ti;r
cli¡Rgn or visRgn rna¡'result in damage to o¡her u'indou's.

$'Ne$' - Initializatio¡l
Afrcr inidalizing fields as appropriate when creating a neu, window, the Windorv Manager sends
the message u'\err to)'ourroutinc. This givesvourroutine achance toperform an.r j:,;::..1::.1'-':
ma1'require. For exampie, if the content region is unusually shaped, the initializc roudne quStlt
allocate space for the ragion and store the rcgion handle in the application's rtssrved LONC in the
*'indou'recoro.

January 30, 1986
llF¿":l--.

I t¿

n'Dispose - Remove Windorv
The Window Manager's Closelü/indow and DisposeV/indow procedures send this metsage so your
routine can carr)'oui any additional actions required when disposing of the *'indow. The rou¡ine
mighr, for example, release space that was allocaæd by the initializc routine.

$'Gro$' - Drarv the Outline of the \{indon'
Param is a pointer to a RECT (recungle). Your routine should draw an outline image of your
u'indor¡'thãt would flt the given recungle. The Window Manager requests this operation
repeatedly as the user drags inside the grow region. Your¡outine should use the grafPon's cur.'eii
pen panern and pen mode, which are sct up so one call ç'ill draw the outline and next u'ilÌerase it
CXOR mode).

wDrawGlcon - Drarv the Size Box

Param:

I ¡f w¡¡dov u ttt\¡e, 0 tf ¡¡t¡¡uw

Your routine should drau' the grou' region in the windo* . The active flag in Pa¡am shoulC be
check to drau' a¡l inacúr'e ¡ro*'rcgion if the window is inactive.

\l'I\DO\\' TI A\A G ER R OUTI}*ES

Te.rr in /¡..'.r;; refers to fe :iures not \ et irnlenenici.

Coni'entions

Zero page must be in b:::rl: zc:r'
The \\'incio*' ìrianager's zero page mus¡ al*'a¡'s be on a page boundar¡'.
A

"r'indorv
record cannol st¡addie a memoq' bank.

A window record cannot stan at 50000 rn an¡' banii.

These conventions are to cut code size but may be too rest¡ictive, ler's u'ait a bit and see

61I9l0t1t213L4t5 uIaL3sl4

January 30, 19eu
llPer:
It t¡

rnitialization an d Termination

Boot\I'mgr Call #l

input: None.
output: None.

Called only by SetTSPtr

Initlf indows Cal] #3

input: wzcroPage :\\'¡oRD'#ij
;J#*lyiltJJ1#iåilåä:

se for zcro P¡s e

ouÞut: None

Calis Set\\'AP ro inform the Tool Locator u'hich zeto page number the \\'indos \11::r3:
will use.
Clears the rr':n:i'-'u l!qt.
Ses the default desktop patlem and color.
Opens the Window Ntlanager's port.
Diaq's rhe deskrop *'hich is ¡l¡e enti¡e scrcen or the area belo'*'the system menu btr if the;
is a system menu bar.

Term\f indorls Call #3

input: None. t
output: None.

FreÊ a:ir' rnl':'. ^:'" all oc¡ :':l¡ b'r' the \\'indoq' manager

Januar¡' 3:, 1986
llFee:
li iç

-
l{es'\f indorv Call f5

inputs: .wPa¡ams:LONG - pointer to inidalization block (defrned on the next page).
Mentory'will be allocarcdfor th¿ record if rlæ pointer is zero.

wPla¡e:LONG - fointer to window
-that this window should.appea¡ behind or

0 rc n& dísplay wíndow (rserted as toP witúow ín list)'
-l makes it the top most.
-2 mal;,,es ít tlæ bonom tnost.

wStorage:LONG - pointer to memory for window record'
ourput: the\trindow:LOliG - pointer to window record (in case it was allocated).

7æro if enor.

Opens a port for the r¡'indow.
Aäds thawindow to the u'indow list according to *'Plane
Displays the window if wPlanc is not zero.

(

(..

llPe':'
It l5'January 30, 198C

1

Bonom
Lefi siôe

Top

wParams - lnitialization Block:

RECT - initial position and size of window:

If Top = $7EFF then the window managÊr will position the windo*'and
Bonom and Right side will be used as Width and Height.

If Bo¡tom = $7EFF then the window manager will select a size for the windou
and Top,I-cf¡ side will be used as the windou"s origin.

If borh Top and Bortom = STFFF then both the position ar¡d size u'iil be
selccted by the window manager.

LONG - ?ßro to Bet update everits for redrawing the content, or the address of a
routine that can be catled directly by Window Manager that would red¡ar"'
window's content.

