Date - March 4, 1986
Author - Cheryl Ewy

Subject - Event Manager ERS

Document Version Number - 00:40

Revision History .

00:00
00:10

00:20

00:30

00:40

(11-04-85)

(11-25-85)

(01-27-86)

(02-14-86)

(03-04-86)

Initial Release

GetKeys call removed

Version, DoWindows and SetSwitch calls
added

StartUp, Button, StillDown and WaitMouseUp
calls modified

Desk Accessory event added

Support for two buttons added

Switch event handling changed

GetEvQHdr call removed

ChangeFlag added to modifiers

StartUp call modified

Bootlnit, StartUp, ShutDown and Version calls
renamed

Alarm handling removed

Journaling information added

EMReset call added
EMStartUp call modified
Call numbers changed

EMActive call added
EMReset call modified
Error numbers added

OVERVIEW

This document describes the Event Manager which allows applications to
monitor the user's actions, such as those involving the mouse, keyboard, and
keypad. The Event Manager is also used by other parts of the Toolbox; for
instance, the Window Manager uses events to coordinate the ordering and
display of windows on the screen. Although the Event Manager is a single
Toolset, it is conceptually divided into two parts; the Operating System Event
Manager and the Toolbox Event Manager.

The Operating System Event Manager detects low-level, hardware-related
events such as mouse button presses and keystrokes. It stores information
about these events in the event queue and provides routines that access the
queue.

The Operating System Event Manager also allows an application to:

- post its own events into the event queue
- remove events from the event queue

_ - set the system event mask, to control which types of events get posted into
the queue

The Toolbox Event Manager calls the Operating System Event Manager to
retrieve events from the event queue. In addition, it reports window and switch
events, which aren't kept in the queue. The Toolbox Event Manager is the
application's link to its user. A typical event-driven application decides what to
do from moment to moment by asking the Toolbox Event Manager for events
and responding to them one by one in whatever way is appropriate.

The Toolbox Event Manager also allows an application to:

- restrict some of the routines to apply only to certain event types

- directly read the current state of the mouse button

- monitor the location of the mouse

- find out how much time has elapsed since the system last started up

In general, events are collected from a variety of sources and reported to the
application on demand, one at a time. Events aren't necessarily reported in the
order they occurred since some have a higher priority than others.

Note - In the remainder of this document, "OSEM" denotes the Operating
System Event Manager and "TBEM" denotes the Toolbox Event Manager.

Event Manager ERS Apple Confidential Page 2

EVENT TYPES

Events are of various types. Some report actions by the user; others are
generated by the Window Manager, the Control Manager, device drivers, or the
application itself for its own purposes. Some events are handled by the system
before the application ever sees them; others are left for the application to
handle. The event types are as follows:

Mouse Events

Pressing the mouse button generates a mouse-down event, while releasing
the button generates a mouse-up event. Movements of the mouse cause the
cursor position to be updated but are not reported as events. Whenever an
event is posted, the location of the mouse at that time is reported in a field of the
event record. The application can obtain the current mouse position if needed
by calling the TBEM routine GetMouse. Because relative peinting devices such
as joysticks must also be supported, the Event Manager differentiates between
button 0 and button 1.

Keyboard Events

The character keys on the keyboard and keypad generate key-down events
when pressed; this includes all keys except Shift, Caps Lock, Control, Option
and Open-Apple, which are called modifier keys. Modifier keys are treated
differently and generate no keyboard events of their own. Whenever an event is
posted, the state of the moditier keys is reported in a field of the event record.

The character keys on the keyboard and keypad also generate auto-key
events when held down. Two different time intervals are associated with auto-
key events. The first auto-key event is generated after a certain initial delay has
elapsed since the key was originally pressed; this is called the delay to repeat.
-Subsequent auto-key events are then generated each time a certain repeat
interval has elapsed since the last such event: this is called the repeat speed.
The user can change these values with the Control Panel.

Window Event

The Window Manager generates events to coordinate the display of windows
on the screen. Activate events are generated whenever an inactive window
becomes active or an active window becomes inactive. They generally occur in
pairs (that is, one window is deactivated and then another is activated).

