DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTE SDEVELOPERNOTESDEVELOPERNOTES
DEVELOPERNOTESDEVELOPERNOTE SDEVELOPERNOTE SDEVELOPERNOTESDEVELOPERNOTES
DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTE SDEVELOPERNOTESDEVELOPERNOTES

Apple II Console and Keyboard Tools (8/85)

DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTE SDEVELOPERNOTE SDEVELOPERNOTES
DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTES
DEVELOPERNOTESDEVELOPERNOTE SDEVELOPERNOTE SDEVELOPERNOTE SDEVELOPERNOTES

7z 88eg

Page 3

Table of Contents

Foreword
About This Document 5
Console Driver 5
Standard User Input Routine 5
About the Disks 6
Pascal 6
Assembly Language 7
BASIC 7
Hardware Requirements 8
Chapter 1l: Console Driver
Overview 9
The Screen 9
The Viewport 19
Viewport Specification 19
The Cursor 11
Cursor Position 11
Cursor Movement 11
Text Modes 12
Fill Character 12
MouseText ' 13
Normal and Inverse 13
Screen Control Codes 13
No Operation 14
Set Viewport 14
Save and Reset Viewport 15
Restore Viewport 16
Clear Viewport 16
Clear from Beginning of Viewport 16
Clear to End of Viewport 16
Clear Line 16
Clear from Beginning of Line 16
Clear to End of Line 17
Cursor Movement 17
Home Cursor 17

Move Cursor Left 17

Page 4

Move Cursor Right
Move Cursor Up
Move Cursor Down (Line Feed)
Return Cursor (Carriage Return)
Scroll Up
Scroll Down
Horizontal Position
Vertical Position
Absolute Position
Normal Text
Inverse Text
MouseText On
MouseText Off
Horizontal Shift
Space Expansion
Sound the Bell

Displayable Characters
MouseText

Language Interfaces
Pascal
BASIC
Assembly Language

Chapter 2: Standard User Input Routine

Overview
Why Standardization Is Needed
Overview of the User Input Routine
Customization and Advanced Uses
Terminating the UIR
Information Block
Format of the Information Block
Information Block Default Values
General Information Section
Termination Information Section
Internal Information Section
Language Interfaces
Pascal
BASIC
Assembly Language

18
18
18
18
18
18
19
19
19
29
29
29
29
29
21
21
21
22
22
22
26
31

37
37
37
38
39
39
49
42
43
45
46
47
48
52
55

Table of Contents

Page 5

Foreword

About This Document

Console Driver

The Console Driver is a version of the Apple III Console Driver, adapted
to the Apple IIe and IIc. The Console Driver supplies a simple and
consistent interface to a set of display format and control procedures in
a relatively small and fast package. Both display and control commands
are sent to the driver in the same way, allowing developers to build a
set of data structures that contain both display and control information.
The Console Driver is described in Chapter 1.

Standard User Input Routine
Apple Computer has published several documents encouraging standard
design, including how an Apple II input routine should look and behave.
To help software developers to create programs that are consistent in
terms of user interface, Apple is making available a Standard User Input
Routine (UIR). It incorporates the standards adopted by Apple and is
available for three environments: '

- Apple II Pascal

- Applesoft BASIC

= Apple II Assembler

The User Input Routine is described in Chapter 2.

Page 6 - : Foreword
About the Disks

This package contains three disks, one for each of the languages.
Each disk contains the Console Driver and the Standard User Input
Routine.

Note: Because the Console Driver makes the User Input
Routine more efficient, Apple recommends that the User Input
Routine and the Console Driver be used together. The
Assembler and BASIC versions of the UIR can be used without
the Console Driver—special versions of the UIRs can be
ordered from Apple Technical Support. Unlike the
UIR~-Console Driver combinations, these standalone UIRs work
with both 40~ and 8f-column displays.

Each of the disks contains a demonstration program that runs when the
disk is started up. It lets you specify several parameters, then runs
the User Input Routine. Except for field width, which has no default
value, you can just press RETURN instead of specifying your own values.
While the demonstration program is running, you can press ESC to restart
the demounstration.

Pascal

If your application program is written in Pascal (Pascal 1.3 or the 128K
version of Pascal 1.2), use the Pascal version of the User Input Routine
and Console Driver. The Pascal disk (volume name /PASCON) contains
eleven files:

SYSTEM.LIBRARY

SYSTEM.MISCINFO

SYSTEM.ATTACH

SYSTEM.APPLE

SYSTEM.PASCAL

SYSTEM.STAR.LIB

ATTACH.DRIVERS

ATTACH.DATA -

INPUT.INFO.TEXT (text of Information Block)
DEMO .TEXT

SYSTEM.STARTUP (the startup demonstration program)

About the Disks : Page 7

Assembly Language

The routines on these disks can be used in assembly-language application
programs or called from BASIC programs. The disk, volume name /ASMCON,
contains ten files, including both a relocatable and an absolute version.

