Description of the
Cortland Tools: Part I
Preliminary Notes

Preliminary Notes: 1/30/86

Writer: Willam H. Harris
Apple User Education

Copyright © 1985 Apple Computer, Inc. All rights reserved.

Description of the Cortland Tools: Part |

Changes Since Last Draft

This is the first draft of this document. The sources used to prepare this document are as
follows:

Tool Locator ERS 12/3/85
QuickDraw II ERS 1/15/86
Memory Manager ERS 11/27/85
Event Manager ERS 11/25/85
Miscellaneous Tools 1/10/86

Preliminary Notes i 1/30/186

Descriprion of the Cortland Tools: Part]

Preliminary Notes i 1/30/86

Description of the Cortland Tools: Part |

Contents

Preface
About This Manual
Conventions in the Function Descriptions

Chapter 1. ROM Tool Overview °
Introduction
Conventions in the Function Descriptions

bd et ok

Chapter 2. Tool Locator
Introduction

Addressing Tool Sets and Functions
Structure of the Tool Locator

Tool Locator System Initialization
Disk and RAM Structure of Tools
The Tool Locator Calls

11 Chapter 3. QuickDraw II
11 Overview

11 Basic Concepts and Terminology
14 The Drawing Environment

00 00 1 O\ L L in wWWww

14 Drawing Location

14 Pen State

15 Pen Modes

16 Clipping

17 GrafProcs and GrafPort

17 Data Structures
19 Hardware and the Drawing Environment

19 Color Table
20 Fill Mode -
20 Interrupts

20 Housekeeping Functions

21 Global Environment Calls

23 GrafPort Calls

25 Cursor-Handling Routines

26 Pen, Pattern, and Drawing Mode Calls
27 Calculations With Rectangles

29 Rectangle Calls

30 Pixel Transfer Calls

30 Calculations With Points

31 Calculations With Regions

35 Graphic Operations on Region Calls
36 Miscellaneous Utilities

Preliminary Notes i} 1/30/186

Description of the Cortland Tools: Part I

Chapter 4. Memory Manager

Overview

Properties of Memory Blocks
Allocation Attributes
Modifiable Attributes

Housekeeping Functions

Memory Allocating Functions

Memory Freeing Functions

Block Information Functions

Locking and Unlocking Functions

Purge Level Functions

Free Space Functions

Chapter 5. Event Manager
Overview
Event Types
Mouse Events
Keyboard Events
Window Events
Other Events
Event Priority
Event Records
Event Code
Event Message
Modifier Flags
Event Masks
Using the Event Managers
Responding to Mouse Events
Responding to Keyboard Events
Responding to Window Events
Responding to Other Events
Posting and Removing Events
Other Operations
The Journaling Mechanism
Housekeeping Functions
Accessing Events Through the Toolbox Event Manager
Reading the Mouse .
Miscellaneous Toolbox Event Manager Routines
Posting and Removing Events
Accessing Events Through the OS Event Manager
Miscellaneous OS Event Manager Routines

Chapter 6. Other ROM Tools
SANE

Desk Manager

Sound Manager

Preliminary Notes v

1/30/186

Description of the Cortland Tools: Part]

Chapter 7. Miscellaneous ROM Tools

Overview

Housekeeping Functions
Math Functions

Battery RAM Functions
Clock Routines

Text Routines

Vector Initialization Routines
HeartBeat Interrupt Queue
System Death Manager

Get Address

Mouse Tools

ID Management

Interrupt Control

Firmware Entry Points

Tick Counter

Basic Entry Points

HEX to ASCII

PackBytes and UnPackBytes

Preliminary Notes

1/30/86

Description of the Cortland Tools: Part]

Preliminary Notes vi 1/30/86

Description of the Cortland Tools: Part]

Preface
About This Manual

This manual describes the Apple Cortland Tools available in ROM for the application
developer. Under most circumstances, you don't need to know whether a tool is in ROM
or RAM; we describe the ROM-based tools in this book simply as a matter of convenience.

For the description of the RAM-based Apple tools, refer to Description of the Cortland
Tools, Part II (that document is not yet available). For more detailed information about
how to write tools, refer to Using and Writing Cortland Tools. '

Please note that the information presented in this manual is preliminary. It may change
before final release of the product and the manual.

Conventions in the Function Descriptions

The description of each function in this book is presented in the following format:

ToolCall Brief description of the function of the tool.
input Param] TYPE
input Param2 TYPE
output Param3 TYPE

Further description of the function and the Params, if necessary.

The TYPE indicates the data type for the element and can be any one of the following:
* BYTE assembles a byte containing the givcn expression value.
* WORD assembles a 2-byte word containing the given value.
* LONG assembles a 4-byte location containing the given value.
* BLOCK reserves a block of storage consisting of a specified number of bytes.
+ INTEGER.
* LONGINT is a long integer.
* POINTER.
* HANDLE is a pointer to a pointer.

Preliminary Notes 1 1/30/86

Description of the Cortland Tools: Part]

Preliminary Notes 2 1/30/186

Description of the Cortland Tools: Part]

Chapter 1

ROM Tool Overview

This chapter will eventually present an overview of the Cortland tools always present in
ROM.

Preliminary Notes 3 1/30/186

Description of the Cortland Tools: Part [

Preliminary Notes 4 1/30/86

Description of the Cortland Tools: Part [

Chapter 2

Tool Locator

Introduction

This chapter describes the tool whose job it is to allow tools and applications to
communicate among themselves; this tool is called the Tool Locator. If you are simply
using the Cortland tools that Apple provides, you won't need to call any functions in the
Tool Locator, nor will you see any evidence of it under normal circumstances. You only
need to know how the Tool Locator works if you are writing your own tool set.

Addressing Tool Sets and Functions

Each tool is assigned a permanent tool number. Assignment starts at one and continues
with each successive integer. Each function within a tool is assigned a permanent function
number. For the functions within each tool, assignment starts at one and continues with
each successive integer. Thus, each function has a unique, permanent identifier of the form
(TSNum,FuncNum). Both the TSNum and FuncNum are 8-bit numbers.

So far, the following numbers have been assigned:
TSNum Descriptions

Tool Locator (ROM resident)

Memory Manager (ROM resident)

Misc. Tools (ROM resident)

Graphics Core Routines (ROM resident)
Event Manger (ROM resident)
ProDOS-16 (RAM resident)

AW AW -

For each tool, the following calls must be present:

FuncNum Descriptions
1 boot initialization function for each tool
2 application startup function for each tool
3 application shutdown function for each tool
4 version information

Each tool has a boot initialization function that is executed at boot time by either the ROM
startup code or the ProDOS startup code. In addition, each tool has an application startup
function, an application shutdown function to allow an application to turn each tool "on"
and "off", and a version call that returns information about the version of the tool.

All tools return version information in the form of a word. The high byte of the word

indicates the major release number (starting with 1). The low byte of the word indicates the
minor release number (starting with 0). The most significant bit of the word indicates

Preliminary Notes 5 1/30/186

‘Description of the Cortland Tools: Part I

whether the code is an official release or a prototype (no distinction between alpha, beta, or
other prototype releases is made).

P Major Minor
I l |

Structure of the Tool Locator

The Tool Locator requires no fixed ROM locations and a few fixed RAM locations. All
functions are accessed through the tool locator via their tool set number and function
number. The Tool Locator uses the tool set number to find an entry in the Tool Pointer
Table (TPT). This table contains pointers to Function Pointer Tabies (FPT). Each tool set
has an FPT containing pointers to the individual functions in the tool. The Tool Locator
uses the function number to find the address of the function being called.

Each tool in ROM has an FPT in ROM. There is also a TPT in ROM pointing to all the
FPT's in ROM. One fixed RAM location is used to point to this TPT in ROM. This
location is initialized at power up and warm boot by the firmware. In this way the address
of the TPT.in ROM does not ever have to be fixed.

The TPT has the following form:
Count (4 bytes)
Pointer to TS 1 (4 bytes)
Pointer to TS 2 (4 bytes)
An FPT has the following form:

Count (4 bytes)
(Pointer to F1) - 1 (4 bytes)
(Pointer to F2) - 1 (4 bytes)

In both tables, the count is the number of entries plus 1.

Tools are to obtain any memory they need dynamically (using as little fixed memory as
possible). To use memory obtained through a memory manager, a tool needs some way to
find out where its data structures are. The tool locator system maintains a table of work
area pointers for the individual tools. The Work Area Pointer Table (WAPT) is a table of
pointers to the work areas of individual tools. Each tool will have an entry in the WAPT
for its own use. Entries are assigned by tool number (tool four has entry four and so on).
A pointer to the WAPT must be kept in RAM at a fixed memory location so that space for
the table can be allocated dynamically. At firmware initialization time, the pointer to the
WAPT is set to zero.

Preliminary Notes 6 1/30/86

Description of the Cortland Tools: Part]

The tool locator system permanently reserves some space in bank $E1). Itis used as
follows:

(4 bytes) Pointer to the active TPT. The pointer is to the ROM-based TPT if there are no
RAM-based tool sets and no RAM-based ROM patches. Otherwise, it will
point to a RAM-based TPT.

(4 bytes) Pointer to the active user's TPT. This pointer is zero initially, indicating that
no user tools are present.

(4 bytes) Pointer to the Work Area Pointer Table (WAPT). The WAPT parallels the
TPT. Each WAPT entry is a pointer to a work area assigned to the
corresponding tool set. At startup time, each WAPT entry is set to zero,
indicating no assigned work area.

(4 bytes) Pointer to ;he user's Work Area Pointer Table (WAPT).
(16 bytes) Entry points to the dispatcher.
This is the only RAM permanently reserved by the tool locator system.

Tool Locator System Initialization

Each tool set must be initialized before use by application programs. Two types of
initialization are needed: boot initialization and application initialization. Boot initialization
occurs at system startup time (boot time); regardless of the applications to be executed, the
system calls the boot initialization function of every tool set. Thus, each tool set must have
a boot initialization routine (FuncNum = 1), even if it does nothing. This function has no
input or output parameters. . :

Application initialization occurs during application execution. The application calls the
application startup function (FuncNum=2) of each tool set that it will use. The application
startup function performs the chores needed to start up the tool set so the application can
use it. This function may have inputs and outputs. Each tool set will define what they are.
A common input will be the address of space in bank zero that the tool can use.

