
The Tool Locator
External Reference Specif ication

Steven E. Glass
February 19, 1986

f.

Revised 11t21/85 (by Steven Gtass)
Combines previous documents.
Changes calling mechanism and parameter passing
Calls must be made from full native mode!

Revised 2119/86 (by Steven Gtass)
Adds new required calls.

I

Tool Locator ERS February 19, 1996

Preface

This document replaces two previous documents: "A Framework forjg*::*,lqloM- and RAM-Based roors in corrand"-;d ;w;ting ano cauins
Cortland Tools.' I have combined the information in the two, into thiõ single ERS.This ERS has a little more background informatíon in it than most ERS bùt Iprovide the information so that the reader may understand wny óertain design
decísions have been made.

lntroduction

ln order to make Cortland as attractive as possible, we will include a number olsottware tools in.ROM. This approach makes the tools available to att progiams
without using disk space and wifrout the need to riñx tool libraries to apptications.

Because there is never enough RoM to go around and because there will be
Prgs in the RoM, some toors-wiil end upTn RAM from day onã, áná óìhers w¡tr
havq to migrate there between ROM revisions in the form'of RÁM OaieO ROMp€tches' 'This suggests we develop a "ROM/RAM tools standard" iãtf.rer than a'BOM tools standard."

This,docuTeît.gives a framework for implementing ROM/RAM based toots onCortland. lt defines an elementary.unít of softwarË packaging
"all"d

a toot setand an elementary.unit of service called a function. norghri, ã ioã set, whichconsists of related funclions, is a complete software tool oia'm4oiéubset ot a
sottware tool. Each function is an "eniry point" of the tool set tf.rai performs afundamental operation. Additionaly, thié ERS describes the toot sèt whose job ir isto allow tools and.applications to éommunicate amongst il.l.rnreruès;tnisroot seris called the Tool Locator.

DEFINITIONS

A function is a fundamental.operation that converts zero or more inputs to zeroor more outputs and side effects. For example, allocate memory änd multiflysingle precision floating point are functions.

A tool set is a group of logically related functions. For example, a memory
manager is a tool set that implements such related functions ås allocate
memory, free memory, etc. A tool set is to be implemented.as a síngle code
module.

Steven Glass Page 2

Tool Localor ERS February 19, 1986

The Tool Locator is the particular tool set which allows tools and applications to
communicate.

A tool configuration is a collection of tool sets, some of which may be in ROM
and some of which may be in RAM.

A level of support is a tool configuration that is appropriate to support a given
class of application.

An operatinE system is a program that manages use of some or all of the
resources of a compuler system. The set of Apple // operating systems includes
DOS, ProDOS, and UCSD Pascal.

An operating environment is a specific configuration of hardware, operational
modes (e.9., 'native mode,"'emulalion mode"), operaling system, and tool
co{guçtio¡ defined by Apple. For example, one operating environment might
be "ProDOS running on a 256Kby Cortland with one 3.5" floppy drive and the
standard set of ROM based tools." ln most cases, the level of detail needed to
describe an operating environment wíll be much greater than this.

An application is a program that provides a set of services direclly relevant to a
user's task. Examples include spreadsheets, compilers, assemblers, database
managers, text editors, word processors, file management utilities, etc.

An environment switcher is a program that can establish any of the defined
operating environments on a computer system.

A desktop manager is a program that'identifies available applications,
provides a way for users to choose an application to run, establishes the
operat¡ng environment by calling the environment switcher, and makes various
desk accessories (such as calculator, clock, calendar, notepad) available to
users.

Emulation mode is the operational mode ol the 65816 when the E control bit is
set to 1. ln this mode, the 65816 behaves much like a 6502.

Full Native mode is the operational mode of the 65816 when the E, M, and X
control bits are set to 0.

Mired Native mode is the operational mode of the 65816 when the E control
bit is set to zero but either M or X or both are set to one.

Steven Glass Page 3

ToolLocator ERS February 19, 1986

Assembly Language Conventions

BYTE expr assembles a byte containing the given expressíon value
WORD expr assembles a 2-byte word conta¡ning the given value.
LONG expr assembles a 4-byte location conta¡ning the given value.
BLOCK expr reserves a block of storage consisting of erpr bytes.

SUGGESTED CHARACTEFISTICS OF TOOL SETS

This section lists characteristics intended to maximize the etf¡ciency, usefulness,
flexibility, and implementabil¡ty of ROM and RAM based tool sets without
unnecessary constraints. lt is not suggested that we rewrite any existing code
along these lines, although, in some cases, it may be desirable to do so.