PRODOS

BASIC.SYSTEM .

CONUIR.REL (relocatable version of Console Driver/UIR)

CONUIR.OBJ (absolute version)

RELO.DOC.TEXT (tells how to use RELOCATOR)

RELO.OBJ .

RELOCATOR (creates CONUIR.OBJ from CONUIR.REL at address you choose)
ASSEM.INTER

ASSEM.INTER.D

TARTUP (demonstration program)

To use RELOCATOR, run RELOCATOR. Then, in response to prompts, answer
- CONUIR.REL
~ Saddress

- CONUIR.OBJ

BASIC

The BASIC version of the UIR is relocatable. The disk, volume name
/BASCON, contains eight files:

PRODOS

BASIC.SYSTEM

CONUIR.REL (User Input Routine plus Console Driver)
CONDAMP.REL (the ampersand package)

RBOOT

RLOAD

RELEASE

STARTUP (the demonstration program)

Page 8 » Foreword
Hardware Requirements

To use this product, you need either
- an Apple IIc, or

- an Apple IIe with an 8f=-column card.

Page 9

Chapter 1

The Console Driver

Overview

The Console Driver described here is a version of the Apple III Comsole
Driver, adapted to the Apple IIe and IIc. The Console Driver can serve
as a low level tool for the implementation of different styles of human
interface. Once the Console Driver is used, all subsequent screen
output should come from the Console Driver.

Unlike with the typical programming interface, you don't have to make a
sequence of calls to set up for text to be displayed-—it can be done
with one call to the Console Driver. This simplifies the programming
of the human interface. Information used to format the text can be
imbedded in the text itself.

The driver supports a form of screen structure known as a viewport, a
rectangular portion of the screen where all console functions take

place. Once a viewport is established, any future text display is
within the viewport. All text outside the viewport is protected.

The Screen

The screen consists of
= 8P columns of text, numbered (left to right) 9 to 79
= 24 lines of text, numbered (top to bottom) P to 23

The upper left corner is column P, line § (abbreviated D,0).

Page 10 , Chapter 1: The Console Driver

The Viewport

The viewport is a rectangular portion of the screen where all current
text is displayed. Portions of the screen outside the viewport are not
affected by either format or display commands.

The Console Driver maintains an invisible cursor, which represents the
current location at which a displayable character will be placed. The
position of this cursor is specified by the two variables CH and cv,
described 'later in this chapter. The default is 9,9 (upper-left
corner) .

When the Console Driver is first used, the viewport defaults to the
whole screen. You can set the viewport by a special control and four
parameter bytes which specify the upper-left and lower-right cormers of
the viewport. All console functions then take place within the new
viewport.

The current viewport specifications can be saved and the viewport can
then be set to the specifications of the previously saved viewport.
You can then return to rhe original viewport settings with another
command.

Viewport Specification

Six variables specify the top, bottom, left, and right edge of the
viewport, as well as its width (in columns) and its length (in lines).
The default viewport is the entire screen. The variables, together
with their default values, are

Variable Definition Default
WNDTOP top line)
WNDBOT bottom line 23
WNDLFT left column p
WNDRGT right column 79
WNDWTH width in columns 89

WNDLEN ' length in lines 24

The Cursor Page 11
The Cursor

This section describes how the cursor's position and movement are
specified.
Cursor Position
The current’cursor position is maintained in two variables:
= CH (current horizontal position)
= CV (current vertical position)

When the Console Driver is first used, both values are set to zero,
signifying the upper-left corner of the screen.

The values of CH and CV represent the absolute screen coordinates
(actual column and line number) and are not relative to the current
viewport.

Cursor Movement

Five flags direct the Console Driver how to move the cursor within the

viewport. 1In all five cases, the default value is 1 (TRUE). If set to
zero, they are FALSE.

CONLFD (Line Feed)

When CONLFD is true, the Console Driver automatically performs a line
feed (control code 1P decimal, $PA hex) after every carriage return (13
decimal or $PD hex). When it is false, no automatic line feed is
performed. You can force a line feed by sending a line feed character.

CONADV (Advance)

When CONADV is true, the cursor advances one space to the right after
each display character is placed on the screen. When it is false, the
cursor does not advance after each character, but remains in the same
position. In this case, you must explicitly move the cursor by sending
a Move Cursor Right control (P9 decimal or $99 hex).