The application shutdown function (FuncNum=3) should be executed as soon as the
application no longer needs to use the tool. The shutdown releases the resources used by
the tool. As a precaution against applications that forget to execute the shutdown function,
the startup function should either execute the shutdown function itself or do something else
to assure a reasonable startup state. This function may have inputs and outputs as well.
Again they are defined by the individual tools.

The provision of two initialization times reflects the needs of currently envisioned tools.
For example, the Memory Manager requires boot time initialization because it must operate
properly even before any application has been loaded. On the other hand, SANE needs to
be initialized only if the system executes some application or desk accessory that uses it.
Initializing only the tool sets that will be used saves resources, particularly RAM.

Preliminary Notes 7 1/30/86

Descriprion of the Cortland Tools: Part |

Disk and RAM Structure of Tools

This section will eventually discuss additional details of dynamically loaded, RAM-based
tool sets. The exact form of tools on disk is undecided at this time.

The Tool Locator Calls

BootInit Initializes the Tool Locator and all other ROM-based Tool Sets.
Applnit Does nothing.
AppEnd Does nothing.
Version Returns the version of the Tool Locator.
output Version WORD
GetTsPtr Returns pointer to the Function Pointer Table of the specified tool
set.
input UserOrSystem WORD
input TSNum WORD
input Poinzer POINTER
SetTSPtr Installs the pointer to a Function Pointer Table in the appropriate
Tool Pointer Table.
input UserOrSystem WORD
input TSNum WORD
input Poinzer POINTER

If the TPT is not yet in RAM, this tool copies the TPT to RAM.
(Memory for the TPT is obtained from the Memory Manager.) If
there is not enough room in the TPT for the new entry, the TPT is
moved to a bigger chunk of memory. Likewise, the WAPT table is
expanded if necessary (memory for the expansions is obtained from
the Memory Manager). If the new pointer table has any zero entries
old entries are moved from the old pointer table to the new pointer
table.

b

The call can be used to patch a portion of a Tool Set, rather than
replacing the Tool Set entirely.

Preliminary Notes 8 1/30/86

Description of the Cortland Tools: Part]

GetFuncPtr Returns pointer to the specified function in the specified Tool Set.

input TSNum WORD

input FuncNum WORD

output Poirzer POINTER
GetWAP Gets the pointer to the work area for the specified module.

input UserOrSystem WORD

input TSNum WORD

output Pointer POINTER
SetWAP Sets the pointer to the work area for the specified module.

input UserOrSystem WORD

input TSNum WORD

output Poirzer POINTER

Preliminary Notes 9 1/30/186

Description of the Cortland Tools: Part I

Preliminary Notes 10 1/30/86

Description of the Cortland Tools: Part]

Chapter 3

QuickDraw I1

Overview

QuickDraw II includes calls for manipulating the graphics environment and drawing
primitive graphic objects. Included in the graphics environment is information about:
drawing location, the coordinate system, and clipping.

The primitive objects supported are horizontal lines and pixel images. Additionally, lines,
rectangles, and regions are supported as higher-level graphics objects. All higher-level
objects are drawn using the lower-level horizontal lines.

The horizontal line-drawing routines draw with patterns. A pattern is a 64-pixel image
organized as an 8x8 pixel square that can define a repeating design. When a pattern is
drawn, it is aligned so that adjacent areas of the same pattern in the same graphics port will
blend with it into a continuous, coordinated pattern. ‘

Basic Concepts and Terminology

A pixel map is an area of memory containing a graphic image (the analogous QuickDraw
term is Bitlmage). This image is organized as a rectangular grid of dots called picture
elements, or pixels. Each pixel has an assigned value or color. The number of colors a
pixel may have depends on its size or chunkiness. Two sizes are possible: four-color and
sixteen-color. Exactly which colors map into the various pixel values is determined by a
color table, as described under Color Table later in this chapter. :

Pixel size in the display is controlled independently for each scan line. Each scan line has a
scan line control byte (SCB) which determines the scan line's properties. See Appendix B
for more details.

Pixels are frequently thought of as points in the Cartesian coordinate system, with each
pixel assigned a horizontal and vertical coordinate. Following the QuickDraw standard as
established for the Macintosh, the coordinate grid falls between, rather than on pixels. (See
Figure 1.) Each pixel is associated with the point that is above and to the left of it.

Preliminary Notes 11 1/30/86

Description of the Cortland Tools: Part [

Figure 1
Pixels, Points and Rectangles

0123456 7 8
0 7
1 p—&
. The rectangle is defined by
1000008
NOG 0006 the points (2,1) and (7,7)
Yy Y Y Y \OC
4 ><> \HH(<> It encloses 30 pixels.
5 A A A A
969000 ¢
6 > < O A pixel
7 N4 '
Y
8 hA . } A Point

This scheme allows a rectangle to divide pixels into two classes: those that fall within the
rectangle and those which fall outside the rectangle.

A pixel map need not be the area of memory associated with the graphics screen.
QuickDraw II can treat other memory as pixel map memory and draw into it as easily as
into the screen memory.

Drawing can be done in coordinates appropriate to the data being used. Data is mapped
from drawing space to the pixel map according to the information kept in two rectangles;
the Bounds Rectangle (BoundsRect) and the Port Rectangle (PortRect). Figure 2 illustrates
the Bounds and Port Rectangles. '

Preliminary Notes 12 1/30186

Description of the Cortland Tools: Part]

Figure 2. The Bounds and Port Rectangles
Conceptual Drawing Space (-16K.-16K thru 16K.16K)

BoundsRect

PortRect

Pixel Image
(Screen or
other
Memory)

Active Port Rect (intersection of the BoundsRect
and PortRect)

The BoundsRect is a rectangle that encompasses the entire pixel map. The upper left corner
of the BoundsRect is the point that is above and to the left of the first pixel in the pixel map.

The PortRect is a rectangle that describes the "active” region of the pixel map. The
intersection of these two rectangles is the only place that pixels in the pixel map will change
(ignoring the VisRgn and ClipRgn, discussed in the following paragraphs).

A SetOrigin call allows you to change both these rectangles. Their points remain in the
same relative location but the upper left corner (the origin) of the PortRect is set to the point
passed by SetOrigin. '

Drawing is the process by which pixels are altered in a pixel map. You may imagine a pen
drawing the image by placing dots of the appropriate color at each pixel that falls under its
path. _

Drawings are clipped when instructions to draw in inactive parts of the drawing space are
ignored. For example, if you are clipping to a rectangle defined by (100,100) and
(200,200) and I try to draw a line from (0,0) to (1000,1000), only the pixels that fall inside
the (100,100) through (200,200) range are affected.

QuickDraw II also provides for clipping to arbitrary regions. Drawings are clipped to the
intersection of two regions: the ClipRgn (a user-maintained clipping region) and the
VisRgn (a system-maintained clipping region). This clipping works on the Cortland in the
same manner as it does on the Macintosh.

Preliminary Notes 13 1/30/86

Description of the Cortland Tools: Part]

Slabs and Slices
Graphics objects are drawn one scan line at a time. For objects drawn with patterns, the
part of the object drawn on a scan line is a "Slab". For objects drawn from other pixel

maps, the part of the object drawn on a scan line is a "Slice". The routines that draw slabs
and slices can be accessed outside the ROM.

The Drawing Environment

The drawing environment is a set of rules that explain how drawing actions behave. The
environment includes information about where drawing will occur (what part of memory,
its chunkiness), in what coordinate system, how it will be clipped, the pen state, the font

state, and some pointer information. The various parts of the drawing environment are
described in this section.

Drawing Location
QuickDraw II allows drawmg anywhere in memory. The most common location may be
the super hi-res screen, but a pixel map anywhere in memory and of almost any size is
acceptable as long as the entire destination pixel map is in a single bank.
PortSCB — Flag to indicate chunkiness of pixel map and master color palette.
Pointer to the pixel map — Points to the first byte in the pixel map.
Width — Number of bytes in a row of pixels (QuickDraw term is RowBytes).

BoundsRect — Rectangle that describes the extent of the pixel map and imposes a
coordinate system on it.

PortRect — Rectangle that describes the active area of Data space.

Pen State

QuickDraw II maintains a graphics pen (position and size). Its position is used for drawing
text, and its size is used for determining the size of a frame. Quickdraw II does two kinds
of drawing; normal drawing and erasing. In normal drawing, the destination pixel map
depends on what it was to start with, the original fill pattern or pixel image and the drawing
mode. Erasing just fills the affected pixels with the background pattern.

Pen Location -- A point in data space.
Pen Size -- A point describing the width and height of the pen.

Pattern Transfer Mode -- One of the eight transfer modes supported by the
Primitives. This mode is used when drawing horizontal lines with the fill pattern.

Preliminary Notes ’ 14 1/30/186

Description of the Cortland Tools: Part]

Fill Pattern -- The fill pattern is used when drawing horizontal lines. When any
routine uses the horizontal line drawing routine to draw an object, the object will
appear in this pattern.

Background Pattern -- The background pattern is used when erasing horizontal
lines. When any routine erases horizontal lines in the shape of an object, that
object will appear in this pattern.

Pen Modes

There are eight different pen modes. These modes are used to derive the color of a pixel
when it is being drawn to. Each pixel is made up of a series of bits. The pen operates on
the individual bits in a pixel as single units. In this way logical binary operations are well
defined. '

The following pen modes are available. (Each 1 and 0 is the value of a bit in a pixel.)

Mode 0 (pencopy). Copy pen to destination. This is the typical drawing mode.
| Pen
pencopy | 0 1
Dest. 0| 0 1
1 | 0 1
Mode 1 (penOR) Overlay (OR) pen and destination. You can use this mode to
non-destructively overlay new images on top of existing
images.
| Pen
penOR | 0 1

Dest. 0| 01
1

Mode 2 (penXOR) Exclusive or (XOR) pen with destination. You can use this
mode for cursor drawing and rubber-banding. If an image is
drawn in penXOR mode, the appearance of the destination at
the image location can be restored merely by drawing the

image again in penXOR mode.
| Pen
penXOR | 0 1
Dest. O] 01
1 1 10

Preliminary Notes 15 1/30/186

Description of the Cortland Tools: PartI

Mode 3 (penBIC) Bit Clear (BIC) pen with destination (NOT pen) AND
destination). You can use this mode to explicitly erase (turn
off) pixels, often prior to overlaying another image.

| Pen
penBIC | 0 1

Dest. 0] 0O
.1 |1 10

The following modes are inverses of the above modes; that is, the pen color is inverted
prior to performing the associated operation.