11l Full Native mode. Whenever possible (which wíll be almost always) new
tool sets should use native mode. ln general, this increases speed and
decreases code size compared to emulation mode. Since there is a long-
term desire to migrate all code to native mode, writing tool sets this way will
minimize mode switching over the long term.

12) 'ROMability." All tool sets should be written assuming they will be placed in
ROM. This might not happen in early versions of Cortland, but the machine
has l Mby of ROM address space, so things could change.

l3l Position independent code. All tool sets should be written in position
independent codæode that executes properly without relocation no matter
where it is placed in memory (assuming it does not straddle a bank
boundary). This sirnplifies the use of loadable tool sets with acceptable
impact on performance.

l4l Standard ¡nterface. From the caller's viewpoint, there should be one
standard protocol for calls to funstions in tool sets. ln particular, the caller
should not need to know if the called lunction is in ROM or RAM or if it is a
RAM based ROM patch of an entire tool set or only a single function.

15] New tool sets should be accessible to programs in a straightfonrrard manner
While it would be nice to allow both native mode and emulatíon mode
prpgrams to use new tools, the tools need to be etficient when in native
mode even at the expense of emulation mode programs.

l6l Dynamically assigned workspace. New tool sets should not use any fixed
RAM locations for work space. All work space must be obtained from the
Memory Manager. This avoids memory conflicis such as those caused by
fixed usage of 'screen holes." A limited set of exceptions to this rule will be
discussed later.

Steven Glass Page 4

Tool Locator ERS February 19, 1986

m Simple interupt env¡ronment. All new functions must either be reentrant or
must disable interrupts during execution. Because each approach has
significant costs, the designer must consider this decision very carefully.
Most functions, especially those that execute in less than 500ps, will
probably choose to d¡sable ¡nterrupts. More time consuming functions
should probably also choose to disable interrupts, especially if they are
executed rarely.

t8l Few fixed ROM addresses. ln order to minimize the impact of ROM updates
and RAM based ROM patches, the interface to ROM based functíons must
avoid having lots of fixed ROM entry poínts. lt must be possible for the
system 1o construct a RAM-resident table of all funAion entry po¡nts at
system initialization ti me.

tgl Functions must restore the calle/s execution environment before returning
control to the caller.

[10] O. S. independence. Functions may not assume the presence of any
operating system.

OUTLINE OF AN IMPLEMENTATION

This sec:rcn describes the essential features of a tool locator system that has
most of the above characteristics.

AddressinE Tool Sets and Functions

Each tool set is assigned a permanenf tool number. Assignment starts at one
and contínues wíth each successive integer. Each function within a tool set is
assigned a permanenl function number. For the functions within each tool set,
assignment starts at one and continues with each successive integer. Thus, each
function has a unique, permanent identifier of the form (TSNum,FuncNum).

Both the TSNUm and FuncNum are I bit numbers.

Steven Glass Page 5

Tool Locator ERS February 19, 1986

So far, the following are ass¡gned

Tool Set
Number

Descriptions

Tool Locator
Memory Manager
Misc. Tools
QuickDraw ll
Desk Manager
Event Manger
Scheduler
Sound Manager
FDB Tools
SANE

For each Tool Set, the following calls must be present

FuncNum Descriptions

boot initialization function for each tool set
application startup function for each tool set
application shutdown func'tion for each tool set
version information
Reset
Reserved
Reserveci
Reserved

The boot initialization funclion is executed at boot time either by the ROM startup
code or when the tool is installed in the system.

The application startup funstion is called by the application before using the tooi
A tool uses this call to obtain initialization information from the application that is
going to use it. For example, an tool may require space in bank zero for zero
page and it gets it from the application on this call. An initializat¡on function
needs to check if the tool is already active. lf it is aclive it should return an
"already initialized" enor and do nothing. Multiple initializations are No-ops.

The application shutdown func'tion is called by the application before it
terminates. A tool should release any memory it has obtained in the name of the
application at this time.

All tool's will retum version information in the same form: a word. The high byte ol
the word will indicate the major release number (starting with 1). The low byie ol
the word will indicate the minor release number (starting with 0). The most

0

1

2
3
4
5
6
7
I
o

1

1

2
3
4

b
7
I

Steven Glass Page 6

TootLocator ERS
February 19, 19g6

significant þit of the of the word indicates wl'iether the code is an official release ora prototype (set ímplies prototype). Tnãir läîäî¡åiii''aion between arpha, beta orother prorotype rereases'otnei inãn wnet¡eioiiõñï'¡. a prototype.