Event Manager ERS Apple Confidential Page 3

Update events occur when all or part of a window's contents need to be
drawn or redrawn, usually as a result of the user opening, closing, activating, or
moving a window.

Other Events

A device driver event may be generated by device drivers in certain
situations; for example, a driver might be set up to report an event when its
transmission of data is interrupted. Device driver events are placed in the event
queue with the OSEM procedure PostEvent. :

An application can define as many as four application events of its own and
use them for any desired purpose. Application-defined events are placed in the
event queue with the OSEM procedure PostEvent. -

A switch event is generated by the Control Manager whenever a button-down
event has occured on the switch control.

‘A desk accessory event is generated whenever the user enters the special
keystoke to invoke a "classic” deck accessory (currently control-open apple-
escape). '

A null event is returned by the Event Manager if it has no other events to
report. '

'PRIORITY OF EVENTS

Events are retrieved from the event queue in the order they were originally
posted. However, the way that various types of events are generated and
detected causes some events to have higher priority than others. Also, not all
events are kept in the event queue. Furthermore, when an application asks the
TBEM for an event, it can specify particular types that are of interest which can
cause some events to be passed over in favor of others that were actually
posted later.

The TBEM always returns the highest-priority event available of the requested
types. The priority ranking is as follows:

1. activate (window becoming inactive before window becoming active)
2. switch

3. mouse-down, mouse-up, key-down, auto-key, device driver, application-
defined, desk accessory (all'in FIFO order)

4. update (in front-to-back order of windows)

Event Manager ERS Apple Confidential Page 4

Activate events take priority over all others; they're detected in a special way,
and are never actually placed in the event queue. The TBEM checks for
pending activate events before looking in the event queue, so it will always
return such an event if one is available. Because of the special way activate
events are detected, there can never be more than two such events pending at
the same time; at most there will be one for a window becoming inactive
followed by another for a window becoming active.

Next in priority are switch events which are generated by the Control Manager
and are also not placed in the event queue. If no activate events are pending,
the TBEM checks for a switch event before looking in the event queue. lIfa
switch event is available, the TBEM then checks to see if any update events are
pending, and if so, it returns the update event to the application. The switch
event is not returned to the application until there are no pending update
events. This is to insure that all of the windows are updated before the
application is switched.

Category 3 includes most of the event types. Within this category, events are
retrieved from the queue in the order they were posted.

Next in priority are update events. Like activate and switch events, these are
not placed in the event queue, but are detected in another way. If no higher-
priority event is available, the TBEM checks for windows whose contents need
to be drawn. If it finds one, it returns an update event for that window. Windows
are checked in the order in which they're displayed on the screen, from front to
back, so if two or more windows need to be updated, an update event will be
returned for the frontmost such window.

Finally, if no other event is available, the TBEM returns a null event.
Note: If the queue should become full, the OSEM will begin discarding

old events to make room for new ones as they're posted. The events
discarded are always the oldest ones in the queue.

EVENT RECORDS

Every event is represented internally by an event record containing all pertinent
information about that event. The event record includes the following
information:

- the type of event ‘

- the time the event was posted (in ticks since system startup)

- the location of the mouse at the time the event was posted (in global
coordinates)

Event Manager ERS Apple Confidential Page 5

- the state of the mouse buttons and modifier keys at the time the event was
posted

- any additional information required for a particular type of event, such as
which key the user pressed or which window is being activated

Every event, including null events, has an event record containing this
information.

Event records are defined as follows:

‘what INTEGER {event code}

message LONGINT {event message}

when LONGINT {ticks since startup}
where Point {mouse location}
modifiers INTEGER {modifier flags})

The when field contains the number of ticks since the system last started up,
and the where field gives the location of the mouse, in global coordinates, at the
time the event was posted. The other three fields are described below.

Event Code

The what field of an event record contains an event code identifying the type of
the event. The event codes are assigned as follows:

0 - null event

1 - mouse down event

2 - mouse up event

3 - key down event

4 - undefined

5 - auto-key event

6 - update event

7 - undefined

8 - activate event

9 - switch event
10 - desk accessory event
11 - device driver event
12 - application-defined event
13 - application-defined event
14 - application-defined event
15 - application-defined event

Event Message

The message field of an event record contains the event message, which
conveys additional information about the event. The nature of this information
depends on the event type, as shown in the following table.