Mode 4 (notpencopy) Copy inverted pen to destination. You can use this mode to
draw inverted images.

| Pen
notpenCOPY | 0 1

Dest. 0 | 1 0
1 1 10

Mode 5 (notpenOR) Overlay (OR) inverted pen with destination. You can use
this mode to overlay inverted images.

| Pen
notpenOR | 0 1

Dest. 0] 10
1

Mode 6 (notpenXOR) Exclusive or (XOR) inverted pen with destination. This
mode behaves similarly to penXOR mode.

| Pen

notpenXOR | 0 1
Dest. 0] 1 0
1] 0 1

Mode 7 (notpenBIC) Bit Clear (BIC) inverted pen with destination (pen AND
destination). You can use this mode to display the
intersection of two images. _

| Pen

notpenBic | 1

0
Dest. O] 0O
11 10

Preliminary Notes 16 1/30/186

Description of the Cortland Tools: Part]

Clipping

As stated earlier, a drawing may be clipped to a variety of rectangles and regions.

GrafProcs and GrafPort

QuickDraw II's local environment includes clipping information, handles to pictures,
regions, and polygons, as well as a pointer to the GrafProcs record. The GrafProcs record
holds pointers to all the standard drawing functions. A programmer may change the
pointers in this record and cause QuickDraw II to use a different drawing routine.

An entire drawing environment is kept in a single record (called the GrafPort), which can
be saved and restored with a single call. This allows for simple context switching. The
programmer has two ways of changing the drawing environment. First, he or she can
change the contents of the GrafPort directly and have these changes apply to the drawing
environment without making any other calls. Or, he or she can use some of the many calls
to set the individual fields in the GrafPort.

Data Structures

Pointer
P 4 bytes
Point
\% 2 bytes
H 2 bytes
Rect -
V1 2 bytes
H1 2 bytes
V2 2 bytes
H2 2bytes
String _
Standard ProDOS string starting with a length byte followed by up to 255
characters of data.
An_SCB_Byte
Bits Meaning
0-3 Color Table
4 Reserved
5 Fill O=off 1=0n
6 Interrupt O = off 1 = on
7 Color Mode 0=320 1=640

Preliminary Notes 17 1/30/186

- Description of the Cortland Tools: Part |

LoclInfo
MasterSCB : an_scb_byte
reserved : byte
PointerToPixellmage : pointer
Width : word
BoundsRect : rect

nibble = 0..15
twobit = 0..3

Pattern
case mode of
mode320:

mode640:

(packed array [0..63] of twobit);

PenState
PnlLoc: point
PnSize : point
PnMode : integer
PnPat : pattern

GrafPort
PortInfo.: LocInfo
PortRect : rect
BkPat : Pattern
Pnloc : Point
PnSize : Point
PnMode : integer
PnPat : pattern
PnVis : integer
FontPtr : Pointer
Txface : Style
TxMode : integer
TxSize : integer
SpExtra : integer
FGColor integer
BGColor : integer

PicSave : pointer
RgnSave : pointer
PolySave : pointer
GrafProcs : pointer

Preliminary Notes

(packed array [0..63] of nibble

18

).;

1/30/186

Description of the Cortland Tools: Part]

Hardware and the Drawing Environment

The Super Hi-Res Graphics hardware can display 200 scan lines and many colors. The
following four features are controlled independently for each scan line:

Color Table One of 16
Fill Mode On or Off
Interrupt On or Off
Color Mode 320 vs 640 pixels per scan line

The scan line control byte (SCB) controls these four features for each scan line. The low
nibble of the SCB identifies the color table to be used for this scan line. Bit 4 is reserved.
Bit 5 of the SCB controls fill mode: 1 is on, O is off. Bit 6 of the SCB controls interrupts:
if the bit is set then an interrupt will be generated when the scan line is refreshed. Bit 7 of
the SCB controls the mode: 0 is 320, 1 is 640.

7654 3210

eoeferepefe

'MIF R Color Table

Color Table

A color table is a table of 16 2-byte entries. The low nibble of the low byte is the intensity
of the color blue. The high nibble of the low byte is the intensity of the color green. The
low nibble of the high byte is the intensity of the color red. The high nibble of the high
byte is not used. Pixels in 320 mode are 4 bits wide and their numeric representation
identifies a color in the color table. Pixels in 640 mode are 2 bits wide and their numeric
representation identifies a color in a subset of the full color table. The first pixel in the byte
(bits O and 1) selects one of four colors in the table from 0 through 3. The second pixel in
the byte (bits 2 and 3) selects one of four colors in the table from 4 through 7. The third
pixel in the byte (bits 4 and 5) selects one of four colors in the table from 8 through 11.
The fourth pixel in the byte (bits 6 and 7) selects one of four colors in the table from 12
through 15.

HighByte LowByte
High Low High Low
Nibble Nibble Nibble Nibble

Reserved Red Green Blue

Preliminary Notes 19 1/30/186

Description of the Cortland Tools: Part]

Fill Mode
When fill mode is active, the zeroth color in the color table becomes inactive. A pixel with
a numeric value of zero serves as a place holder, indicating that the pixel should be
displayed as the same color last displayed. '

Scan Line Values

1000020000010000

Colors Shown

BBBBBWWWWWWBBBBB

Interrupts

Interrupts can be used to synchronize drawing with vertical blanking so pixels are not
changed as they are being drawn (a pixel is drawn once every 1/60 of a second). Interrupts
can also be used to change the color table before a screen is completely drawn. This will
allow a program to show more than 256 colors on the screen at once (but at the cost of
servicing the interrupt).

Housekeeping Functions

QDBootInit Initializes QuickDraw II at boot time. The function puts the address
of the cursor update routine into the bank E1 vectors.

QDAplInit Initializes Quickdraw II, sets the current port to the standazd port,
and clears the screen.
input ZeroPageloc WORD
input MasterSCB WORD
input MaxWidth WORD
input ProgramlD WORD

The MasterSCB is used to set all SCB's in the super hi-res graphics
screen. MaxWidth is a number that tells QuickDraw II the size in
bytes of the largest pixel map that will be drawn to. This allows
QuickDraw II to allocate certain buffers it needs only once and keep
them throughout the life of the application. ProgramiD is the ID
QuickDraw II will use when getting memory from the Memory
Manager. All memory is reserved in the name of this ID.

Preliminary Notes 20 1/30/186

Description of the Cortland Tools: Part]

QDQuit Frees up any buffers that were allocated.
QDVersion Returns the version of QuickDraw II.
output Versionlnfo WORD

Global Environment Calls

GetStandardSCB Returns a copy of the standard SCB in the low byte of the word.
output TheStandardSCB~ WORD

This corresponds to:

Bits Meaning

0-3 Color Table O

4 Reserved

5 Fill off

6 Interrupt off

7 Color Mode = 320

SetMasterSCB Sets the master SCB to the specified value (only the low byte is
used).

input AnSCB WORD
The master SCB is the global mode byte used throughout

QuickDraw [I. The master SCB is used by routines like InitPort to
decide what standard values should be put into the GrafPort.

GetMasterSCB Returns a copy of the master SCB (only the low byte is valid).
output AnSCB WORD

InitColorTable Returns a copy of the standard color table for the current mode.

input TablePrr POINTER

The entries are as follows for 320 mode:

Pixel Value Name Master Color

0 Black 000 Opposite of White
1 Red FOO

2 Green - 0FO0

3 Blue OO0OF

4 Teal 088

5 7? 808

Preliminary Notes 21 1/30/186

Description of the C;orzland Tools: Part]

SetColorTable

GetColorTable

SetColorEntry

Preliminary Notes

6 Brown 066
7 DarkGray 555
8 LightGray AAA
9 Orange F80
10 7? 8F8
11 m F88
12 Yellow FFO
13 Magenta FOF
14 Cyan OFF
15 White FFF Opposite of Black
The entries are as follows for 640 mode:
Pixel Value Name Master Color
0 Black 000 Opposite of White
1 Red FOO
2 Green OFO0
3 Blue FFF
Sets a color table to specified values.
input TableNumber WORD
input TablePrr POINTER

Tablenumber identifies the table to be set to the values specified in
the table pointed to. The 16 color tables are stored starting at
$9E00. Each table takes $20 bytes. Each word in the table
represents one of 4096 colors. The high nibble of the high byte is

ignored.

Fills a color table with the contents of another color table.

input TableNumber WORD
input TablePrr POINTER

Tablenumber specifies the number of the color table whose contents
are to be copied; TablePrr points to the color table which is to receive
the contents.

Sets the value of a color in a specified color table.

input TableNwnber WORD
input EntryNumber WORD
input Value WORD

Tablenumber specifies the number of the color table; EntryNwnber
specifies the number of the color to be changed; Value sets the color.

2 1/30/86

GetColorEntry

SetSCB

GetSCB

SetAlISCBs

Descriprion of the Cortland Tools: Part]

Returns the value of a color in a specified color table .

input TableNumber WORD
input EntryNumber WORD
output Value WORD

Tablenumber specifies the number of the color table; EnryNumber
specifies the number of the color to be examined; Value returns the

color.
Sets the scan line control byte (SCB) to a specified value.

input ScanLine WORD
input Value WORD

Scanline identifies the scan line whose SCB is to be set; Value sets
the SCB.

Returns the value of a specified scan line control byte (SCB).

input Scanline WORD
output Value WORD

Scanline identifies the scan line whose SCB is to be examined:;
Value returns the value of the SCB.

Sets all scan line con&ol bytes (SCBs) to a specified value.
input Value WORD

GrafPort Calls

OpenPort

InitPort

Preliminary Notes

Initializes specified memory locations as a standard port and
allocates new VisRgn and ClipRgn.

input PortPrr LONG

Initializes specified memory locations as a standard port.

input PortPr LONG

InitPort, unlike OpenPort, assumes that the region handles are
valid and does not allocate new handles. Otherwise, InitPort
performs the same functions.