P Major Minor

The reset function is called whenever ¡eset occurs. lf a tool is actíve, it needs todo whatever makes stnse tor ieset. ¡t a iòo-icãnñ'ot continue afier reset, it shourdreturn a'cannot reset" error. tfããt toot retuinðìn'ã"or on reset, the toor rocatorwiil force a system death ãtt.iin" bst toor has been reset.

Structure of Tool Sets

,H,I?1 hiffitå::úïtem
proposed here requíres no rixed RoM rocatíons and a

How do we perform this magic? Ail. functions are accessed through the toorlocator via their too.l set nrmiãi ãng tu¡âiirn *;Ër. The_Toot LËcator uses thetoot set number ro rínd an enirv ¡n tne rooiÞolñtä1.ïabre ffpr). This tabrecontains pointers to Function Éoini., raotes ¡ËËi) Each roor ser has an Fprcontaining pointers to the ino¡viãuà runct¡õnd ¡å iíå toor set. The Toor Locatoruses the function number tol¡àã tñ. addresJ.i ih; funaion being ca¡ed.
Each toor in Roru'l hqs an Fpr in RgM. There is arso.l IpI in FroM poínring to a'the FPT' in FloM'. onè fixed'iÀM rocation is-ñ.î t. poin¡o this îpr in FroM.rhís locatíon is initEli1ão åi;åü;up and *arm¡;àì'ov 1.,èl¡i*,iår. rn this waythe address of tne rÞi¡ã R'óM e;"s not ever have to oä f¡xeã. wJcän change ir
3::y.tiËiii,l,ïiÌ" the rirmwaiJàs rong al tr''ãJi'r*"re initiarize!Jrre Rnrvr-

The TpT has the foilowíng form:

Count (4 bvtes)
Pointerto ÍS l'
Pointer to TS 2

(4 bytes)
(4 byres)

Steven Glass
Page 7

Tool Locator ERS February 19, 1986

An FPT has the following form:

Count (4 bytes)
(Pointer to F1) - 1 (4
(Pointer to F2) - 1 (4

s
s

byte
byte

)

)

ln both tables, the count is the number of entries plus 1.

Tools are to obtain any memory they need dynamically (using as little fixed
memory as possible). To use memory obtained through a memory manager, a
tool needs some way to find out where its data strustures are. The tool locator
system maintains a table of work area pointers for the individual tools. The Work
Area Pointer Table (WAPT) is a table of pointers to the work areas of individual
tools. Each tool will have an entry in the WAPT for its own use. Entries are
assigned by tool number (tool four has entry four and so on). A pointer to the
WAPT must be kept in RAM at a fixed memory location so that space for the table
can be allocated dynamically. At firmware initialization time, the pointer to the
WAPT is set to zero.

Summary of Terms

Tool Pointer Table (TPT)
This is the table of pointers to indivdual Function Pointer Tabtes.

Funclion Pointer Tabie (FFT)
This is the table of pointers to the functions in an individual tool set.

work Area Pointer Table (WAPT)
This is the place a tool keeps a pointer to its work area.

User Tools and System Tools

The Tool Locator System proposed here is so flexible that individual application
writers may want to write their own tool sets to use in their applications. The
problem comes up when we have to assign tool set numbers. Rather than trying
to reserve tool set numbers for tools we have not yet written (to reserve space in
the TPT), the Tool Locator System will support both system tools and user tools.

Steven Glass Page I

C' ToolLocator ERS February 19, 1986

Permanently Reserved BAM

The tool locator system permanently reserves some space in bank $Et ¡. lt is
used as follows:

(4 by) Pointer to the active TPT. This will point to the ROM based TPT ¡f there
are no RAM based tool sets and no RAM based ROM patches.
Othenryise, it will point to a RAM based TPT.

(4 by)

(4 bv)

(4 by)

(16 by)

Pointer to the astive use/s TPT. This will be zero initially, indicating that
no user tools are present.

Pointer to the Work Area Pointer Table (WAPT). The WAPT parallets the
TPT. Each WAPT entry is a pointer to a work area assigned to the
.coresponding tool set. At startup time, each WAPT entry is set to zero,
ìndicating no assigned work area.