Event Manager ERS Apple Confidential Page 6

Event type Event message

Key-down ASCII character code in low-order byte
Auto-key ASCII character code in low-order byte
- Activate Pointer to window

Update Pointer to window

Mouse-down Button number (0 or 1) in low-order word
Mouse-up Button number (0 or 1) in low-order word
Device driver Defined by the device driver

Application Defined by the application

Switch Undefined

Desk Accessory Undefined

Null ~ Undefined

ifier Fl

The modifiers field of an event record contains further information about activate
events and the state of the modifier keys and mouse buttons at the time the
event was posted, as shown below. The application might look at this field to
find out, for instance, whether the Open-Apple key was down when a mouse-
down event was posted (which could affect the way objects are selected) or
when a key-down event was posted (which could mean the user is choosing a
menu item by typing its keyboard equivalent).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KeyPad ChangeFlag
ControlKey ActiveFlag

OptionKey

CapsLock

ShiftKey

AppleKey
BtnOState

BtnlState

Event Manager ERS Apple Confidential Page 7

The ActiveFlag and ChangeFlag bits give further information about activate
events. The ActiveFlag bit is set to 1 if the window pointed to by the event
message is being activated, or 0 if the window is being deactivated. The
ChangeFlag bit is set to 1 if the active window is changing from an application
window to a system window or vice versa. Otherwise, it's set to 0. The KeyPad
bit gives further information about key-down events; it's set to 1 if the key
pressed was on the keypad, or 0 if the key pressed was on the keyboard. The
remaining bits indicate the state of the mouse button and modifier keys. Note
that the BtnOState and Btn1State bits are set to 1 if the corresponding mouse
button is up, whereas the bits for the five modifier keys are set to 1 if their
corresponding keys are down.

EVENT MASKS

Some of the TBEM and OSEM routines can be restricted to operate on a
specific event type or group of types; in other words, the specified event types
are enabled while all others are disabled. For instance, instead of just
requesting the next available event, the application can specifically ask for the
next keyboard event.

An application can specify which event types a particular call applies to by
supplying an event mask as a parameter. This is an integer in which there's
one bit position for each event type, as shown below. The bit position
representing a given type corresponds to the event code for that type—for
example, update events (event code 6) are specified by bit 6 of the mask. A 1in
bit 6 means that this call applies to update events: a 0 means that it doesn't.

15 14 13 12 11 10 S 8 7 6 S 4 3 2 1 0

Device Switch Update Key-down | Mouse-down
driver
Application Desk Activate Auto-key Mouse-up
defined Accessory

Note: Null events can't be disabled; a null event will always be reported
when none of the enabled types of events are available.

There's also a global system event mask that controls which event types get
posted into the event queue by the OSEM. Only event types corresponding to
bits set in the system event mask are posted; all others are ignored. When the
system starts up, the system event mask is set to post all events.

Event Manager ERS Apple Confidential Page 8

USING THE EVENT MANAGER

It an application will be using the Event Manager and the Window Manager, it
must initialize the Event Manager before initializing the Window Manager. The
Event Manager is initialized by calling the TBEM routine EMStartUp. Since the
TBEM needs to share.data with the Window Manager, they must both use the
same zero page work area. When the Window Manager is initialized, it must
call the TBEM routine DoWindows to obtain the address of the zero page work
area which has been assigned to the Event Manager. If DoWindows is not
called, the TBEM will assume that windows are not being used and will not
attempt to return window events.

Event-driven applications have a main loop that repeatedly calls GetNextEvent
to retrieve the next available event, and then takes whatever action is
appropriate for each type of event. Some typical responses to commonly
occurring events are described below. The program is expected to respond
only to those events that are directly related to its own operations. After calling
GetNextEvent, it should test the Boolean result to find out whether it needs to
respond to the event: TRUE means the event may be of interest to the
application; FALSE usually means it will not be of interest.

In some cases, the application may simply want to look at a pending event while
leaving it available for subsequent retrieval by GetNextEvent. It can do this with
the TBEM routine EventAvail.