23 1/30/86

-Description of the Cortland Tools: Part |

ClosePort

SetPort

GetPort

SetPortInfo

SetPortSize

MovePortTo

SetOrigin

Preliminary Notes

Deallocates the memory associated with a port.

input PortPrr LONG
All handles are discarded. If the application disposes of the memory

containing the port without first calling ClosePort, the memory
associated with the handles is lost and cannot be claimed.

Makes the specified port the current port.

input PortPrr LONG

Returns the handle to the current port.

output PortPrr LONG

Sets the current port's map information structure to the specified
location information.

input Loclnfo LONG

Changes the size of the current GrafPort's PortRect.

input Width WORD
input Height WORD

This does not affect the pixel map, but just changes the active area of
the GrafPort. The call is normally used by the Window Manager.

Changes the location of the current GrafPort's PortRect.

input Width WORD
input Height WORD

This does not affect the pixel map, but just changes the active area of
the GrafPort. The call is normally used by the Window Manager.

Adjusts the contents of PortRect and BoundsRect so that the upper
left corner of PortRect is set to the specified point.

input H WORD
input 1% WORD

VisRgn is also affected, but ClipRgn is not. The pen position does
not change.

4 1/30/86

SetClip

GetClip

ClipRect

Description of the Cortland Tools: Part

Sets the clip region to the region passed by using CopyRgn.

input RgnHandle LONG

Returns a handle to the current clip region.

output RgnHandle LONG

Changes the clip region of the current GrafPort to a rectangle
equivalent to a given rectangle.

input RectPrr LONG

This does not change the region handle, but affects the region itself.

Cursor-Handling Routines

SetCursor

GetCursorAdr

Preliminary Notes

Sets the cursor to the image passed in the cursor record.

input CursorPmr LONG

If the cursor is hidden, it remains hidden and appears in the new
form when it becomes visible again. If the cursor is visible, it

appears in the new form immediately.

Returns a pointer to the current cursor record.

input CursorPrr LONG

1/30186

Description of the Cortland Tools: Part]

HideCursor Decrements the cursor level. A cursor level of zero indicates the
cursor is visible; a cursor level less than zero indicates the cursor is
not visible.

ShowCursor Increments the cursor level unless it is already zero. A cursor level

of zero indicates the cursor is visible; a cursor level less than zero
indicates the cursor is not visible.

ObscureCursor Hides the cursor until the mouse moves. This tool is used to get the
cursor out of the way of typing.

Pen, Pattern, and Drawing Mode Calls

HidePen Decrements the pen level. A pen level of zero indicates drawing will
occur; a pen level less than zero indicates drawing will not occur.

ShowPen Increments the pen level unless it is already zero. A pen level of
zero indicates that drawing will occur; a pen level less than zero
indicates drawing will not occur.

GetPen Returns the pen location.
output PointPr LONG
SetPenState Sets the pen state in the GrafPort to the values passed.
input PenStazePrr LONG
GetPenState Returns the pen state from the GrafPort.
output PenStatePrr LONG
PenSize Sets the current pen size to the specified pen size.
input Width LONG
input Heigh: LONG
PenMode Sets the current pen mode to the specified pen mode.
input PenMode LONG

Preliminary Notes 26 1/30/186

PenPat

BackPat

PenNormal

MoveTo

Move

LineTo

Line

Calculations

SetRect

Preliminary Notes

Description of the Cortland Tools: Part]

Sets the current pen pattern to the specified pen pattern.

input PatternPrr LONG

Sets the background pattemn to the specified pattern.

input ParternPrr LONG

Sets the pen state to the standard state (PenSize = 1,1; PenMode
= copy; PenPat = Black). The pen location is not changed.

Moves the current pen location to the specified point.
input H WORD
input Vv WORD

Moves the current pen location by the specified horizontal and
vertical displacements.

input dh WORD
input & WORD

Draws a line from the current pen location to the specified point.

Draws a line from the current pen location to a new point specified
by the horizontal and vertical displacements.

input d WORD
input v WORD

With Rectangles

Sets the rectangle pointed to by RectPtr to the specified values.

input RectPmr LONG

input Left WORD

input Top WORD

input Right WORD

- input Bortom WORD
27 1/30/186

Description of the Cortland Tools: Part]

Offsets the rectangle pointed to by RectPtr by the specified

OffsetRect
displacements.
input RectPr LONG
input dh WORD
input v WORD
dv is added to the top and bottom; dh is added to the left and right.
InsetRect Insets the rectangle pointed to by RectPtr by the specified
displacements.
input | RectPrr LONG
input dh WORD
input av WORD
dv is added to the top and subtracted from the bottom; dk is added
to the left and subtracted from the right.
SectRect Calculates the intersection of two rectangles and places the
intersection in a third rectangle.
input SrcRectAPrr LONG
input SrcRectBPrr LONG
input DestRectPrr LONG
output Boolean WORD
If the result is non-empty, the output 1s TRUE,; if the result is empty,
the output is FALSE.
UnionRect Calculates the union of two rectangles and places the union in a third
rectangle.
input SrcRectAPrr LONG
input SrcRectBPrr LONG
input DestRectPtr LONG
output Boolean WORD
If the result is non-empty, the output is TRUE; if the result is empty,
the output is FALSE.
PtInRect Detects whether a specified point is in a specified rectangle.
input PtPrr LONG
input RectPmr LONG
output Boolean WORD

For example, PtInRect((10,10)),((10,10,20)) is TRUE but
PtInRect((20,20)),((10,10,20)) is FALSE.

Preliminary Notes 28

1/30/86

Descriprion of the Cortland Tools: Part]

Pt2Rect Copies one point to the upper left of a specified rectangle and
another point to the lower right of the rectangle.

input PtlPrr LONG

input PP LONG

input RectPrr LONG
EqualRect Compares two rectangles and returns TRUE or FALSE.

input RI1Pwr LONG

input - R2Pr LONG

output Boolean . WORD
EmptyRect Returns whether or not a specified rectangle is empty.

input RectPrr LONG

outpu Boolean WORD

An empty rectangle has the top greater than or equal to the bottom,
or the left greater than or equal to the right.

Rectangle Calls

FrameRect Draws the boundary of the specified rectangle with the current
pattern and pen size.

input RectPr LONG
Only points entirely within the rectangle are affected.

PaintRect Paints (fills) the interior of the specified rectangle with the current
- pen pattern.
input RectPr LONG
EraseRect Paints (fills) the interior of the specified rectangle with the
background pattern.
input RectPrr LONG
InvertRect Inverts the pixels in the interior of the specified rectangle.
input RectPrr LONG
FillRect Paints (fills) the interior of the specified rectangle with the specified
pattern.
input RectPrr LONG
input Pattern LONG

Preliminary Notes 29 1/30/86

Description of the Cortland Tools: Part |

Pixel Transfer Calls

ScrollRect Shifts the pixels inside the intersection of the specified rectangle,
VisRgn, ClipRgn, PortRect, and BoundsRect.
input RectPointer POINTER
input dh WORD
input av WORD
input UpdateRgn HANDLE

The pixels are shifted a distance of dh horizontally and dv vertically.
The positive directions are to the right and down. No other pixels
are affected. Pixels shifted out of the scroll area are lost. The
backgound pattern fills the space created by the scroll. In addition
UpdateRgn is changed to the area filled with BackPat.

Note that this UpdazeRgn must be an existing region,; it is not created
by ScrollRect. :

PaintPixels Transfers a region of pixels.
input PantParamPrr - LONG
PaintParamPrr is equal to the following:

PrrToSourceLocInfo LONG
PtrToDestLocInfo LONG
PtrToSourceRect LONG
PtrToDestPoint LONG
Mode WORD
MaskHandle (ClipRgn) LONG

The pixels are transferred without referencing the current GrafPort.
The source and destination are described in the input, as is the
clipping region.

Calculations With Points

AddPt Adds two specified points together and leaves the result in the
destination point.
input SrcPtPtr LONG
input DestPtPrr LONG

Preliminary Notes 30 1/30/186

Description of the Cortland Tools: Part]

SubPt Subtracts the source point from the destination point and leaves the
result in the destination point. '
input SrcPtPtr LONG
input DestPtPrr LONG
SetPt Sets a point to specified horizontal and vertical values.
input SrcPtPrr LONG
input h WORD
input 1% WORD
EqualPt Returns a boolean result indicating whether two points are equal.
input PtlPrr LONG
input P2Pr LONG
output, Boolean WORD

LocalToGlobal Converts a point from local coordinates to global coordinates.
input PiPr LONG
Local coordinates are based on the current BoundsRect of the |
GrafPort. Global coordinates have 0,0 as the upper left corner of
the pixel image.
GlobalToLocal Converts a point from glbbal coordinates to local coordinates.
input PtPrr LONG
Local coordinates are based on the current BoundsRect of the

GrafPort. Global coordinates have 0,0 as the upper left corner of
the pixel image.

Calculations With Regions

NewRgn Allocates space for a new region and initializes it to the empty
region. This is the only way to create a new region.

output RgnHandle LONG

All other calls work with existing rcgidns.

DisposeRgn Deallocates space for the specified region.
input RgnHandle LONG

Preliminary Notes 31 1/30/186

Description of the Cortland Tools: Part]

CopyRgn

SetEmptyRgn

SetRectRgn

RectRgn

OpenRgn

Preliminary Notes

Copies the contents of a region from one region to another.

input SrcRgn HANDLE.
input DestRgn HANDLE

If the regions are not the same size to start with, the DestRgn is
resized. (DestRgn must already exist. This call does not allocate it.)

Destroys the previous reg1on information by setting it to the empty
region.

input Rgn HANDLE
The empty region is a rectangular region with a bounding box of

(0,0,0,0). If the original region was not rectangular, the region is
resized.

Destroys the previous region information by setting it to a rectangle
described by the input.

input Rgn HANDLE
input Left WORD
input Top WORD
input Right WORD
input Bottom WORD

If the inputs do not describe a valid rectangle, the region is set to the
empty region. If the original region was not rectangular, the region
is resized.