Pôinter to the use/s Work Area Pointer Table (WAPT).

Entry points to the dispatcher

This is the only RAM permanently reserved by the tool locator system.

Tool Locator System lnitialization

Each tool set must be initialized before use by app.lication programs. Two types
of initialization are needed: boot initialization and application initialization. Boot
initialization occurs at system startup time (boot time); regardless of the
applications to be executed, the system calls the boot initialization function of
every tool set. Thus, each tool set must have a boot initialization routíne
(FuncNum = 1), even if it does nothing. This function has no input or output
parameters.

Applicalion in¡tial¡zation occurs during application execution. The applícation
calls the application startup function (FuncNum=2) ol each tool set that it will use.
The application startup function performs the chores needed to stañup the tool set
so the application can use it. This functíon may have inputs and outputs. Each
tool set will define what they are. A common input will be the address of space in
bank zero that the tool can use.

The application shutdown function (FuncNum=3) should be executed as soon as
the application no longer needs to use the tool set because it releases the
resources used by the tool set. As a precaution against applications that forget to
execute. the shutdown function, the startup function should eíther execute the
shutdown function itself or do something else to assure a reasonable startup

Steven Glass Page 9

Tool Locator ERS February 19, 1986

state. This funstion may have inputs and outputs as well. Again they are defined
by the individual tool sets.

The provision of two initialization t¡mes reflects the needs of currently envisioned
tool sets. For example, the Memory Manager will require boot time initialization
because it musl operate properly even before any application has been loaded.
On the other hand', SANE ority n-eeOs to be initialiied it tfre system executes some
applicatíon or desk accessory that uses it. lnitializing only the tool sets that wilt be
used saves resources, particularly RAM.

System startup code must copy the ROM based pointer to the TPT to the fixed
RAM locatíon and then call the the tool locator boot initialization routine
(TSNum=1 , FuncNum=1).

The firmware initial¡zation routíne will

1. 'lnitialize the four RAM pointers described above.

2. Call the Tool Locator boot initialization functíon (l'SNum=1,
FuncNum=1), which will do the followíng:

a. Call the memory manager boot initialization funclion (TSNum=2,
FuncNum=1), which will initialize its private workspace as weil as
any other workspace it needs to ind¡cate the initial reservation
status of all of memory.

b. Determine the number of tool sets.

c. call the memory manager to allocate space for the wApr, and
initialize all WAPT entries to zero.

d. Successively call the boot initialization function of every tool set
stañing with TSNuTTì=3.

There are several poínts to keep in mind:

The lnitialization Function does not load RAM based tool sets.

The memory manager boot initíalization funclion needs reserved private
workspace because it has no other way to find workspace. This function
must find and catalog all available RAM.

Boot lnitialization functions and Application lnitialization functions operate
in the standard execution environment for functions. This is described later.

Steven Glass Page '10

Tool Locdor ERS February 19, 1986

Each tool set designer must determine how to spl¡t initialization tasks
between the module's boot ¡n¡t¡al¡zation function and its application
i nitializalion funstion.

Disk and RAM Structure of Tool Sets

This seaion discusses additional details of dynamically loaded, RAM based tool
sets and of RAM based ROM patches. The exact form of tool set on disk is
undecided at this time. Our goal is that Tool Sets will be kept in simple load
modules which can be dynamically loaded into memory whenever they are
needed. Still unresolved is

1. Naming conventions. W¡ll the tools be in single file with a specific name
(e.9. system.tools) or will we use a file type and/or sutfix (e.9.
graphics.tools, math.tools, window.tools, desk.tools)

2" Loading convent¡ons. How will an application cause tools to be
loaded? What il they are aiready in memory (used by the finder which
launched the application)? What il they were on the finder disk and the
application disk?

3. Forcing a particular version. Can an application force a partícular
version of a tool to be used?

I'landling FAM Based Tool Sets

The routine which causes a tool to be loaded will be responsible for calling the
boot initialization function ol each RAM based tool set after it loads it and installs it
in the TPT. This raises the possibility of double execution of a tool set's boot
inilialization function-ROM based boot initialization function at boot time which is
called again when a RAM based patch is loaded and initialized. Thus, each
RAM based boot initialization function must be able to 1) undo the effect of its
corresponding ROM based boot inrtialization function (if any) and 2) perform its
own initialization processing.