POh*T - origin of the u'ork area.
WORD - width of the work area in pixels.
\\'ORD - height of the *'ork area in pixels.
\\'ORD - u'indorv frame t¡'pe:

HighirEhÈd
Lefi ba¡
Aþn Frar¡a
Ror¡¡¡d corne¡ed
Qarror ¡aqer JPYsr ew¿¿É.ts
Viribþ
Mow on ô:op slui:'-
Mow on titþ ba¡
Fuli I'i¡rdoç bo>:
Deskop r':¡rdov
Grov bc>:
B otonr scro! Þs
R¡ght ccrcll bu
Drcp sl.*,c'"'
Close box
Titþ ba¡

LO,r*C - pointer to u'indou"s title.
LO\G - poir:ter to u'indos's control list (not standard u'indou conlrols

I234561Iat01tt21314r5 0

January 30, 198ô
ll Dse.
l--li lÇ

e
Close\{indorv Call #7

input: theWindor¡':LONG - pointer to window's record.
output: None.

thetü/indow must be in the window list.
Removes theWindow from the screen.
Removes theWindo*'from the ,*'indow list.
Catled to rcmove a window that was cfeated by New\Yindow using a non-zefo
wStorage pointer.

Disposel{indow Call #8

input: thcWindo*,:LONG - pointcr to window's record.
output: None.

the\l i¡dow must be in the *'indow list.
Calls Ck¡sc\\'indorr
Frecs memo1'uscd hv v'indo:w"s record.
Catlcd to re Ír,.r'. r c rr i;ìd,',,,,. tl',::: rr ls crcatcd b¡' Nes'\f indotr usiu::.1 a ze;c'
wStorage pointer.

1'['inclos' f)isnlar'

Set\1'Title' Call#9

inputs: title:LONG - pointer to string for new title.
the\\'indc,l:LO\C - ¡n;;rlel to r¡'indorr''s record

output: None.

theWindoq,must be in the windoù'list.
Updates r¡'indou's record s'ith ne'*' title.
Red¡aws window's frame.

Ger\l-Title Call * 10

input: the't/indou':LONG' pointer to window's record.
ouçut: title:LO\G - ¡ointer to string of '*'indow's title.

lt-
li.- et É ll

i 17January 30. 193î

inouts: newColor:LONG
theWindow:LON

ouÞut: None.

- oointer to 23 word patærnicolor uble.
G'- pointer to window's record.

Scc ï/LllDOV/ FRAI'IE COLORS AIID PATTERNS'

GetFrame Call #12

inputs: newColor:L_O\C - pointer to 23 word table that will be set with the color table
theWindow :LOliG-- pointer to window's record'

output: None.

SGÊ WINDOW FRAT,IE COI,ORS AI'{D PATTERNS.

SetFrame

Select\4'indorr

Hide\\'indc¡tt'

' Call #t I

Call f l3

input: the\\'incnu :LO\G ' ¡rointer to r¡'indo'*"s record'
output: Nonc.

theWindou'musl be in the r¡'indow iist.
Inactivates curenl top ü'indou'.
Acdvates the\\¡indos.
Redra*'s the screen.

Call;1.1

input: the\\ rndos:LO*G ' pointer to n'indorr's rgcord'
ouput: lrone

the\\tindou'must be in the u'indou'list'
Removes ths'\\'irdor, f:'orn the screen.
Mat.s next window activate if therWindow \tas the current active windou'
Redrau's the screen.
theWindow is taken out of the window lisr

January 3C, 198C
r7=æ
liJ" el3

l, 18,

a
Shorvlf indow Call #15

inputs: showFlag:'V/ORD-- TRUE = sho$', FALSE = hide'
the'ü/indów:LONG - pointer to window's rccord'

ouÞut: None.

theWindow must already be in the wndow list.
Dra* theWindow on thð scTeen under the top window if therc is one.

SendBehind Call #i6

inputs: behindWindow :LONG ---pointer. to window record or:
-2 o put therWindow behind all othen'

theVlindow:LONG - pointer to window's record.
outPut: None.

Both theWindow and bchindWindow must be in the window list
\l'indo'*' list is reorde¡ed.
Screen is ¡cdra*'n.

Front\\'indorv Call #17

input: None .

ouçut: thewindo*':LOì-G - pornrer lo the ac¡ive windo*"s record

Hilite\f indol'

input:

outputl

Call :30

hilite:\\'ORD - TRLE to highlight window frame, FALSE to unhighlight
the\\'indo'*':LONG - pointer to window's record.
None.

Sets or clears rhe highlight bir in the windo*"s frame and redraws the frame. Tlie bil u'iii
kecp its state until añolller Hilire\\'indotv or Select\\'indou'call.