“ Destroys the previous region information by setting it to a rectangle

described by the input.

input RgnHandle LONG
input RectPrr LONG

If the input does not describe a valid rectangle, the region is set to

the empty region. If the original region was not rectan gular, the
region is resized.

Tells QuickDraw II to allocate temporary space and start saving lines
and framed shapes for later processing as a region definition.

While the region is open, all calls to Line, LineTo, and the
procedures that draw framed shapes affect the outline of the region.

32 1/30/186

CloseRgn

OffsetRgn

InsetRgn

SectRgn

Preliminary Notes

Description of the Cortland Tools: Part]
Tells QuickDraw II to stop processing information and to return the
region that has been created.
input DestRgn HANDLE
DestRgn must already exist, and its contents are replaced with the

new region.

Moves the region on the coordinate plane a distance of dk
horizontally and dv vertically.

input Rgn HANDLE
input dh WORD
input av WORD

The region retains its size and shape.

Shrinks or expands a region.

input RgnHandle LONG
input dah WORD
input dv WORD

All points on the region boundary are moved inwards a distance of
dv vertically and dh horizontally. If dv or dh are negative, the
points are moved outwards in that direction. InsetRgn leaves the
region "centered” on the same position, but moves the outline.
InsetRgn of a rectangular region works just like InsetRect.

Calculates the intersection of two regions and places the intersection
in the third region.

input SrcRgnA HANDLE
input SrcRgnB HANDLE
input DestRgn HANDLE

The function does not allocate the third region. You must allocate
the third region before the call to SectRgn.

If the regions do not intersect, or one of the regions is empty, the
destination is set to the empty region.

33 ‘ 1/30/86

Description of the Cortland Tools: Part]

UnionRgn

DiffRgn

XorRgn

PtInRgn

Preliminary Notes

Calculates the union of two regions and places the union in the third
region.

input SrcRgnA HANDLE
input SrcRgnB HANDLE
input DestRgn HANDLE

The function does not allocate the third region. You must allocate
the third region before the call to UnionRgn.

If both regions are empty, the destination is set to the empty region.

Calculates the difference of two regions and places the difference in
the third region.

input SrcRgnA HANDLE

input SrcRgnB HANDLE
input DestRgn - HANDLE

The function does not allocate the third region. You must allocate
the third region before the call to DiffRgn.

If the source region is empty, the destination is set to the empty

region.

Calculates the difference between the union and the intersection of
two regions and places the result in the third region.

input SrcRgnA HANDLE
input SrcRgnB HANDLE
input DestRgn HANDLE

The function does not allocate the third region. You must allocate
the third region before the call to XorRgn.

If the regions are not coincident, the destination is set to the empty
region.

Checks to see whether the pixel below and to the right of the point is
within the specified region.

input PointPtr POINTER
input RgnHandle HANDLE
output Boolean WORD

The function returns TRUE if the pixel is within the region and
FALSE if it is not.

3 1/30186

RectInRgn

EqualRgn

EmptyRgn

Description of the Cortland Tools: Part]

Checks whether a given rectangle intersects a specified region.

input RectPtr POINTER
input RgnHandle HANDLE
output Boolean WORD

The function returns TRUE if the intersection encloses at least one
pixel or FALSE if it does not.

Compares the two regions and returns TRUE if they are equal or
FALSE if not.

input Rgnl HANDLE
input Rgr2 HANDLE
output Boolean WORD

The two regions must have identical sizes, shapes and locations to
be considered equal. Any two empty regions are always equal.
Checks to see if a region is empty.

input RgnHandle LONG
output Boolean WORD

Returns TRUE if the region is empty or FALSE if not.

Graphic Operations on Region Calls

FrameRgn

PaintRgn

EraseRgn

Preliminary Notes

Draws the boundary of the specified region with the current pattern
and current pen size.

input RgnHandle LONG
Only points entirely inside the region are affected.
If a region is open and being formed, the outside outline of the
region being framed is added to that region's boundary.
Paints (fills) the interior of the specified region with the current pen

pattern.

input RgnHandle LONG

Fills the interior of the specified region with the background pattern.

input RgnHandle LONG

35 1/30/186

Description of the Cortland Tools: Part |

InvertRgn Inverts the pixels in the interior of the specified region.
input RgnHandle LONG

FillRgn Fills the interior of the specified region with the specfied pattern.
input RgnHandle LONG
input PatternPrr LONG

Miscellaneous Utilities

Random Returns a pseudorandom number in the range —32768 to 32767.
output Integer WORD
The number returned is generated based upon calculations

performed on SeedValue, which can be set with SetRandSeed.
The result for any particular seed value is always the same.

SetRandSeed Sets the seed value for the random number generator.
input SeedValue WORD
GetPixel Returns the pixel below and to the right of the specifed point.
input h WORD
input v WORD
input ThePixel . WORD

ThePixel is returned in the lower bits of the word. If the current
drawing location has a chunkiness of 2, then 2 bits of the word are
valid. If the current drawing location has a chunkiness of 4, then 4
bits of the word are valid.

There is no guarantee that the point actually belongs to the port.

Preliminary Notes 36 1/30/186

Description of the Cortland Tools: Part]

Chapter 4

Memory Manager

Overview

The Memory Manager on the Cortland is responsible for allocating blocks of memory to
programs. The Manager does the bookkeeping of what memory is being used and keeps
track of who owns various blocks of memory.

Properties of Memory Blocks

Memory blocks have attributes that determine how they are allocated and maintained.
Some attributes are defined at allocation time and can't be changed. Other attributes can be
modified after allocation.

Allocation Attributes

When a block is allocated, an attribute byte is specified that determines how the block is
allocated. This type of attribute can only be set when the block is allocated. The attributes
are as follows:

* Movable

» Fixed Address

+ Fixed Bank

» Bank Boundary Limited
* Special Memory Useable
» Page Aligned

These attributes are explained in this section.

Movable

If a block is movable, it can be moved when compacting memory. Code blocks will rarely
be movable but data blocks should usually be movable.

Fixed Address

This attribute specifies that the block must be at a specified address when allocated. An
example is allocating the graphics screen.

Preliminary Notes 37 1/30/86

Description of the Cortland Tools: Part |

Fixed Bank

This attribute specifies that the block must start in a specified bank. An example is
allocating a block to be used as a zero page.

Bank Boundary Limited

This attribute specifies that a block must not cross banks. Code blocks, for example, my
never cross banks.

Special Memory Useable

This attribute specifies that the block may be allocated in special memory. This is memory
that was used in the Apple Ie. It includes banks 0 and 1 and the video screens.

Page Aligned
For timing reasons, code or data rhay need to be page aligned.

Modifiable Attributes

The memory manager can move or purge a block while making room for a new block.
There are attributes that determine whether a block can be moved or purged; these attributes
can be moved or purged. The attributes are as follows:

* Locked
* Purgelevel

Locked

When a block is locked, it is unmovable and unpurgeable regardless of the setting of
Moveable or PurgeLevel. This concept allows a block to be temporarily locked down
while it is being executed or referenced.

PurgeLevel

PurgeLevel is a two-bit number defining the purge priority of a block. 0 means the block
cannot be purged; 3 means the block will be the first purged.

Housekeeping Functions

MMInit Called at boot time.
MMStartUp Initializes the Memory Manager.
MMShutDown Releases resources.

Preliminary Notes 38 1/30/186

Description of the Cortland Tools: Part]

MMVersion Returns the version of the Memory Manager.

output Versionlnfo WORD

Memory Allocating Functions

NewHandle Creates a new block.
input BlockSize
input Owner
input Aunributes
input Location
output Handle

Blocksize is the size of the block to create.

ReAllocHandle Reallocates a block that was purged.

input TheHandle
input BlockSize
input Owner
input Antributes
input Locarion
output Handle

Blocksize is the size of the block to create.

Memory Freeing Functions

DisposHandle Purges a specified unlocked block and deallocates the handle.
input TheHandle HANDLE

The block must be unlocked, but is purged regardless of its purge
level.

DisposAll Discards all of the handles for a specific owner.
input Owner HANDLE

Preliminary Notes 39 1/30/186

Description of the Cortland Tools: Part]

PurgeHandle Purges a specified unlocked block, but does not deallocate the
handle.
input TheHandle HANDLE

The block must be unlocked, but is purged regardless of its purge
level. TheHandle itself remains allocated but is pointer to NIL.

PurgeAll Purges all of the purgeable blocks for a specific owner.
input Owner HANDLE

Block Information Functions

GetHandleSize Returns the size of a block.
input TheHandle HANDLE
output Size LONG
SetHandleSize Changes the size of a block.

input TheHandle HANDLE
input NewSize LONG

The block can be made larger or smaller. If more room is needed to
lengthen a block, memory may be compacted or blocks may be

purged.
FindHandle Returns the handle of the block containing a specified address.
input Locarion HANDLE
output TheHandle LONG

Note that, if the block is not locked, it may move.

Locking and Unlocking Functions

HLock Locks a block specified by a handle.
input TheHandle HANDLE

A locked block cannot be relocated during memory compaction..

Preliminary Notes 40 1130186

Description of the Cortland Tools: Part]

HLockAll Locks all of the blocks owned by an owner.
input Owner
HUnLock Unlocks a block specified by a handle.
input TheHandle HANDLE

A unlocked block can be relocated during memory compaction..

HUnLockAll Unlocks all of the blocks owned by an owner.
input Owner

Purge Level Functions

SetPurge Sets the purge level of a block specified by a handle.
input TheHandle HANDLE
input NewPLevel
SetPurgeAll Sets the purge level of all blocks owned by a specified owner.
input Owner HANDLE
input NewPLevel

Free Space Functions

FreeMem Returns the total number of free bytes in memory.
output Size LONG
FreeMem compacts memory space. The function does not count
memory that can be freed by purging; it might not be possible
(because of memory fragmentation) to allocate a block that large.
MaxBlock Returns the size of the largest free block in memory.

output Size LONG

This function does not count memory that can be freed by purging
or compacting.

Preliminary Notes 4] 1130186

Description of the Cortland Tools: Part]

Preliminary Notes 2 1/30/186

Description of the Cortland Tools: Part]

Chapter 5

Event Manager

Overview

The Event Manager allows applications to monitor the user's actions, such as those
involving the mouse, keyboard, and keypad. The Event Manager is also used by other
parts of the Toolbox; for instance, the Window Manager uses events to coordinate the
ordering and display of windows on the screen. There are actually two Event Managers:
one in the Operating System and one in the Toolbox.