The main uses of RAM based tool sets are to accommodate tools that could not fit
in ROM and to allow patches of erroneous ROM code. The first usage is simple
because an enlire tool set is loaded into RAM from disk. The second case is
more complex because we may want to patch only a few of the functions in a
given tool set.

We can add RAM based tool sets or patches by building a new TPT. The new
TPT contains all the entries in the old TPT except for the newly added RAM based

Steven Glass Page 1 1

Tool Locaor ERS February 19, 1986

tools and/or patches.
sens¡ble way.

The Tool Locator provides a single calt to handie this in a

The biggest problem with patches of this kind is significant restrictions on how
things are implemented. For example, a patch hai no simple way to access local
subroutines and constanl data in the main body of the original tool set without
prior agreement on some convention that makes access to these items
independent of their RoM addresses. For example, the boot initialization function
of a tool set could put a pointer to a subroutine or data address table into its work
area, thus making it accessible to the RAM based code. These conventions need
to be worked out in detail by each tool set designer.

INTERFACE BETWEEN APPLICATIONS AND FUNCTION CALL
DISPATCH ER

The Goals. ln developing a call mechanism we are trying to find one that is
fasJ, compact and easialy callable from a high level language. We do not want
calls to tools to take so long that no program could afford thè time to make them;
we do not want calls to take up so much space that a program could not afford
the space to make them; we do not want high level languãges to use so much
glue to make tool calls that high level languãge use will bdd¡scouraged.

lasl History. We have two precedents to look at in the Apple ll (6502) wortd.
PToDOS and all the Apple ll tool kits are called with the following ensemble:

jsr EntryPoint
byte callNumber
word ParameterTable

On the Apple ///, SOS was called with the following slightly different ensemble:

brk
byte callNumber' word ParameterTable

Both schemes le4 to a relatively small amount of code in line and relatively
qlick execution. But they do not allow for easy high level language interfaie.
(See the appendix on the path not taken for how we could have uÉed this kind of
scheme on Cortland.)

A high Þvel language would like to call tools just like ii calls any other
subroutines. A compíler wants to generate the following code fôr a procedure X.

procedure X (p1, p2,..., pn)

Steven Glass Page 12

('''
Tool Locator ERS February 19, 1986

push p1
push p2

push pn
jsl X

A compiler also wants to generate similar code for a function Y.

function Y (p1, p2,..., pn) : value

push ValueSpace
push p1
push p2

push pn
jsl Y

ISSUING THE CALL THFOUGH THE DISPATCHER

Our dispatching scheme looks very similar to the code generated by the compiler

push inputs
ldx #TSNum+FuncNum'256
jsl Dispatch
bcs HandleError (optional, usualfy not requirecl)

The inputs look the same on the stack but the call number and error information
are passed in registers. A high level language will have to use a small glue
routine to handle this. The calling code and glue will look like .

Push lnputn
jsl Glue

Glue
ldx #TSNum+FuncNum'256
jsl Dispatch2
bcs HandleError
rtl

The glue calls a different entry point because there is an extra three bytes of
return address information on the stack. The two different entry points make the

I

putl
pul2

n

n
Push
Push

(optíonal, usually not required)

Steven Glass Page 13

Tool Locator ERS February 19, 1986

stack look the same to the fucntion being called. (lt would not do to have the
inputs be at different depths on the stack depending on how a function is called)

What About Speed? The scheme presented so far fulfills most of the
requirements outlined earlier. Unfortunately, there is overhead associated with
making a function call. Current estimates suggest that call dispatch willtake
about 118 micro seconds. For most calls, this is fast enough, but not for all calls
lndividual tool sets may set up conventions for calling some of theír functions
direaly.

Return from the Call

Upon completion of the call, the function call returns control directly back to the
calling routine. Some tool sets will support returning errors on some functions
lf they do, the convention is as follows:

C Flag indicates error
A-register contains error code

The state of all flags and registers is summarized as follows:

As set by function
As set by function
Unchanged (must be 0)
Unchanged (must be 0)
Set to 0
Unchanged
As set by function
As set by fucntion or error flag
Unchanged (must be 0)

As set by fucntion or A=0 successful call, A;¿0 error code
As Set by function
As Set by function
Parameters have been removed from stack
Unchanged
See list of flags above
Unchanged
Unchanged
Address following call

Note that "unchanged" means "same as value just before function call."

lagfN
V
m
x
D
I

z
c
ts

A registe
X
Y
S
D
P
DB
PB
PC

r

Steven Glass Page te

Tool Locator ERS February 19, 1986

Error Codes

Tool sets should return errof codes in the a register that have the tool set number
in the high byte and the 'message" in the low byte. The dispatcher will return two
erors and have a high byte of zero.