CONWRAP (Wrap)

When CONWRAP is true, an attempt to move the cursor beyond the right
(or left) edge of the viewport causes the cursor to be placed at the
opposite edge of the next (or previous) line of the viewport. When it

Page 12 Chapter 1: The Comnsole Driver

is false, the cursor remains at the edge of the viewport on the current
line. To move the cursor to the next line, send a Move Cursor Down (1p
decimal, $PA hex). To move the cursor to the previous line, send a
Move Cursor Up (1l decimal, $PB hex). Follow these by a Return Cursor
(13 decimal, $PD hex) to move the cursor to the beginning of a line.

CONSCRL (Scroll)

When CONSCRL is true, an attempt to move the cursor beyond the top or

bottom line of the viewport causes the contents of the viewport to be

scrolled either down or up. The cursor moves to the beginning of the

new top or bottom line. If it is false, the cursor remains at the top
or bottom of the viewport.

DLEFLAG (Space Expansion)

When DLEFLAG is true, DLEs (16 decimal, $19 hex) are interpreted as
space expansion controls with a following parameter byte. (See Screen
Control Codes, later in this chapter.) If it is false, they are
ignored. This is used to support Apple II Pascal text files. For
other uses, set this flag to P (false). :

Text Modes

You can determine the fill character, whether MouseText is used, and
whether text is displayed in normal or inverse mode.

Fill Character

The fill character is the character used to clear the contents of the
viewport. The default value is a space (32 decimal, $29 hex). Its
value is in the status block variable CONFILL. Due to the Apple II
character mapping, the actual binary value of the fill character is

- $PAD hex (160 decimal) for a normal space character, or

- $2P hex (32 decimal) for an inverse space character.

Text Modes Page 13

MouseText

The MOUSE flag specifies whether the Console Driver displays MouseText
characters. The default is FALSE. If MOUSE is true, characters in the
range $4P to $5F (64 to 95 decimal) are mapped into the MouseText
character set. Control codes are processed as is.

Normal and Inverse

The CONVID flag determines whether text is displayed 'in normal or
inverse mode. CONVID is set via two control codes (Set Normal Text and
Set Inverse Text), described later in this chapter. If CONVID is $8¢
(128 decimal), text is normal. If CONVID is @, text is inverse. The
default value is NORMAL.

Screen Control Codes

This section summarizes the 29 screen control codes. These control
codes are numbered $PP through $1F (P9 through 31 decimal), except that
control codes $§5, $P6, and $#9 are undefined and, if used, are
ignored. The table on the next page lists them in numerical order.

The detailed descriptions that follow the table are in functional
sequence, rather than numerical order.

Page 14 Chapter 1: The Console Driver

hex decimal Control Code

$99 99 no operation

$P1 pl1 save and reset viewport

$02 p2 set viewport

$93 93 clear from beginning of line
394 04 restore viewport

$97 p7 sound the bell

398 98 move cursor left

S$PA 19 move cursor down (line feed)
$PB 11 clear to end of viewport

$pC 12 clear viewport

$PD 13 return cursor (carriage return)
$OE 14 normal text

$PF 15 inverse text

$1p 16 space expansion

$11 17 horizontal shift

$§12 18 vertical position

$13 19 clear from beginning of viewport
$14 29 horizontal position

§15 21 cursor movement

$16 22 scroll down

$17 23 scroll up

$18 24 MouseText off

819 25 home cursor

$1A 26 clear line

$1B 27 MouseText on

$1C 28 move cursor right

$1D 29 clear to end of line

S1E 39 absolute position

SIF 31 move cCursor up

No Operation
control code: $PP (decimal 9p)

This control code has no effect and is ignored.

Set Viewport

control code: $02 (decimal 92)

Sets the boundaries of the viewport. It requires all four of its
parameter bytes (if any is missing, the control code is ignored). The
four parameters specify the absolute coordinates for the upper-left and

lower-right cormers of the viewport, and must appear in this order:

l. upper-left cormer X (or column) value

Screen Control Codes Page 15

2. upper-left corner Y (or line) value

3. 1lower-right corner X (or column) value

4. lower-right corner Y (or line) value
This control does not affect cursor movement, normal/inverse text mode,
nor the MouseText setting. It does not save the current viewport (see

Save and Reset Viewport). The cursor is placed in the upper-left
corner of the new viewport.

Validity Checking

The parameters are checked for validity before the viewport values are
set. The rules are

= Any parameter byte greater than 127 is negative (because bit 7
is set), causing this command to be ignored.

- If the X coordinate of the upper—-left or lower-right corner is
greater than 79, it is set to 79.