The Operating System Event Manager detects low-level, hardware-related events such as
mouse button presses and keystrokes. It stores information about these events in the event
queue and provides routines that access the queue.
The Operating System Event Manager also allows an application to

* postits own events into the event queue

* remove events from the event queue

* set the system event mask, to control which types of events get posted into the queue
The Toolbox Event Manager calls the Operating System Event Manager to retrieve events
from the event queue. In addition, it reports window and switch events, which aren't kept
in the queue. The Toolbox Event Manager is the application's link to its user. A typical
event-driven application decides what to do from moment to moment by asking the
Toolbox Event Manager for events and responding to them one by one in whatever way is
appropriate.
The Toolbox Event Manager also allows an application to

* restrict some of the routines to apply only to certain event types

» directly read the current state of the mouse button

» monitor the location of the mouse
In general, events are collected from a variety of sources and reported to the application on

demand, one at a time. Events aren't necessarily reported in the order they occurred
because some have a higher priority than others.

Note: In the remainder of this document, OSEM denotes the Operating System
Event Manager and TBEM denotes the Toolbox Event Manager.

Preliminary Notes 43 ' 1130186

Description of the Cortland Tools: Part]

Event Types

Events are of various types. Some report actions by the user; others are generated by the
Window Manager, the Control Manager, device drivers, or the application itself for its own
purposes. Some events are handled by the system before the application ever sees them;
others are left for the application to handle. The event types are as follows:

Mouse Events

Pressing the mouse button generates a mouse-down event; releasing the button
generates a mouse-up event. Movements of the mouse cause the cursor position to be
updated but are not reported as events. Whenever an event is posted, the location of the
mouse at that time is reported in a field of the event record. The application can obtain the
current mouse position if needed by calling the TBEM routine GetMouse. Because relative
pointing devices such as joysticks must also be supported, the Event Manager differentiates
between button O and button 1.

Keyboard Events

The character keys on the keyboard and keypad generate key-down events when
pressed; this includes all keys except Shift, Caps Lock, Control, Option, and Open-Apple,
which are called modifier keys. Modifier keys are treated differently and generate no
keyboard events of their own. Whenever an event is posted, the state of the modifier keys
is reported in a field of the event record.

The character keys on the keyboard and keypad also generate auto-key events when
held down. Two different time intervals are associated with auto-key events. The first
auto-key event is generated after a certain initial delay has elapsed since the key was
originally pressed; this is called the delay to repeat. Subsequent auto-key events are then
generated each time a certain repeat interval has elapsed since the last such event; this is
called the repeat speed. The user can change these values with the Control Panel.

Window Events

The Window Manager generates events to coordinate the display of windows on the
screen. Activate events are generated whenever an inactive window becomes active or
an active window becomes inactive. They generally occur in pairs (that is, one window is
deactivated and then another is activated).

Update events occur when all or part of a window's contents need to be drawn or
redrawn, usually as a result of the user opening, closing, activating, or moving a window.
Other Events

A device driver event may be generated by device drivers in certain situations; for
example, a driver might be set up to report an event when its transmission of data is

interrupted. Device driver events are placed in the event queue with the OSEM procedure
PostEvent.

Preliminary Notes 44 1/30/86

Description of the Cortland Tools: Part]

An application can define as many as four application events of its own and use them

for any desired purpose. Application-defined events are placed in the event queue with the
OSEM procedure PostEvent.

A switch event is generated by the Control Manager whenever a button-down event has
occurred on the switch control. -

A desk accessory event is generated whenever the user enters the special keystoke to
invoke a "classic" desk accessory (currently CONTROL-OPEN APPLE-ESCAPE).

A null event is returned by the Event Manager if it has no other events to report.

Event Priority

Events are retrieved from the event queue in the order they were originally posted.
However, the way that various types of events are generated and detected causes some
events to have higher priority than others. Also, not all events are kept in the event queue.
Furthermore, when an application asks the TBEM for an event, it can specify particular
types that are of interest. Specifying such events can cause some events to be passed over
in favor of others that were actually posted later.

The TBEM always rétums the highest-priority event available of the requested types. The
priority ranking is as follows:

1. Activate (window becoming inactive before window becoming active).
2. Switch.

3. Mouse-down, mouse-up, key-down, auto-key, device driver, application-defined,
desk accessory (all in FIFO order).

4. Update (in front-to-back order of windows).

Activate events take priority over all others; they're detected in a special way, and are never
actually placed in the event queue. The TBEM checks for pending activate events before
looking in the event queue, so it will always return such an event if one is available.
Because of the special way activate events are detected, there can never be more than two
such events pending at the same time; at most there will be one for a window becoming
inactive followed by another for a window becoming active.

Next in priority are switch events, which are generated by the Control Manager and are also
not placed in the event queue. If no activate events are pending, the TBEM checks for a
switch event before looking in the event queue. If a switch event is available, the TBREM
then checks to see if any update events are pending, and if so, it returns the update event to
the application. The switch event is not returned to the application until there are no
pending update events. This is to ensure that all of the windows are updated before the
application is switched.

Category 3 includes most of the event types. Within this category, events are retrieved
from the queue in the order they were posted.

Next in priority are update events. Like activate and switch events, these are not placed in
the event queue, but are detected in another way. If no higher-priority event is available,

Preliminary Notes 45 1/30/86

Description of the Cortland Tools: Part]

the TBEM checks for windows whose contents need to be drawn. If it finds one, it returns
an update event for that window. Windows are checked in the order in which they're
displayed on the screen, from front to back, so if two or more windows need to be
updated, an update event will be returned for the frontmost such window.

Finally, if no other event is available, the TBEM returns a null event.

Note: If the queue should become full, the OSEM will begin discarding old events
to make room for new ones as they're posted. The events discarded are always the
oldest ones in the queue.

Event Records
Every event is represented internally by an event record containing all pertinent information
about that event. The event record includes the following information:
* the type of event
+ the time the event was posted (in ticks since system startup)
* the location of the mouse at the time the event was posted (in global coordinates)
« the state of the mouse buttons and modifier keys at the time the event was posted
* any additional information required for a particular type of event, such as which key
the user pressed or which window is being activated
Every event, including null events, has an event record containing this information.

Event records are defined as follows:

what INTEGER {event code}
message LONGINT {event message}
when LONGINT {ticks since startup}
where Point {mouse location}
modifiers INTEGER {modifier flags}

The when field contains the number of ticks since the system last started up, and the where
field gives the location of the mouse, in global coordinates, at the time the event was
posted. The other three fields are described in the following sections.

Preliminary Notes 46 1/30/86

Description of the Cortland Tools: Part]

Event Code

The what field of an event record contains an event code identifying the type of the event.
The event codes are assigned as follows:

0 - null event

1 - mouse down event

2 - mouse up event

3 - key down event

4 - undefined

5 - auto-key event

6 - update event

7 - undefined

8 - activate event

9 - switch event
10 - desk accessory event
11 - device driver event
12 - application-defined event
13 - application-defined event
14 - application-defined event
15 - application-defined event

Event Message

The message field of an event record contains the event message, which conveys additional
information about the event. The nature of this information depends on the event type, as
shown in the following table.

Event type Event message

Key-down ASCII character code in low-order byte
Auto-key ASCI character code in low-order byte
Activate Pointer to window

Update Pointer to window

Mouse-down Button number (0 or 1) in low-order word
Mouse-up Button number (0 or 1) in low-order word
Device driver Defined by the device driver

Application Defined by the application

Switch Undefined

Desk Accessory Undefined

Null Undefined

Modifier Flags

The modifiers field of an event record contains further information about activate events
and the state of the modifier keys and mouse buttons at the time the event was posted, as
shown below. The application might look at this field to find out, for instance, whether the
OPEN-APPLE key was down when a mouse-down event was posted (which could affect

Preliminary Notes 47 , 1/130/86

Description of the Cortland Tools: Part]

the way objects are selected) or when a key-down event was posted (which could mean the
user is choosing a menu item by typing its keyboard equivalent).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KeyPad : ChangeFlag
ControlKey ActiveFlag

OptionKey

CapsLock

ShiftKey

AppleKey
BtnOState

BtnlState

The ActiveFlag and ChangeFlag bits give further information about activate events. The
ActiveFlag bit is set to 1 if the window pointed to by the event message is being activated,
or 0 if the window is being deactivated. The ChangeFlag bit is set to 1 if the active
window is changing from an application window to a system window or vice versa.
Otherwise, it's set to 0. The KeyPad bit gives further information about key-down events;
it's set to 1 if the key pressed was on the keypad, or O if the key pressed was on the
keyboard. The remaining bits indicate the state of the mouse button and modifier keys.
Note that the BmOState and Btn1State bits are set to 1 if the corresponding mouse button is
up, whereas the bits for the five modifier keys are set to 1 if their corresponding keys are
down.

Event Masks

Some of the TBEM and OSEM routines can be restricted to operate on a specific event type
or group of types; in other words, the specified event types are enabled while all others are
disabled. For instance, instead of just requesting the next available event, the application
can specifically ask for the next keyboard event.

An application can specify which event types a particular call applies to by supplying an
event mask as a parameter. This is an integer in which there's one bit position for each
event type, as shown below. The bit position representing a given type corresponds to the
event code for that type—for example, update events (event code 6) are specified by bit 6
of the mask. A 1 in bit 6 means that this call applies to update events; a 0 means that it
doesn't.

Preliminary Notes 48 1/30/186

Description of the Cortland Tools: Part]

15 14 13 12 11 10 S 8 7 6 5 4 3 2 1 0

Device Switch - Update Key-down | Mouse-down

driver
Application Desk Activate Auto-key Mouse=-up
defined Accessory

Note: Null events can't be disabled; a null event will always be reported when none
of the enabled types of events are available.

There's also a global system event mask that controls which event types get posted into
the event queue by the OSEM. Only event types corresponding to bits set in the system
event mask are posted; all others are ignored. When the system starts up, the system event
mask is set to post all events.