R nding to M Event

On receiving a mouse-down event, an application should first call the Window
Manager to find out where on the screen the mouse button was pressed, and
then respond in whatever way is appropriate. Depending on the part of the
screen in which the button was pressed, this may involve calls to Toolbox
routines in the Menu Manager, the Desk Manager, the Window Manager, or the
Control Manager.

If the application attaches some special significance to pressing a modifier key
along with the mouse button, it can discover the state of that modifier key when
the mouse button was down by examining the appropriate flag in the modifiers
field of the event record.

If the application wishes to respond to mouse double-clicks, it will have to detect
them itself. It can do so by comparing the time and location of a mouse-up
event with those of the immediately following mouse-down event. It should
assume a double-click has occurred if both of the following are true:

Event Manager ERS Apple Confidential Page 9

- The times of the mouse-up event and the mouse-down event differ by a
number of ticks less than or equal to the value returned by the TBEM
function GetDblITime.

- The locations of the two mouse-down events separated by the mouse-up
event are sufficiently close to each other. Exactly what this means depends
on the particular application. For instance, in a word-processing
application, two locations might be considered essentially the same if they
fall on the same character, whereas in a graphics application they might be
considered essentially the same if the sum of the horizontal and vertical
changes in position is no more than five pixels.

Mouse-up events may be significant in other ways; for example, they might
signal the end of dragging to select more than one object. Most simple
applications, however, will ignore mouse-up events. :

Responding to Keyboard Events

For a key-down event, the application should first check the modifiers field to
see whether the character was typed with the Open-Apple key held down: if so,
the user may have been choosing a menu item by typing its keyboard
equivalent.

If the key-down event was not a menu command, the application should then
respond to the event in whatever way is appropriate. For example, if one of the
windows is active, it might want to insert the typed character into the active
document; it none of the windows is active, it might want to ignore the event.

Usually the application can handle auto-key events the same as Key-down
events. It may, however, want to ignore auto-key events that invoke commands
that shouldn't be continually repeated.

BResponding to Window Events

When the application receives an activate event for one of its own windows, the
Window Manager will already have done all of the normal "housekeeping"
associated with the event, such as highlighting or unhighlighting the window.
The application can then take any further action that it may require, such as
showing or hiding a scroll bar or highlighting or unhighlighting a selection.

On receiving an update event for one of its own windows, the application should
usually update the contents of the window.

R nding t ther Event

An application will never receive a desk accessory event since these are
intercepted and handled by the Desk Manager.

Event Manager ERS Apple Confidential Page 10

If the application receives a switch event, it should call a (currently unnamed)
routine in the Switcher which will save the current state and switch to the next
application.

Posting and Removing Events

If an application is using application-defined events, it will need to call the
OSEM function PostEvent to post them into the event queue. Device drivers
can post events the same way. This function is sometimes also useful for
reposting events that have been removed from the event queue with
GetNextEvent.

In some situations an application may want to remove from the event queue
some or all events of a certain type or types. It can do this with the OSEM
procedure FlushEvents.

ther ration

In addition to receiving the user's mouse and keyboard actions in the form of
events, applications can directly read the mouse location and state of the
mouse buttons by calling the TBEM routines GetMouse and Button,
respectively. To follow the mouse when the user moves it with the button down,
the application can use the TBEM routines StillDown or WaitMouseUp.

The TBEM function TickCount returns the number of ticks since the last system
startup. This value can be compared to the when field of an event record to
discover the delay since that event was posted.

The TBEM function GetCaretTime returns the number of ticks between blinks of
the "caret” (usually a vertical bar) marking the insertion point in editable text. An
application should call GetCaretTime if it is causing the caret to blink itself. The
application would check this value each time through the main event loop to
ensure a constant frequency of blinking.

Applications should never call the TBEM routines DoWindows and SetSwitch,

and will probably never call the OSEM routines GetOSEvent, OSEventAvail and
SetEventMask.

TOOLBOX EVENT MANAGER ROUTINES

HouseKeeping

EMBootInit Call # 1

Event Manager ERS Apple Confidential Page 11

EMBootlnit is called at boot time. It does nothing.