= 1If the Y coordinate of the upper-left or lower-right corner is
greater than 23, it is set to 23,

- The X-coordinate of the upper-left corner is used for WNDLFT.
- The Y-coordinate of the upper-left cormer is used for WNDTOP.

- The X-coordinate of the lower-right cormer, if greater than
WNDLFT, is used for WNDRGT, else this command is ignored.

= The Y-coordinate of the lower-right corner, if greater than
WNDTOP, is used for WNDBOT, else this command is ignored.,

= If for any reason the command is ignored, it does not change
the current viewport settings.

Save and Reset Viewport
control code: $Pp1 (decimal p1)

Saves the current settings of the viewport: its coordinates, cursor
position, cursor motion controls, mousetext, and normal/inverse
setting. The viewport is then set to the default values of the full
screen. Only one level of save is allowed--saving a second viewport
erases any information for a previously-saved viewport.

Page 16 Chapter 1: The Console Driver

Restore Viewport

control code: $P4 (decimal §4)

Restores the viewport to the values of the most recently saved
viewport. If no viewport has been saved, the values are set to the
default values for the whole screen. (See Save and Reset Viewport.)
Clear Viewport

control code: $OC (decimal 12)

Moves the cursor to the upper-left cormer of the viewport and then
clears the viewport by setting the contents to the current fill
character.

Clear from Begimming of Viewport

control code: $13 (decimal 19)

Clears the viewport from position #, # through the cursor. The cursor
does not move.

Clear to End of Viewport

control code: $PB (decimal 11)

Clears the contents of the viewport, from the current cursor position
to the end of the cursor line, and all lines below the cursor. The
cursor does not move.

Clear Line

control code: $1A (decimal 26)

Moves the cursor to the beginning of the current line and clears the
entire line.

Clear from Beginning of Line

control code: $@3 (decimal 93)

Clears the current line, from the beginning of the line through the
current cursor position in that line.

Screen Control Codes Page 17

Clear to End of Line
control code: $1D (decimal 29)

Clears the current line, starting from and including the current cursor
position in the line. The cursor does not move. :

Cursor Movement
control code: $15 (decimal‘Zl)

This control code and its parameter set the cursor movement controls as
specified by the parameter. The parameter is a single-byte value, with
only the lower five bits significant. The upper three bits are to be
set to zero. A zero resets the control; a one sets it. If the
parameter does not exist, or the upper three bits are non-zero, the
command is ignored. (See also The Cursor, earlier in this chapter.)

Bit Control

Bit 9 advance

Bit 1 Line Feed

Bit 2 Wrap

Bit 3 Scroll

Bit 4 DLE Space Expansion

Home Cursor

control code: $19 (decimal 25)

Moves the cursor to the upper-left corner of the current viewport., It
does not clear any portion of the viewport, nor does it change any of
the viewport settings.

Move Cursor Left

control code: $P8 (decimal p8)

Moves the cursor left one position. Wrapping around and scrolling are

determined by the cursor controls. (See Cursor Controls, earlier in
this chapter.)

Page 18 Chapter 1: The Console Driver

Move Cursor Right

control code: $1C (decimal 28)

Moves the cursor right one position. Wrapping and scrolling are
controlled by the cursor controls.

Move Cursor Up

control code: $1F (decimal 31)

Moves the cursor up one line. Scrolling is controlled by the cursor
controls.

Move Cursor Down (Line Feed)

control code: $PA (decimal 1§)

Moves the cursor down one line. Scrolling is performed by the cursor
controls. (See Cursor Control, earlier in this chapter.)

Return Cursor (Carriage Return)

control code: $PD (decimal 13)

Moves the cursor to the beginning of the current line (the left edge of
the viewport). A line feed may also be issued automatically, depending

on the setting of the cursor controls. Scrolling may also take place.
(See Cursor Control, earlier in this chapter.)

Scroll Op K
control code: $17 (decimal 23)

Causes the contents of the viewport to scroll up, leaving a blank line
at the bottom of the viewport. The cursor does not move.,

Scroll Down
control code: $16 (decimal 22)

Causes the contents of the viewport to scroll down, leaving a blank line
at the top of the viewport. The cursor does not move.

Screen Control Codes Page 19

Horizountal Position
control code: $14 (decimal 24)

Moves the cursor horizontally to the relative column number passed in a
single-byte parameter (§ to 79). A parameter of 1P means to move to the
tenth column in the viewport, not to column 1§ of the whole screen. A
parameter of f) moves the cursor to the leftmost column. To determine
the correct relative column, add the parameter to the value of WNDLFT
(see Viewport Specifications). If the sum is greater than 127
(negative), the cursor moves to the left column.