Using the Event Managers

If an application will be using the Event Managers and the Window Manager, it must
initialize the Event Managers before initializing the Window Manager. The TBEM and
OSEM are initialized by calling the TBEM routine EMStartUp. Because the TBEM needs
to share data with the Window Manager, they must both use the same zero-page work area.
When the Window Manager is initialized, it must call the TBEM routine DoWindows to
obtain the address of the zero-page work area that has been assigned to the Event
Managers. If DoWindows is not called, the TBEM will assume that windows are not
being used and will not attempt to return window events.

Event-driven applications have a main loop that repeatedly calls GetNextEvent to retrieve
the next available event, and then takes whatever action is appropriate for each type of
event. Some typical responses to commonly occurring events are described in the next
section. The program is expected to respond only to those events that are directly related to
its own operations. After calling GetNextEvent, it should test the Boolean result to find
out whether it needs to respond to the event: TRUE means the event may be of interest to
the application; FALSE usually means it will not be of interest.

In some cases, the application may simply want to look at a pending event while leaving it
available for subsequent retrieval by GetNextEvent. It can do this with the EventAvail
function.

Responding to Mouse Events

On receiving a mouse-down event, an application should first call the Window Manager to
find out where on the screen the mouse button was pressed, and then respond in whatever
way is appropriate. Depending on the part of the screen in which the button was pressed,
the application may have to call Toolbox routines in the Menu Manager, the Desk Manager,
the Window Manager, or the Control Manager.

Preliminary Notes | 49 1/30/186

Description of the Cortland Tools: PartI

If the application attaches some special significance to pressing a modifier key along with
the mouse button, it can discover the state of that modifier key when the mouse button was
down by examining the appropriate flag in the modifiers field of the event record.

If the application wishes to respond to mouse double-clicks, it will have to detect them
itself. It can do so by comparing the time and location of a mouse-up event with those of
the immediately following mouse-down event. It should assume a double-click has
occurred if both of the following are true:

» The times of the mouse-up event and the mouse-down event differ by a number of
ticks less than or equal to the value returned by the TBEM function GetDblTime.

+ The locations of the two mouse-down events separated by the mouse-up event are
sufficiently close to each other. Exactly what this means depends on the particular
application. For instance, in a word-processing application, two locations might be
considered essentially the same if they fall on the same character, whereas in a
graphics application they might be considered essentially the same if the sum of the
horizontal and vertical changes in position is no more than five pixels.

Mouse-up events may be significant in other ways; for example, they might signal the end
of dragging to select more than one object. Most simple applications, however, will ignore
mouse-up events.

Responding to Keyboard Events

For a key-down event, the application should first check the modifiers field to see whether
the character was typed with the Open-Apple key held down; if so, the user may have been
choosing a menu item by typing its keyboard equivalent.

If the key-down event was not a menu command, the application should then respond to
the event in whatever way is appropriate. For example, if one of the windows is active, it
might want to insert the typed character into the active document; if none of the windows is
active, it might want to ignore the event.

Usually the application can handle auto-key events the same way as key-down events. You
may, however, want it to ignore auto-key events that invoke commands that shouldn't be
continually repeated.

Responding to Window Events

When the application receives an activate event for one of its own windows, the Window
Manager will already have done all of the normal "housekeeping" associated with the event,
such as highlighting or unhighlighting the window. The application can then take any
further action that it may require, such as showing or hiding a scroll bar or highlighting or
unhighlighting a selection.

On receiving an update event for one of its own windows, the application should usually
update the contents of the window.

Preliminary Notes 50 1/30/186

Description of the Cortland Tools: Part

Responding to Other Events

An application will never receive a desk accessory event because these are intercepted and
handled by the Desk Manager.

If the application receives a switch event, it should call a (currently unnamed) routine in the
Switcher that will save the current state and switch to the next application.

Posting and Removing Events

If an application is using application-defined events, it will need to call the OSEM function
PostEvent to post them into the event queue. Device drivers can post events the same way.
This function is sometimes also useful for reposting events that have been removed from
the event queue with GetNextEvent.

In some situations, you may want your application to remove from the event queue some or
all events of a certain type or types. It can do this with the OSEM procedure
FlushEvents.

Other Operations

In addition to receiving the user's mouse and keyboard actions in the form of events,
applications can directly read the mouse location and state of the mouse buttons by calling
the TBEM routines GetMouse and Button, respectively. To follow the mouse when the
user moves it with the button down, the application can use the TBEM routines
StillDown or WaitMouseUp.

Finally, the TBEM function GetCaretTime returns the number of ticks between blinks of
the "caret" (usually a vertical bar) marking the insertion point in editable text. An
application should call GetCaretTime if it is causing the caret to blink itself. The
application would check this value each time through the main event loop to ensure a
constant frequency of blinking.

Applications should never call the TBEM routines DoWindows and SetSwitch, and will
probably never call the OSEM routines GetOSEvent, OSEventAvail, SetEventMask,
and GetEvQHdr.

The Journaling Mechanism

The Event Manager has a journaling mechanism that can be accessed through assembly
language. The journaling mechanism "decouples" the Event Manager from the user and
feeds it events from a file that contains a recording of all the events that occurred during
some portion of a user's session. Specifically, this file is a recording of all calls to the
TBEM routines GetNextEvent, EventAvail, GetMouse, and Button. When a
journal is being recorded, every call to any of these routines is sent to a journaling device
driver, which records the call (and the results of the call) in a file. When the journal is
played back, these recorded TBEM calls are taken from the journal file and sent directly to
the TBEM. The result is that the recorded sequence of user-generated events is reproduced
when the journal is played back.

Preliminary Notes 51 1/30/186

Description of the Cortland Tools: Part [

Note: The journaling mechanism may not be supported in the first release due to
time contraints.

Housekeeping Functions

EMBootInit Called at boot time. Does nothing.
EMStartUp Initializes the Toolbox and Operating System Event Managers.
input ZeroPageAdrs INTEGER
input QueueSize INTEGER
input XMinClamp INTEGER
input XMaxClamp INTEGER
input YMinClamp INTEGER
input YMaxClamp - INTEGER

QueueSize specifies the maximum number of event records the
queue can hold. If QueueSize is equal to zero, a default size of ??

will be used. The Clamp inputs specify the minimum and
maximum X and Y clamps for the mouse.

EMShutDown Turns off the Toolbox and Operating System Event Managers.

EMVersion Returns the version of the Toolbox and Operating System Event
Managers.
_output Versioninfo WORD
DoWindows Returns the address of the zero-page work area used by the Toolbox

and Operating System Event Managers.

output ZeroPageAdrs INTEGER

Preliminary Notes 52 1/30/186

Descﬁption of the Cortland Tools: Part]

Accessing Events Through the Toolbox Event

Manager

GetNextEvent

Preliminary Notes

Returns the next available event of a specified type or types and, if
the event is in the event queue, removes it from the queue.

input EventMask INTEGER
input EvertPrr POINTER to EventRecord
output Boolean WORD

The event is returned in the event record pointéd to by EvenzPrr.
EventMask specifies which event types are of interest.

GetNextEvent returns the next available event of any type
designated by the mask, subject to the following priority order:

1. Activate (window becoming inactive before window becoming
active).

2. Switch.

3. Mouse-down, mouse-up, key-down, auto-key, device driver, -
application-defined, desk accessory, all in FIFO order.

4. Update (in front-to-back order of windows).

If no event of any of the designated types is available,
GetNextEvent returns a null event. This priority order is further
discussed in "?72772727".

Events in the queue that aren't designated in the mask are left in the
queue. The events can be removed by calling the FlushEvents
tool.

Before reporting an event to the application, GetNextEvent first
calls the Desk Manager tool SystemEvent to see whether the
system wants to intercept and respond to the event. If so, or if the
event being reported is a null event, GetNextEvent returns a
Boolean result of FALSE; a Boolean result of TRUE means that the
application should handle the event itself. The Desk Manager
intercepts the following events:

. desk accessory events

. activate and update events directed to a desk accessory

. mouse-up and keyboard events, if the currently active window
belongs to a desk accessory

In each case, the event is intercepted by the Desk Manager only if
the desk accessory can handle that type of event. As a rule, all desk
accessories should be set up to handle activate, update, and
keyboard events and should not handle mouse-up events.

53 1/30186

Description of the Cortland Tools: Part]

EventAvail

GetNextEvent also handles the Alarm Clock desk accessory. If
the "alarm" is set and the current time is the alarm time, the alarm
goes off. The user can set the alarm with the Alarm Clock desk
accessory.

This tool works the same way as GetNextEvent, except that
EventAvail leaves the event in the event queue (if the event was
there in the first place).

input EventMask INTEGER
input EveruPrr POINTER to EventRecord
output Boolean WORD

An event returned by EventAvail cannot be accessed if, in the
meantime, the queue becomes full and the event is discarded.
However, because the oldest events are the ones discarded, useful
events will be discarded only in an unusually busy environment.

Reading the Mouse

GetMouse

Button

StillDown

Preliminary Notes

Returns the current mouse location.
output MouseLocPrr POINTER to a Point

The location is given in the local coordinate system of the current
GrafPort (for example, the currently active window). This differs
from the mouse location stored in the "where" field of an event
record; that location is always in global coordinates.

Returns the current state of the mouse button.

input BurtonNum INTEGER
output Boolean WORD

BurtonNum contains the number (O or 1) of the mouse button to
check. Boolean returns TRUE if the mouse button is currently
down, or FALSE if it isn't.

Tests whether the mouse button is still down.

input BurtonNum INTEGER
output Boolean WORD

BurtonNum contains the number (0 or 1) of the mouse button to
check. Boolean returns TRUE if the mouse button is currently
down and there are no more mouse events pending in the event
queue. Usually called after a mouse-down event, StillDown is a
true test of whether the mouse button is still down from the original
press. (Button is not a true test, because it returns TRUE

bl 1/30/186

WaitMouseUp

Description of the Cortland Tools: Part]

whenever the mouse button is currently down, even if the button
was released and pressed again since the original mouse-down
event.)

Tests whether the mouse button is still down, and, if the button is
not still down from the original press, removes the preceding
mouse-up event before returning FALSE.

input BurtonNum INTEGER
output Boolean WORD

ButtonNum contains the number (0 or 1) of the mouse button to
check. Boolean returns TRUE if the mouse button is currently
down and there are no more mouse events pending in the event
queue.