The following error code values are reserved for exclusive use by the function
dispatcher:

Enor code= $0001 value of <TSNum> does not make sense
$0002 Value of <FuncNum> does not make sense

Every tool set may have to return an already initialized error and a cannot reset
error. These error codes are defined as foflows:

Error Code Meaning

Already ¡nitial¡zed
Cannot reset

XXO 1

xxo2

where XX is the tool set number

Remaining error codes are defined by individual tool set designers.

Parameter Passing Details

Generally, there are severâl ways to pass parameters:

1) in the stack.
2) in a parameter block.
3) in the A, X, and Y registers.

Method 1 is the most common method used by high level languages. Method 2 is
also very flexible, since the parameter block may be anywhere in memory and
may conlain additional pointers to anywhere in memory. Method 3 is also useful
for small or few parameters but since the tool dispatcher does not preserve the
registers going into a function, it is only useful for one way communication.

The parameters and parameter passing method are defined by each function.

Steven Glass Page 15

Tool Locator ERS
February 19, j9g6

Passing Control to the Function

The applicarion
ïil,l:^"! T jls papmerers and make rhe funslion cail. Beforehanding control to th.e tunaiori, ir¡ã. tool o¡róã.r,ãr ãnecrs the machine $ate. tfthe cail was nor made from fuil nai¡ue mõdãä ;;.; is retumed (or systemdeath).

lf the cail is madq in the ri.ght mode, the D bit is creared. (The r bit remainsunchanged and the.remaiñing status and contiol b¡ts are undefined.) Next, thetool dispatcher manipulates tñe siàcr ;ó tñãi ä/ inôutr are ar rhe righr depth nomatter how a cail.is-T1d? Finaily, te toôiiirpå;ÅË, purs the row word of thework area pointelj,n l¡. A register'and th.e. hiõñõ;à oi te ùorr,
"i.â

pointer in
:15.ií:,?5:i'on*'rn

the resisiers ser up this ñàv, ñ *irr cari'|.,Ji;*t'* usins a

The following tabre summarizes stack contents on function entry

Offset
from S Contents

Function Value area if any
Parameters
Return address in Glue
Return address in calling code
Top of Stack

Register contents wiil be as foilows on function entry:

?
7-?
4-6
1-3
0

Low word of pointer to work area
High word of pointer to work area
Undefined
current top of sta.ck (i.e. one byte berow rowest used rocation)As lett by applícation program
Þee prevtous paragraph
Data bank ¡s a's lefiUy appticatíon
Program bank is banli of'f'undion.
Address of function.

Return from the Function

The function itself defines its handling. of all parameters. The most common casewill be with stack parameters handleã
Þv Ëriri.ð äñ'"ny inpur parameters andleaving any function return on the stackior trreËariing program to handre.

ôregtstA
Y
X
S
D
P
B
K
PC

r

Steven Glass
Page 16

Tool Locáor ERS February 19, 1986

WRITING A FUNCTION

Tools need memory for their data. They will be more etficient if they store their
data on zero page, but how will they know what parl of bank zero they can use for
zero page? The only sensible answer is to have the application- tell the tool what
it cari uõe (this would be done with the application initial¡zation function).

A function may not use any memory that has not b€en assigned to it by the
application or reserved via the memory manager unless it saves and restores the
niemory. lf it uses memory in this way it must turn intem¡pts otf while unreserved
memory is changed.

ls Bank Zero Required?

Does an application have to provide bank zero space for each tool it will use? lf it
did not, the tool would have to save and restore bank zero on each call. We can
design this ability into our tools but should we? I think not; if the appl¡cation
cannot afford a little bank zero space, it should save and restore the area itself.

Re-Entrant Tools

A tool needs either to be re-entrant or to turn off interrupts while it runs. The first
option requires careful coding and the second may be undesirable.

For a tool to be re-entrant, it must keep state information in such a way that one
can interrupt a calt, make a new call, and return from the interruÞt in such a way
that the original call is not disturbed. lf we assume that a tool does not have any
self-modifying code, its entire state is characterized by its data.

A Tool's State

A tool has two kinds of data: permanent data and temporary data. The
permanent data are variables which need to be maintained from call to call;
temparary data are variables that are ¡nitial¡zed and used only when a function in
a tool is running.