If the parameter is missing, this control is ignored. This control has
no effect on the vertical position of the cursor.

Vertical Position
control code: $12 (decimal 18)

Moves. the cursor vertically to the relative line number passed in a
single-byte parameter (@ through 23). A parameter of 1§ means to move
to the tenth line in the viewport, not to line 19 of the whole screen.
A parameter of f moves the cursor to the top line.

To determine the correct relative line, add the parameter to the value
of WNDTOP (see Viewport Specifications, earlier in this chapter). 1If
the resulting value is greater than the value of WNDBOT (the bottom line
of the viewport), the cursor is placed in the bottom line of the
viewport. If the parameter is missing, this control is ignored. This
control has no effect on the horizontal position of the cursor.

Absolute Position
control code: $1E (decimal 39)

This control code combines the actions of the Horizontal Position and
Vertical Position control codes. It requires two single-byte
parameters. The first specifies the horizontal position and the second
specifies the vertical position of the cursor. Placement of the cursor
follows the rules given under both Horizontal and Vertical Position
control codes. If both parameter bytes are missing, the command is
ignored.

Page 20 A Chapter 1: The Console Driver

Normal Text
control code: S$PE (decimal 14)

Causes all subsequent characters to be displayed as light characters on
a dark background. It does not affect any characters already on the
screen. This control code sets the CONVID flag to $8p (128 decimal).

Inverse Text
control code: $PF (decimal 15)

Causes all subsequent characters to be displayed as dark characters on a
light background. It does not affect any characters already on the
screen. This control code sets the CONVID flag to f#. See also Normal
Text.

MouseText On
control code: $1B (decimal 27)

Turns on the display of MouseText characters. All displayable
characters in the range $40 through $SF (64 through 95 decimal) are
mapped into the MouseText characters for display.

MouseText Off
control code: $18 (decimal 24)

Turns off the display of MouseText characters.

3

Horizontal Shift
control code: $11 (decimal 17)

Causes the contents of the viewport to be shifted right or left the
number of columns specified by the single byte parameter following the
control code. If the parameter does not exist, or is set to @, the
control has no effect.

The parameter is interpreted as an eight-bit two's complement number.

If it is positive (less than 128 decimal or $7F hex) the contents are
shifted right the number of columns equal to the value of the number.

If it is negative (greater than or equal to 128 decimal or $7F hex), the
contents are shifted left the number of columns equal to the negative
value of the number. 1In both cases, 1f the value is greater than or
equal to the width of the viewport, the viewport is cleared.

Screen Control Codes Page 21

The shifted characters are moved directly to. their destination. The
space vacated by the shifted characters is set to blanks. Characters
shifted out of the viewport are removed from the screen and are not
recoverable,

Space Expansion
control code: $19 (decimal 16)

This control code supports the DLE space expansion that exists in Pascal
text files. It takes one parameter, which represents the number of
spaces to output plus 32. The driver subtracts 32 from the parameter to
determine the number of spaces to output to the screen. If the
parameter does not exist, the Console Driver ignores this control. DLE
expansion can be turned off using the mode value of 4 or 12 in the
UNITWRITE call to the driver (see Pascal Interface, later in this
chapter). It can also be turned om or off with the Cursor Control. The
default is ON.

’Sound the Bell
control code: $@7 (decimal 97)

This control code, when used once, sounds the ProDOS-recommended beep.
It has no effect on the screen. Repeated control codes produce a longer
sound.

Displayable Characters

The Console Driver displays the Apple II's Alternate character set., It
assumes however, that all characters passed to it are in the standard
ASCII character set (range $PfP to $7F, f to 127 decimal). These
characters are mapped into the appropriate character set (normal or
inverse, MouseText) for display purposes.

Characters passed to the Console Driver in the range $89 to SFF (128 to
255 decimal) are a special case. The characters are displayed after the
seventh bit is reset, resulting in this mapping:

$80 - $9F (decimal 128 - 159) mapped to inverse uppercase letters

SAD

$BF (decimal 169 - 191) mapped to inverse special characters

$CP - SDF (decimal 192 - 223) mapped to MouseText characters

SEQ SFF (decimal 224 - 255) mapped to inverse lowercase letters

Page 22 : Chapter 1: The Counsole Driver

This is independent of the settings for normal/inverse and MouseText in
the driver. Reference manuals for specific computers contain details on
the character sets.

Characters in the range $99 to $1F (P to 31 decimal) are defined as
control codes that invoke the operations listed earlier in this chapter,

Characters in the range $20 to $7F (32 to 127 decimal) are defined as
displayable characters and are displayed according to the settings of
the Console Driver.