EMStartUp Call # 2
input ZeroPageAdrs INTEGER
input QueueSize INTEGER
input XMinClamp INTEGER
input XMaxClamp INTEGER
input YMinClamp INTEGER
input YMaxClamp INTEGER
input ProgramID INTEGER

EMStartUp initializes the Event Manager. ZeroPageAdrs is the starting
address in Bank 0 of a 1-page work area assigned to the Event Manager.

- QueueSize specifies the maximum number of event records the queue can
hold. If QueueSize is 0, a default size of 20 will be used. If QueueSize is
greater than 3639, an error will be returned and the Event Manager will not be
initialized. The Clamp inputs specify the minimum and maximum X andY
clamps for the mouse. Before the Event Manager passes the clamp values to
the mouse, it will decrement XMaxClamp and YMaxClamp by one. ProgramiD
is the ID the Event Manager will use when getting memory from the Memory
Manager. If the event queue cannot be allocated due to insufficient memoaory, an
error will be returned and the Event Manager will not be initialized. Duplicate
EMStantUp calls will cause an error to be returned.

EMShutDown Call # 3

EMShutDown shuts down the Event 'Manager and releases any workspace
allocated to it.

EMVersion Call # 4

output VersionInfo INTEGER
EMVersion returns identifying information for the Event Manager.
EMReset Call # 5
EMReset returns an error if the Event Manager is active, otherwise it does

nothing.

EMActive Call # 6

output ActiveFlag INTEGER

Event Manager ERS Apple Confidential Page 12

EMActive returns a non-zero value if the Event Manager is active, otherwise it
returns a C.

DoWindows Call # 9
output ZeroPageAdrs INTEGER

DoWindows is called by the Window Manager when it is initialized. It returns
the address of the zero page work area used by the Event Manager. The
Window Manager will use the high end of this area while the Event Manager
will use the low end. This routine should not be called by an application.

Accessing Events

GetNextEvent Call # 10
input EventMask INTEGER
input EventPtr POINTER to an EventRecord
output Result BOOLEAN

GetNextEvent returns the next available event of a specified type or types and, if
the event is in the event queue, removes it from the queue. The eventis
returned in the event record pointed to by EventPtr. EventMask specifies which
event types are of interest. GetNextEvent returns the next available event of any
type designated by the mask, subject to the priority rules discussed above
under "Priority of Events". If no event of any of the designated types is available,
GetNextEvent returns a null event.

Events in the queue that aren't designated in the mask are left in the queue.
They can be removed by calling the OSEM procedure FlushEvents.

Before reporting an event to the application, GetNextEvent first calls the Desk
Manager function SystemEvent to see whether the system wants to intercept
and respond to the event. If so, or if the event being reported is a null event,
‘GetNextEvent returns a function result of FALSE; a function result of TRUE -
means that the application should handle the event itself. The Desk Manager
intercepts the following events:

- desk accessory events

- activate and update events directed to a desk accessory

- mouse-up and keyboard events, if the currently active window belongs to a
desk accessory

In each case, the event is intercepted by the Desk Manager only if the desk
accessory can handle that type of event; however, as a rule all desk
accessories should be set up to handle activate, update, and keyboard events
and should not handle mouse-up events.

Event Manager ERS Apple Confidential Page 13

EventAvail Call # 11

input EventMask INTEGER
input EventPtr POINTER to an EventRecord
output Result BOOLEAN

EventAvail works exactly the same as GetNextEvent except that if the event is in
the event queue, it's left there.

Note: An event returned by EventAvail will not be accessible later if in the
meantime the queue becomes full and the event is discarded from it; since
the events discarded are always the oldest ones in the quevue.

R ing the M
GetMouse Call # 12
input MouseLocPtr POINTER to a Point

GetMouse returns the current mouse location in the record pointed to by
MouselocPtr. The location is given in the local coordinate system of the current
gratPort (which might be, for example, the currently active window). Notice that
this differs from the mouse location stored in the where field of an event record;
that location is always in global coordinates.