We can make rules which guarantee preservation of state information. A possibie
rule is that all global variables must be kept in a known place (which can be
saved and restored by an interrupt) and that temporary variables must be kept on
the stack" unfortunately, our processor does not lend itself well to using the stack
for variables.

The Fule

Steven Glass Page 17

Tool Locator ERS February 19, 1986

A more workable rule is to keep all variables in a known place, and make the
interrupting code responsible for preserving them.

What is a known place? Tools do not use fixed memory locations lor their data.
They get bank zero memory from the application, and get additional memory from
the memory manager. The location of one of these is kept in the work area
pointer table (w4PT) and the address of any other (if there is any other) is kept in
the work area. Thus the entire state of a tool is characterized by the pointer in the
WAPT. lf we save this pointer, restart a tool, do something and restore the pointer
we preserve the tool's state as if nothing was done.

Two Tool Locator calls willtake care of this for us: GetWAP and SetWAP (for get
and set work area pointer).

lf a tool requires that the application give it some zero bank for its global area,
data access can be very fast. Two examples follow.

Steven Glass Page 18

Tool Locator ERS

Erample 1:

February 19, 1986

A Function to Set Global Value on Zero Page. ln Pascal
SetAValue would look like:

procedure SetAValue (value : integer);

Code to call the function

lda ThcValuc
Phald¡ lFuncNum'256+TSNum
lrl DisPatch

The Function itself

MyFunction
OriEDirect cqu
RTL1 cqu
RTL2 squ
ThcValuc cqu

Orig
FTL

1

RTL2+3

Direct+2
1+3

Phd
tcd

fsr SlartCheck
bcq GoOn
brl ErrorOut2
lda ThcValuc,s
sta Global
fmp EndCall2
cnd

tar
pld

;save cuffent direct regisler
;make my zero pege active

;find oul if I was initialized
;all is well
; an error occured
;get the new value
;put it on zero pege
;use quit routine

GoOn

; Relurrs with no enor in a register if a or y are non-zero

StartCheck
cmp #0
bne OK
cPy #0
bne OK
lda #Notlnitialized
ris

OK lda #0
rts
cnd

; EndCall2 and EnorOutz move the retum addresses up two
; bfes on the stack. Similar closing routines would be necessary for
; each way a tool is called.

EndCal12
lda *0 ;set result code

:save result in x
; reslore originald¡recl register

ErrorOut2

Steven Glass Page 19

February 19, 1986
Tool Locator ERS

procedure setRec't

;move rtled/s uP

Flenpve extra word
oet back resuìl
5et cany right
alldone

(var TheRect : rect;
ToP :integer;
Left : integer;
Bottom : integer;
Right :integer)

lda
ste
lda
da
lda
¡ta
Ple
txa

5rs
713
3,s
5'3
lrg
313

r1cmP
rtl

Erample 2: A Function with mo.re than one inputs' ln Pascal the setRect

prd;Jü;e has five inpüiã. A pointbr to a restangle record and four

int.é"Ë nàt
"re

to bå put intô the rectangle record.

Code to call the function

pcaaTheBect;pushhighwordofreclptronstack
oea 'ThcBect ; puén loú word of.lect ptr on stack

íaä rä1"-- ;þusn lhe value of top
pha
lda Left ;Prsh the value of lett

pha
[oa eottom ; push the value ol bottom

Pha[di n¡gnt ;Push the value of right
pha
i¿r *f uncNum'256+TSNum
lst DisPatch

The Function itself

MyFunclion

orioDirect equ 1

nei-t cdu origDirect+2
Ret2 cdu Retl+3
Rioht edu Ret2+3
Bolttom cdu Right+2
Lelt sdu Bottom+2
Íoo cdu Lelt+2
ThäBect c{u ToP+2

Steven Glass
Page 20

Toot Locator EBS

phd

lsc
tcd

;save cunent direa register

;get $ack pointer

February 19, 1986

Page 21

t

(

lda
rla
lda
lclV
¡ta
lda
lclV
¡ta
lcle
lcly
tt¡

lda *0

Too
[Ì-ticRcct¡

(2
FhcRecn-v
Bottom "'
t4

fi|;l*'''
[hcBcctJ,y

jnp EndCath2

;5lgrt:ilü".!Í"Efo.urr2 move rhe rerum addresses up twerve
EndCaill2

ErrorOutf 2 ;set resu,l code

i Sâvê rg5ult ¡¡ t
; restore origínal direo register
;move rt, adr,s up

i 3,i' oåX?1?,....?'31.,.