MouseText

To use MouseText, you must send the MouseText-on control code to the
Console Driver. Characters in the range $4f to $SF (64 to 95 decimal)
are then mapped into the appropriate MouseText character. For example,
to display the file—folder icon instead of the letters ¥ and Y:

27 MouseText-on control code
"x" first part of picture of file folder
y" second part of file folder
24 MouseText-off control code

At the end of a sequence of MouseText characters, be sure to turn off
MouseText with the MouseText-off control code. Any characters not in
the MouseText range will be displayed according to the settings of the
Cousole Driver.

Language Interfaces

The Console Driver can be used with Apple II Pascal, Applesoft BASIC,
and 6502 Assembler Language.

Pascal

The version of the Console Driver that is used with Pascal accepts five
calls, each described in this section. This section also describes the
Pascal data interface and how the Console Driver is called.

Data Interface

Both control codes and text to be displayed are passed to the Console
Driver as a contiguous array of data. For example, to print "Hello" on
line 19, column 15, in inverse, then to home the cursor and to return to
normal text, you would create the following array of data (all numbers
are decimal):

Language Interfaces Page 23

39 absolute position
15 parameter (column 15)
19 parameter (line 1§)
15 inverse text

72 "H"

101 "ell

108 Hln

108 "l"

111 "o"

25 home cursor

14 normal text

This array is not a string in the Pascal sense of the word: the first
byte is data rather than the length of the array (as in a string). The
Console Driver can accept an array of up to 32,767 bytes (Pascal's limit
on integers). ' ’

The second required datum is an integer that denotes the length of the

array to be processed by the Driver. ~In the above example, the integer
could be either a variable with the value 1l or the coanstant "11".

Calling the Console Driver

The Console Driver is a Pascal Attach driver. 1Its unit number is #139.
For information on Pascal Attach drivers, see the Apple II Pascal 1.2
Device and Interrupt Support Tools manual.

To transfer data to the Console Driver to be displayed, use a UNITWRITE
call from a Pascal program. UNITWRITE's format is

UNITWRITE(139, ARRAY_ADDR, LENGTH_ARRAY, MODE)
where
139 is the Console Driver's unit number

ARRAY ADDR is a VAR parameter denoting the address of the array of
data

LENGTH_ARRAY is the length of the array passed

MODE is the mode expression (which is an integer). MODE can have
four values: »

value DLE-expansion Auto linefeed
P TRUE TRUE
2 FALSE TRUE
8 TRUE . "FALSE

12 FALSE FALSE

Page 24 Chapter 1: The Console Driver

When passing a string to the driver, always reference the string as
STRING_VAR[1]

so as not to pass the length byte found in STRING_VAR[Q].

Status Calls

The Console Driver accepts only one status call. It returns a data
structure that describes the Driver's status. This call instructs the
Console Driver to copy its values into this record, where you can
inspect it. The variables are described earlier in this chapter.

Here 1s the form of the UNITSTATUS call:
UNITSTATUS(130, CON_STAT_ BLK, §)

where
139 is the unit number of the driver
CON_STAT_BLK is a record with the format:
TYPE BYTE = f..255

VAR CON_STAT BLK: PACKED RECORD OF
CV:BYTE;
CH:BYTE;
WNDTOP :BYTE;
WNDBOT:BYTE;
WNDLFT :BYTE;
WNDRGT : BYTE;
WNDWTH:BYTE;
WNDLEN:BYTE;
CONWRAP:BYTE;
CONADV:BYTE;
CONLFD:BYTE;
CONSCRL:BYTE;
CONVID:BYTE;
DLEFLAG:BYTE;
CONFILL:BYTE;
MOUSE : BYTE;

END;

Control Calls

The driver accepts four control calls, which allow you to

Language Interfaces ' Page 25

- get the current location of the cursor and the text character

at the current cursor location

= save and restore the contents of the current viewport.
You must supply the buffer in which this data is stored, as it is not
in the Console Driver. It is recommended that you allocate some space
on the heap for this buffer, allowing this space to be reclaimed as
needed. If your program does not require this function, this space can
be saved. To calculate the amount of space required for a viewport,
multiply its width (WNDWTH) by its length (WNDLEN).

Getting the Current Cursor Position

To get the current location of the cursor on the text screen, make a
UNITSTATUS call with the form

UNITSTATUS(139, LOCATION, 2);
where LOCATION is a record of the form
LOCATION = RECORD
HORIZONTAL: INTEGER;
VERTICAL: INTEGER;
END;
The Console Driver sets these values equal to the screen coordinates, CH
and CV. These are integer values and are not relative to the viewport,
but represent the actual column and line number.
Getting the Current Text Screen Character
Make a UNITSTATUS call of the form
UNITSTATUS(130, CHARACTER, 8194);
where CHARACTER is a byte (f..255) variable. The driver will return the
current binary value of the character found at the current cursor
location. You must map this value in the proper ASCII interpretation.