Button Call # 13
input ButtonNum INTEGER
output Result BOOLEAN

The Button function returns TRUE if the mouse button is currently down, and
FALSE if itisn't. ButtonNum contains the number (0 or 1) of the button to check.
~An error is returned if ButtonNum is not 0 or 1.

StillDown Call # 14
input ButtonNum INTEGER

output Result BOOLEAN

Usually called after a mouse-down event, StillDown tests whether the mouse
button i3 still down. ButtonNum contains the number (0 or 1) of the button to
check. StillDown returns TRUE if the button is currently down and there are no
more mouse events (for the specified button) pending in the event queue. This
is a true test of whether the button is still down from the original press—unlike
Button (above), which returns TRUE whenever the button is currently down,

Event Manager ERS Apple Confidential Page 14

even if it has been released and pressed again since the original mouse-down
event. An erroris returned if ButtonNum is not 0 or 1.

WaitMouseUp Call # 15
input ButtonNum INTEGER
output Result BOOLEAN

WaitMouseUp works exactly the same as StillDown (above), except that if the
button is not still down from the original press, WaitMouseUp removes the
preceding mouse-up event before returning FALSE. If, for instance, the
application attaches some special significance both to mouse double-clicks and
to mouse-up events, this function would allow the application to recognize a
double-click without being confused by the intervening mouse-up. An error is
returned if ButtonNum is not 0 or 1.

Mi llan Routin
TickCount Call #16
output Count LONGINT

TickCount returns the current number of ticks (sixtieths of a second) since the
system last started up. Applications should not rely on the tick count being
exact. The tick count is incremented during the VBL interrupt, but it's possible
for this interrupt to be disabled. Furthermore, applications should not rely on the
tick count being incremented to a certain value, such as testing whether it has
become equal to its old value plus 1. They should check instead for "greater

than or equal to" (since an interrupt task may keep control for more than one
tick.)

GetDblTime Call # 17

output MaxTicks LONGINT

GetDbITime returns the suggested maximum difference (in ticks) that should
exist between the times of a mouse-up event and a mouse-down event for those
two mouse clicks to be considered a double-click. The user can adjust this
value by means of the Control Panel. ‘

GetCaretTime Call # 18
output NumTicks LONGINT
GetCaretTime returns the time (in ticks) between blinks of the "caret" (usually a

vertical bar) marking the insertion point in editable text. If an application is not
using TextEdit, it will need to cause the caret to blink itself. On every pass

Event Manager ERS Apple Confidential Page 15

through the program's main event loop, it should check this value against the
elapsed time since the last blink of the caret. The user can adjust this value by
means of the Control Panel.

SetSwitch Call # 19

SetSwitch is called by the Control Manager to inform the TBEM of a pending
switch event. This routine should not be called by an application.

OPERATING SYSTEM EVENT MANAGER ROUTINES

ting and Removin vent

PostEvent Call # 20
input EventCode INTEGER
input EventMsg LONGINT
output Result INTEGER

PostEvent places in the event queue an event of the type designated by
EventCode, with the event message specified by EventMsg and with the current
time, mouse location, and state of the modifier keys and mouse buttons. It
returns a result code equal to one of the following values:

0 - event posted
1 - event type not designated in system event mask

An error is returned if EventCode is greater than 15.

When PostEvent is called to post a keyboard or mouse event, the current state
of the modifier keys and mouse buttons must be supplied in the high-order
word of the event message. The information is then moved into the modifiers
word of the event record. '

Applications should be very careful when posting any events other than their
own application-defined events into the queue. Attempting to post an activate
or update event, for example, will interfere with the internal operation of the
TBEM, since such events aren't normally placed in the queue at all.

Note: If PostEvent is used to repost an event, the event time, mouse
location, and state of the modifier keys and mouse buttons will all be
changed from their values when the event was originally posted, possibly
altering the meaning of the event.

Event Manager ERS Apple Confidential Page 16

FlushEvents Call # 21

input EventMask INTEGER
input StopMask INTEGER
output Result INTEGER

FlushEvents removes events from the event queue as specified by the given
event masks. It removes all events of the type or types specified by EventMask,
up to but not including the first event of any type specified by StopMask. If the
event queue doesn't contain any events of the types specified by EventMask, it
does nothing. To remove all events specified by EventMask, use a StopMask
value of 0. On exit from this routine, Result contains 0 if all events were
removed from the queue or, if not, an event code specifying the type of event
that caused the removal process to stop.