ShorvHide Call #31

input: visFlag:\\ ORD - F-VIS (50020) to shorv, zero to hide
theWiñdo'*':LONG-- pointer to the '*'indou"s record.

ouput: None.

Never changes the highlighting or window order.

L,

.january 30, 19oo
f-.
liPÊ.f :
l' '1 O,
ll ¡v'

BringToFront CaU #32

input: theWindow:LONG - pointer to windou"s reco¡d.
output: l.lone.

Þraws theWindow in front of all the othen but docs not highlight

Dras'Gron'Icon Call #18 (not compleæd)

input: theWindow:LONG - poiriter to window's rccord.
outpu¡: None.

theWi¡do*'must be in the window list.
Draws the grow box in the wi¡dow.

User Inleraction

Find\\'indon' Call #i9 (not completed¡

inputs: *'hich\\'indou':LO\G - addre ss of '*'here to store pointer of u'indorr'.
thePT:POI\T - x.r coordinsie on screen to check.

ou tputs : I-ocadon : \\'ORD :

0 = oî deskto¡. u'hich\\tindo$'= 0.
I = otì system menu bar. whichWindou'= 0.
? = o:i s] slem rvindou . u'hich\\'indo\\' = \\'indo\\'
3 = on conten¡ region. which\t/i¡dow = qri¡6ie1r'.
4 = oD drag region. lvhich\\¡indou'= q'indorr'.
5 = oD grow box. whichWindow = active windo*
6 = on c'loce h¡r. rÀ'hich\\¡i¡$¡\\ = active u'indou
7 = oD frame . which\\'indo\À = \À'indo\\.

On franre is a pan of the r¡indou'that isn't a move, gro\\, conteni, or close rcgro:,

TrachGoArla¡ Call #10 (not completed,¡

inputs: stanPr:POINT - starting point of cursor (where the button ¡,s¡1 i¡u':i)

the\\tindou':LO\G - pointer lo u'indorr"s record.
ourput: GoAu'ay:WORD - TRLjE = !o âwâ) selected, else FALSE.

the\\'incjou'must be in the u'indo* list.
Watches cursor while button is held dou'n.
lhghlights close box u'hen cursor is inside, normal u'hen not inside.

January 30, '1986 llpase li

l, 2,.

e
Movelïindorv Calt #21 (notcompletcd)

inputs: ncwPos:POINT - ne*, origin of window.
theV/indow:LONG - poinrer to window's record.

output: None.

Window must be in window list.
V/indow is moved on the screen.

Draglïindorv Call #ll (not completcd)

inpus: sta¡tPUPOINT - sra¡t point of cursor.
Bounds:RECT - cursor boundar¡..
thetilindow:LONG - pointer to window's record.

:ou!put: None.

Window must be in u indos'lisr.
Outiine of windo* ¡s d¡as n.
Cursor is tracked u,hile rhe button is do'*'n.
Outllne is moveci:

(currenr cursor position bounded by Bounds) - startpr.
When cursor is released the outline is erased and rhe window moved via l\love\\'intlou

Grorv\\'indorv

inputs:

output:

Call #13 (not complered)

mjnHeight:WORD - minimum height of window aJlo,*,ed.
min\\'idiii:\\ Oi.; - mlnlmum widrh of wrndow allowed.
maxHeighr:WQp¡ - maximum height of wind_gw allowed.
max\\'icith:\\'ORD - maximum widrh of window allowed.
startPT:POI\T - starting point of cursor.
tl:c'\\'¡l:: . , ',' : - ¡xrinicr to rr in jorr 'S reCOrd.
newSize:LOliG - high WORD = new heighr, low WORD = netÀ,rr,idrh.

rü/indor¡,must be in s'indo'* list.
Outline of windou' is dras'n.
Cursor is cacked *'hile the button is down.
Los'er right corn* of outline is moved: current cursor position - stanpr.\ù/hen cursor is released the outline is erased, the ne'*, size computed and rerurned
See Sizel\'indos'ro res:¿; rhe windorv.

January 30, 1986 ll Pas: i't--liã

Sizelïindon' Call #24 (not completed)

inputs: newWidth:WORD - new width of window.
newHeight:WORD - new height of windo*,.
theWindow:LONG - pointer to window's rccord.

oulput: None.

Window must be in window list.
Window's size is changed while its origin rcmains the same.
Screen is redrawn.

Taskl\faster Call #25 (not completed)

input: theEvent:LONG - poinar to an evcnl rccord just rcturncd from the Evenr lrlanager
output: Fiag:V/ORD - FALSE for null event (may have been handled), TRIIE if rhe

cvsnt is valid and should bc acted on.

Scc TASKIvÍASTER.