Saving the Viewport

To save the contents of the viewport, make a UNITSTATUS call of the form

UNITSTATUS(130,>VWPORT_ﬁUF, 16386);

Page 26 Chapter 1: The Console Driver

where
1390 is the Console Driver's unit number

VWPORT_BUF is a buffer to hold the contents of the viewport.

Restoring the Viewport

To restore the contents of the viewport, make a UNITSTATUS call of the
form

UNITSTATUS(130, SCREEN BUF, 24578);

where
139 is the Comsole Driver's unit number
VWPORT_#UF is a buffer to hold the contents of the screen.

You must keep track of which viewport has been saved in which buffer.
Before restoring a Viewpor;, you must set the required viewport before
making the restore call.
BASIC
The version of the Console Driver that is used with BASIC programs
supports twelve functions, all of them ampersand (&) routines. Each is
described below.

= Output Data to the Comsole

=~ Save the Current Viewport

= Restore the Current Viewport

= Get the Status of the Comsole Driver

- Get the Current Cursor Position

= Get the Current Text Screen Character

= 1Initialize the Counsole Driver

= Get a Segment of Memory

- Get a Console Driver Error

- Get the Console Driver Version

Language Interfaces Page 27

= Get the Console Driver Copyright Notice

= Release the Console Driver

Console Driver Functions

Calling the Console Driver

Calls to the Console Driver are made with the "ampersand hook." BASIC
statements used to call the Console Driver have the form

&name (parameter list)
- Specific formats for the calls are described below.
Output Data to the Console

There are two Console Driver calls to output data to the display. The
first has the form

&WRTSTR(SS)

where S$ is a string. This call outputs the contents of S$ to the
display. S$ can include both control codes and ASCII characters.

The second has the form
&WRITE(I1%, I2%, SAS)

where SA$ is a one-dimensional string array, I1% is a starting index,
and 127 is an ending index.

This call outputs the contents of the string array SA$, beginning with
the string selected by the index Il1%Z and ending with the string indexed
by I2%. These strings can contain both control codes and ASCII
characters.

Save the Current Viewport Contents

Before saving the contents of the viewport, first allocate a buffer via
a call to the special function "Get memory," which has the form

>MEM(PZ, AZ)

P%Z is an integer that specifies the number of pages (256 bytes) of
memory to allocate A% is the address of that memory. Here is a formula
for calculating the number of pages required:

Page 28 Chapter 1: The Comnsole Driver

(WNDWTH * WNDLEN) / 256
rounding up to the nearest integer.
For example, to store the contents of the whole screen requires an
allocation of eight pages. If not enough pages are available,

BASIC's OUT OF MEMORY error will occur.

Once the >MEM call has been made, you can make the call to save the
contents of the viewport. It has the form

&SVVP(AZ)-

where AZ is the address returned from the >MEM call.

Restore the Current Viewport Contents

To restore the viewport contents, make a call with the form
&RSTRVP(AZ)

where AZ is the address used in the &SVVP call. This restores the

previously saved contents to the viewport. Be sure that the contents

you restore are the same size as the current viewport.

Get the Status of the Console Driver

To get the status of the console driver, make this call:
&CDINFO(CIZ)

where CIZ is a l6-element array, for example
DIM CIZ(16)

This returns the contents of the status block to the array CI%. The

following is a mapping of the array elements to the status block
elements:

CIZ(1) = ¢Cv
CIZ(2) = cH
CI%Z(3) = WNDTOP
CI%(4) = WNDBOT
CI%(5) = WNDLFT
CI%Z(6) = WNDRGT
CIZ%Z(7) = WNDWTH
CI%(8) = WNDLEN
CI%(9) = CONWRAP

CIZ(1p) = CONADV
CIZ%Z(11) = CONLFD

Language Interfaces Page 29

CIZ(12) = CONSCRL
CIZ(13) = CONVID
CI%(14) = DLEFLAG
CIZ%(15) = CONFILL
CI%(16) = MOUSE

Get the Current Cursor Position

To get the current absolute coordinates of the cursor, make this call:
>CP(HZ, VZ)

where HZ is the value of CH (x-coordinate) and V% is the value of CV

(y=coordinate).

Get the Current Text Screen Character

- To get the binary value of the text character at the current cursor
position, make this call:

>CHR(CZ)

where CZ is the character returned.