;9et back resuf

;åi'oïgnnn'

Tool Locator Calls

TLBooilnit

lar
Pld

lda 5,s
¡la f7.s
lda 3.é
sta ts.s
lda f,i
ste f3,s

2*1

#1

lsc
clc
¡dc
tcs
tra
cmp
rlt

Call 1

åffi iiå'ü'iåix'åîfïså:f '^[':ib;::,',ï$Jïfl ,å"är j,:xiiirfl.",,

Steven Glass

Tool Locator ERS

TLStartup

TLShutDown Call 3

Called by every application just before quitting.

TLVersion

TLReset

Reserved Call 6

Beserved Call T

Reserved Call 8

Call 2

called by every application before any other tool calls

February 19, 1986

output

Call 4

version word

Returns version information about the Tool Locator.

Call 5

This call is made whenever reset occurs. lt calls the reset function ofevery tool set in the system.

Steven Glass

,ü

Page 22

February 19, 1986
Tool Locator ERS

GetTSPtr

SEITSPtT

Fleturns pointer to the Function Pointer Table of the specified tool set'

Call 10

input
input
output

input
input
input

Call 9

UserOrSystem
TSNUm
Pointer

UserOrSYstem
TSNUm
Pointer

UserOrSystem
TSNum
FuncNum
Pointer

UserOrSYstem
TSNUm

tnstalls the pointer to a Function pointer Table in the appro.priate

ii;i tO "¡lioe
tne Jysttt while $8OOO will be for the user.) lf the---

iþi'iJrdi iet in n¡¡.i, it cop¡es the TPT to RAM. (Memory for.the TPT

iJ oOtáined from the memory manag-er.) lf there is not enough loof
iã ne lpf for the n-e* ãntw, the TPï is moved to a bigger chunk of

;¿fr-,rry l-¡téwise, ne Wnþ Table is expanded. (Memory for these

äiîäñ.io* ìs òOtained from the memory manager.) lf the new

oointer table nas ãnV teto entties, old ehtries aie moved from the old

ñ:;ì;; äËiã i;th;
'{e* æ,ntgr^table. (rhis is. the call that will allow

G iô jå.h a suo'seïót áiool Set withòut replacing the whole thins';

GetFuncPtr Call 11

input
input
input
output

Returns pointer to the specified function in the specified Tool Set

There is no setFuncPtr in this specification. Does anyone tî.il\ we need it?

The setTsptr cati slouto oo att'we need for patching-an individuat routine.

GetWAP Call 12

input
input

Sleven Glass
Page 23

Tool Locator ERS February 19, 1986

output Pointer

Gets the pointer to the work area for the specified module.

SetWAP Catt 13

input Use0rSystem' input TSNUm
input Pointer

Sets the pointer to the work area for the specified module.

Summary of changes since previous version

The reset call and three reserved calls are now required of every tool set
The first non required function number is 9.

Steven Glass Page 24

Tool Locdor ERS February 19, 1986

Appendix A
The Path Not Taken

Earlier versions of this document used a ditferent mechanism for calling the tool
dispalcher. This appendix explains what that mechanism was and why we
choose not to use it.

Calling.the Dispatcher. The dispatcher was called using the new 65816
instruction COP.

The COP is a two, byte instruction: an opcode followed by a signature byte.
W_qstqn Design Center has reserved all the signature values from 128 ihrough
255. This leaves us with 0 through 127.

Call lnformation. The bytes in memory immediatety foilowing the Cop
contained call information. The first byte is the tool set number (TSNum), the
second byte is the function number (FuncNum).

The pointer to a parameter table comes nexl. Since the parameter table can be
anywhere in memory, the pointer must be at least three bytes long. But by
convention we use four bytes to represent addresses in the 65816 memory
Fl.ge. This is luch more efficient than three byte pointers for passing a pointer
(although less etficient for memory use).

Sample Call. A sample call looked something like:

cop 0
dfb TSNum
dfb FuncNum
long Params

So what's wrong with it? We had a version of the dispatcher which used this
mechanism working before we discarded it. We discarded it for two reasons: first
it was not easy for high level languages to use this scheme. Second, the best
dispatch time we could get was 170 microseconds. The scheme we choose
takes only 1 10 microseconds.

Steven Glass Page 25