L,oclafe Reeion

BeginLpdatc (not completeC.¡

inpui: tiirj\\'i:. jt'ri :LO\G - çoirill; ¡rr \\ indo\\'s record.
output: None.

the\fr/indow must be in the u'indou'list.
\il'indow's visRgn is replaced wirÌ¡ ti¡e union of visRgn and update regio:i
Update region is then emptied.
l'he u indorr"s tisRsn is then ¡e¡.rdr fc': u¡i::ins.

EndUpdate Cell sl7 (not completed)

input: the\\¡indow:LONG - pointer to *'indou"s record
output: None.

the\\tindos' musl be in the'*'indou' list.
Re >l.r;c lrsRgn to 1'-:: , isiì;lc re-tic'::.

)

C¿.] *l(r

January 30, '1986

Miscellaneous R outines

lTmgrVersion Call #4

input: None.
or.içutr wVenion:WORD - Window Manager's version number

Get\f i\f grPort Call #28

inout: None.
oúçut, wPort:LONC - pointer to window manager's Port.

PinRect Call ¡19 (not comPleted)

inputs: Bounds:RECT ' borrndaq' of -eiven point.- thePr:POiSJ 'a::) lùjnt.
output: newPt:POL\T'poinr inside Bounds nearest to thePt'

CheckUpdate Cali ;o (not compleiecl,t

inp'-t: tl:cEr e::::LO)iC - !',:::le r to an even record.
oriçut' Fals:\\'ORD ' TR[:E if update event found' else FALSE'

This routine is called bv the Event Manager. F¡om the f¡ont.to the back in the *'indorr Ij<:
it looks for a visible *inciou rhat needs updating. If it finds one'whose *'indou recoi'c
has a poinrer ro a redrau'routine it calls it to comþlete the update an{ looks for the nert
visit'liui;ijorr rl:-:1.... i..'-'-..:i;'.-:. l;'iieverfindsau'indoq'needrngtobcuïrg;'::.. .

whose windo*' record doesn't conuin a ¡ed¡aw rouune, it stores an update event foi ti:;:
u,indos. in rheEevnt anC rr.':'.:nl TRUE. If it doesn't find such a ç'indbs', it return F,{LSE

t:
lf Peee i:tæ
| ¿-at-¿=-January 30, 1986

Setl\'RefCon Call # (not completed, and in debate)

inpus: rcfCon:LONG - rcserved I-ONG for application's use
theWindow:LONG - pointer to window's record'

outpuf: None.

This catl is used to set a LONG value that is inside the window record ar¡d is ¡esen'ered
for rhe application's use. This call, and calls like it, is in debate because it may be easie;
for the tlié application to access the data directly from the rccord. By eliminating these
tlpes of calls there would be fewer calls the application programmer would have to read
and digest-

Get\I'RefCon Call # (not completed a¡d i¡ debate)

input: theWindow:LONG - pointer to window's record.
oulput: rcfCon:LONG - rcserved LOI{G for application's use

Scc SetWRefCon.

\\'mgrResChg Call * (not completed)

input: ner¡'Res:\1¡dRD - 0 go to 16 color mode. I go to 4 color mode.
ourput: None.

Tell ¡he \\'indos \lanager the a¡plicaljon u'ould like to change screen resolutio::. Tiri'
\fo'¡ndor¡'Manager *'iU maJie any' interal adjustmcnts needed and also adjust all u'indo*
positions so their orgins keep the same sf,ot on the scteen.

ReFresh Call * (not completed)

in¡ut: None.
ou:pul: None.

Redrau'stheenti¡edesktopandall theu'indou's. Usefuln'henthescreerìu'asclobb.c:;-
or after changing screen resolutions.

January 30, 1985
liPeee I

lt ?\ ,1

a
I\'fac Functions in dehate:

Here are some Mac functions that made or rnåy not be needed in Cortland. Many of them were
rcferred to by Inside Macintosh as "Normâlly you won't have to call this ptocedure" or "special
circumsunces"" I could not thirù of any cornmon uses for these calls and suggest they nor be
implemented unless someone comes up with a use. They all would require extra flags, code.
programming tirne, and bugs. It may be that these calls will unintensionaily appca¡ from code in
*'hich case they can be included without further efford.

GetNewlf indorr' - without resources this is meaningless.

Set\f indornPic - exua little goodl'.
GetlVindoç'Pic - if Set\YindowPic goes, so does this.

DragGrayRgn - let's see where this falls in, most likely it will be in, I just don't know whal
form.

@i¡¡:
These functions are on hold and will be implemented when the V/indo'*'lr{anager is funher alorc

InvalRect
InvalRgn
Yalidl{ect
ValidRgn

\

L

January 30, 1985 llPe¿*
l; F?lr /ât, 1¿