Initialize the Console Driver

To initialize the Console Driver to its default environment, make this
call:

&INITCD

Release Console Driver

To release the Console Driver Ampersand package and to restore the
screen to a normal BASIC environment, make the call: "

&STPCD(C%)

where C% is 8p.

Get Counsole Driver Version and Copyright
To get the version number of the Comnsole Driver, make the call:
&CDVRSN(VZ, RZ)

where V7% is the version number returned and RY is the revision number.

Page 30 ’ Chapter 1: The Comnsole Driver

To get the Console Driver's copyright notice, make the call:
&CDCPYRT (CM$)

where CM$ is the copyright notice returned.

Setting the Console Driver Address

Before the ampersand package can use the Console Driver, it must have
the location of the Console Driver. Do this with the call:

&STCDADR(AZ)

where AZ is the starting address (also of the entry-point) of the
Console Driver. This call must be made before any other calls to the
ampersand package.

Loading Ampersand Package and Console Driver
This BASIC routine loads the ampersand package and Console Driver:

19 PRINT CHR$(4);"brun release": REM release memory buffers
2p PRINT CHRS$(4);"pr#3"

30 REM load & initialize Console Driver & UIR

49 Al =9 : A2 = @

59 PRINT CHRS(4);'"brun rboot"

60 Al = USR(P),"conuir.rel": REM load Comsole Driver & UIR
79 A2 = USR(P),"condamp.rel™: REM load ampersand interface
80 CALL A2

99 &STCDADR(AL)

Using the Console Driver With Your Program

A BASIC program using the Console Driver should do no console display
through BASIC. All display should be done with the Console Driver.

This example uses the Console Driver (after it and the ampersand package
have been loaded) to place the string "Hello there" on the screen:

19 DIM ABS$(3)
29 DIM STS$(11)

39 ABS(1l) = CHRS$(3P): REM ABSOLUTE POSITION
49 ABS(2) = CHR$(1P): REM X COORDINATE
50 ABS(3) = CHRS(15): REM Y COORDINATE

69 STS = "Hello there"
79 &WRTSTR(ABS)
80 &WRTSTR(STS)

Language Interfaces Page 31

Relocating the Console Driver

The Console Driver is a REL (relocatable) file produced by the EDASM
Editor/Assembler. It must be relocated in memory before it can be used.
Follow the instructions in either the ProDOS Assembler Tools manual or
6502 Assembler/DOS Tool Kit manual, and use RBOOT and RLOAD to perform
the relocation.

Assembly Language

‘The version of the Console Driver that is used with assembly language
programs supports the following seven functions:

= OQutput Data to the Console

- Save the Current Viewport

- Restore the Current Viewport

= Get the Status of the Console Driver
= Get the Current Cursor Position

- Get the Current Text Screen Character

- Initialize the Coﬁsole Driver

Console Driver Functions

The Console Driver has a single entry point. Calling the driver is
done in much the same way as ProDOS MLI calls. See the ProDOS
Technical Reference Manual for details.

Calling the Comnsole Driver

The driver has only one entry point, located at the beginning. Once
the driver has been relocated, its starting address is the entry point
of the driver. A call is made as shown below:

JSR PCONSOLE R
DFB COMMAND

DW PARAMPTR

BNE ERROR_HANDLER

where the label PCONSOLE is the starting address of the driver. You
determine this when deciding where to relocate the driver in memory. In
the calling program, there should be a statement of the form:

Page 32 Chapter 1: The Console Driver

PCONSOLE EQU nnnn
where nnnn is the starting address of the driver.

The JSR is followed by a byte that holds the command value, which is a
number that selects the appropriate Console Driver function. For
specific values, see below.

Following the command value byte is a two-byte pointer to a parameter
list. The format for the parameter list varies according to the Console
Driver function. The specific formats are described below.

The driver returns to the caller with the carry flag clear if no error

- occurred, or with the carry flag set if an error did occur. The calling
program should check the carry flag (the BNE instruction shown above)
and report an appropriate error. The actual error type is passed back
to the caller in the A-register. The error handler can check this value
to determine which error occurred.

Output Data to the Comsole
This call outputs data (both text and control codes) to the Console

Driver. The parameter list is a pointer to a data string followed by a
length value. For example, DATAl would point to

DATAl DFB 39 ;absolute position
DFB 19 ;X position
DFB 15 ;y position
ASC "Hello there!!"

LENGTH1 EQU 16 ;length of DATAIL

calling format:

JSR PCONSOLE
DFB i) ;joutput to screen
DW OUTPUTDATA

parameter list format:

OUTPUTDATA DW DATAL
DW LENGTHI

This call returns no errors<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>