° Accessing Events

GetOSEvent Call # 22
input EventMask INTEGER
input EventPtr POINTER to an EventRecord
output Result BOOLEAN

GetOSEvent returns the next available event of a specified type or types and
removes it from the event queue. The event is returned in the event record
pointed to by EventPtr. EventMask specifies which event types are of interest.
GetOSEvent will return the next available event of any type designated by the
mask. If no event of any of the designated types is available, GetOSEvent
returns a null event and a function result of FALSE; otherwise it returns TRUE.

Unlike the TBEM function GetNextEvent, GetOSEvent doesn't call the Desk
Manager to see whether the system wants to intercept and respond to the event.

OSEventAvail Call # 23
input EventMask INTEGER
input - EventPtr POINTER to an EventRecord
output Result BOOLEAN

OSEventAvail works exactly the same as GetOSEvent (above) except that it
doesn't remove the event from the event queue.

Note: An event returned by OSEventAvail will not be accessible later if in the

meantime the queue becomes full and the event is discarded from it; since the
events discarded are always the oldest ones in the queue.

Event Manager ERS Apple Confidential Page 17

i llaneo Routin
SetEventMask Call # 24
input TheMask INTEGER

SetEventMask sets the system event mask to the specified event mask. The
OSEM will post only those event types that correspond to bits set in the mask.
(As usual, it will not post activate, update or switch events, which are not stored
in the event queue.) The system event mask is initially set to post all events.

Note: Because desk accessories may rely on receiving certain types of
events, an application should not change the system event mask.

THE JOURNALING MECHANISM

The Event Manager contains hooks to support journaling. Journaling
"decouples” the Event Manager from the user and feeds it events from a file
which contains a recording of all the events that occurred during some portion
of a user's session. Specifically, this file is a recording of all calls to the TBEM
routines GetNextEvent, EventAvail, GetMouse, Button and TickCount. When a
journal is being recorded, every call to any of these routines is sent to a
journaling device driver, which records the call (and the results of the call) in a
file. When the journal is played back, these recorded TBEM calls are taken from
the journal file and sent directly to the TBEM. The result is that the recorded

sequence of user-generated events is reproduced when the journal is played
back.

The journaling device driver does not currently exist but hooks are in the Event
Manager so that one could be written in the future. The Event Manager calls the
journaling device driver by jumping through the long address stored at
$E100ES. This address is set to $000000 when EMStartUp is executed. A
word at $E100E7 (JournalFlag) controls whether journaling is active, and if so, if
it is in recording or play back mode. I JournalFiag is set to 0, journaling is not
active. If JournalFiag is non-zero, journaling is active. A positive value
indicates recording mode and a negative value indicates play back mode.
JournaiFlag is set to $00 when EMStartUp is executed. ‘

It journaling is active, the TBEM routines GetNextEvent, EventAvail, GetMovuse,
Button and TickCount will push information on the stack and do a JSL to the
journaling device driver whose address is at $E100E9. The journaling driver
should remove the information from the stack before returning. The information
pushed on the stack is as follows -

JournalFlag INTEGER
JournalCode INTEGER
ResultPtr POINTER

Event Manager ERS Apple Coniidential Page 18

JournalFlag is the current value stored at $E100E7. JournalCode is a code
indicating which routine the journaling driver is being called from. ResultPtris a

pointer to the actual data being returned by the routine (for example, a pointer to
an event record for GetNextEvent).

Routine

TickCount
GetMouse
Button
GetNextEvent
EventAvail

ResultPtr points to JournalCode

Long Word
Point
Boolean
Event Record
Event Record

AL N2O

EVENT MANAGER ERROR CODES

$0601
$0602
$0603
$0604
$0605
$0606
$0607

Event Manager ERS

Duplicate EMStartUp call

Reset error

Event Manager not active

lllegal event code

lllegal button number

Queue size too large

Not enough memory available for queue

Apple Confidential Page 19