WaitMouseUp could be used, for example, if an application
attached some special significance to mouse double-clicks and to
mouse-up events. WaitMouseUp would allow the application to
recognize a double-click without being confused by the intervening
mouse-up. .

Miscellaneous Toolbox Event Manager Routines

GetDbITime

GetCaretTime

SetSwitch

Preliminary Notes

Returns the suggested maximum difference (in ticks) between
mouse-up and mouse-down events in order for the mouse clicks to
be considered a double click.

output MaxTicks LONGINT
The user can adjust this value by using the Control Panel.
Returns the time (in ticks) between blinks of the "caret" (usually a
vertical bar) marking the insertion point in text.

output NumTicks LONGINT
If an application is not using TextEdit, the application must cause the
caret to blink. On every pass through the program's main event
loop, the application should check NumTicks against the elapsed
time since the last blink of the caret .
The user can adjust this value by using the Control Panel.
Informs the Toolbox Event Manager of a pending switch event.

SetSwitch is called by the Control Manager and should not be
called by an application.

55 1130186

Description of the Cortland Tools: Part [

Posting and Remroving Events

PostEvent

FlushEvents

Preliminary Notes

Places an event in the event queue.

input EvenrCode INTEGER
input EventMsg LONGINT
output Resulr INTEGER

EvenrCode designates the type of event to be placed in the queue.
EventMsg specifies the event message, with the current state of the
modifier keys and mouse buttons supplied in the high-order word of
the message. In addition, the current time and mouse location is
recorded in the message.

Result returns a result code equal to one of the following values:

0 - no error (event posted)
1 - event type not designated in system event mask

An application must be careful when it posts any events other than
its own application-defined events into the queue. Attempting to
post an activate or update event (which aren't normally placed in the
queue), for example, will interfere with the normal operation of the
Toolbox Event Manager.

If PostEvent is used to repost an event, the event time, mouse
location, state of the modifier keys, and state of the mouse buttons
will all be changed from the originally posted event. This can alter
the meaning of the event.

Removes events from the event queue.

input EventMask INTEGER
input StopMask INTEGER
output Resulr INTEGER

EventMask specifies the type or types of the events to be removed
from the queue. FlushEvents removes all events of the type or
types specified up to but not including the first event of any type
specified by StopMask. To remove all events specified by
EventMask, specify 0 as the value of StopMask.

If the event queue doesn't contain any event of the types specified
by EventMask, FlushEvents does nothing.

When the tool finishes, Result contains 0 if all events were removed

from the queue, or an event code specifying the type of event that
caused the process to stop.

56 1/30/86

Description of the Cortland Tools: Part]

Accessing Events Through the OS Event Manager

GetOSEvent

OSEventAvail

Preliminary Notes

Returns the next available event of a specified type or types and, if
the event is in the event queue, removes it from the queue.

input EventMask INTEGER
input EverntPrr POINTER to EventRecord
input Boolean WORD

The event is returned in the event record pointed to by EvenzPtr.
EventMask specifies which event types are of interest.

GetOSEvent returns the next available event of any type
designated by the mask, subject to the following priority order:

1. Activate (window becoming inactive before window becoming
active).

2. Switch.

3. Mouse-down, mouse-up, key-down, auto-key, device driver,
application-defined, desk accessory, all in FIFO order.

4, Update (in front-to-back order of windows).

If no event of any of the designated types is available,
GetNextEvent returns a null event and a Boolean of FALSE;
otherwise Boolean is TRUE. This priority order is further
discussed in 272777777,

Events in the queue that aren't designated in the mask are left in the
queue. The events can be removed by calling the FlushEvents
tool.

This tool works the same way as GetOSEvent, except that
OSEventAvail leaves the event in the event queue (if the event
was there in the first place).

input EventMask INTEGER
input EventPrr POINTER to EventRecord
output Boolean WORD

An event returned by OSEventAvail cannot be accessed if, in the
meantime, the queue becomes full and the event is discarded.
However, because the oldest events are the ones discarded, useful
events will be discarded only in an unusually busy environment.

57 1/30186

Description of the Cortland Tools: Part [

Miscellaneous OS Event Manager Routines

SetEventMask

GetEvQHdr

Preliminary Notes

Sets the system event mask to the specified event mask.

input TheMask INTEGER
The Operating System Event Manager will post only those event
types that correspond to bits set in the mask. It will not post
activate, update, or switch events, because those events are not
stored in the event queue.
The system event mask is initially set to post all events. An

application should not change the system event mask, because desk
accessories may depend upon receiving certain types of events.

Returns a pointer to the header of the event queue.

output QHdrPrr POINTER

58 1/30186

Description of the Cortland Tools: Part]

Chapter 6

Other ROM Tools

SANE
The ROM Tools for the Cortland will provide all of the functions found in the Standard

Apple Numeric Environment (SANE). The SANE Tools can be called using the normal
Cortland call mechanism. '

The SANE Tools for the Cortland work in the same manner as they do in other Apple
environments, except for minor differences in the halt mechanism. For more information
regarding that mechanism, refer to the Cortland SANE Tool Set Preliminary Notes. For

more information regarding the capabilities of SANE, refer to the Apple Numerics Manual.

Desk Manager

No information available at this u'me‘.

Sound Manager

No information available at this time.

Preliminary Notes 59 1/30/86

Description of the Cortland Tools: Part]

Preliminary Notes 60 1/30/86

Description of the Cortland Tools: Part]

Chapter 7

Miscellaneous ROM Tools

Overview

There are a number of tools that do not fall easily into one logical category. We have

grouped them under the name of "Miscellaneous ROM Tools". Those tools are explained
in this chapter.

The error codes for the miscellaneous tools are as follows:
$0000 No Error ‘
$0001 Bad Input Parameter
$0002 No Device for Input Parameter

Housekeeping Functions

PowerUplInit ~ Called at boot time. Initializes HeartBeat interrupt chain link pointer
. to $00000000.
StartUp Does nothing.
ShutDown Does nothing.
Version Returns the version of the miscellaneous tools.
output Versioninfo WORD

Math Functions

Multiply Multiplies two 16-bit inputs and produces a 32-bit result.
input ResuliSpace LONG
input MI WORD
input M WORD
output Result LONG

If the inputs were unsigned, the 32-bit Result is unsigned. If the
inputs were signed, the low word of the 32-bit Resulr indicates the
sign.

Preliminary Notes 61 1/30/86

Descriprion of the Cortland Tools: Part I

SDivide

UDivide

LongMul

LongDivide

FixRatio

Preliminary Notes

Divides two 16-bit inputs and produces two 16-bit signed results.

input ResultSpace LONG
input Numerator WORD
input Denorninazor WORD
output Quorient LONG
output Remainder LONG

Divides two 16-bit inputs and produceé two 16-bit unsigned results.

input ResuitSpace - LONG
input Numerator WORD
input Denominazor WORD
output Quotient LONG
output Remainder LONG

Multiplies two 32-bit inputs and produces a 64-bit result.

input ResultSpace LONG
input ResultSpace LONG
input M1 LONG
input M2 LONG
output Result LONG
output Result LONG

If the inputs were unsigned, the 64-bit Result is unsigned. If the
inputs were signed, the low two words of the 64-bit Resulr indicate
the sign.

Divides two 32-bit inputs and produces two 32-bit unsigned results.

input ResultSpace LONG
input ResultSpace LONG
input Numerator LONG
input Denominazor LONG
output Quotient LONG
output Remainder LONG

Takes two signed integer inputs and produces a two-word fixed-
point number as a ratio of the numerator and denominator.

input ResultSpace LONG
input Numerazor LONG
input Denominator - LONG
output Result (least significant) LONG
output Result(most significant) LONG
& 1/30/186

FixMul

FracMul
FixDiv
FracDiv
FixRound
FracSqrt
FracCos
FracSine

FixATan2

HiWord
LoWord
Long2Fix
_Fix2Long
Fix2Frac
Frac2Fix

Fix2X

Preliminary Notes

Description of the Cortland Tools: Part]

Multiplies two fixed-point inputs and produces a two-word fixed-
point result.

input ResultSpace LONG
input Ml LONG
input N 7] LONG
output Resudt (least significant) LONG
output Result(most significant) LONG

Multiplies two Frac inputs and produces a Frac result.

Divides tw§ fixed-point inputs and produces a fixed-point result.
Divides two Frac inputs and produces a Frac result.

Takes a fixed-point input and produces a rounded integer result.
Takes a Frac input and produces a Frac square root.

Takes a Frac input and produces its cosine.

Takes a Frac input and produces its sine.

Takes two inputs and produces a fixed point arc tangent of their
ration. The inputs can be long integer, fixed, or Frac.

Returns high word of input.
Returns low word of input.
Converts long integer to fixed.
Converts fixed to long integer.
Converts fixed to Frac.
Converts Frac to fixed.

Converts fixed to extended.

&3 , 1/30/186

Description of the Cortland Tools: Part]

Frac2X
X2Fix

X2Frac

Converts Frac to extended.

Converts extended to fixed.

Converts extended to Frac.

Battery RAM Functions

WriteBRam

ReadBRam

WriteBParam

ReadBParam

Preliminary Notes

Writes 256 bytes of data from a specified address to the battery
RAM.
input BufferAddress LONG

Reads 256 bytes of data from the battery RAM and transfers it to a
specified address.

input BufferAddress LONG

Writes data to a specified parameter in battery RAM.

input Dau WORD
input ParamRef WORD

ParamRef is from 0-255, and is defined as below for
ReadBParam.

Reads one byte of data from battery RAM at a specified parameter
address.

input ParamRef WORD
output Dan WORD

ParamRef is from 0-255, and is defined as follows:

$0B Port2 Printer/Modem
$0C Port2 Line Length

$0D Port2 delete if after cr
$0E Port2 add If after cr
$OF Port2 Echo

$10 Port2 Buffer

$11 Port2 Baud

$12 Port2 Data Bits

$13 Port2 Stop Bits

$14 Port2 Parity

$15 Port2 DCD Handshake
$16 Display Color/Monochrome

&4 1/30/86

Preliminary Notes

$17
$18
$19
$1A
$1B
$1C
$1D
$1E
$1F
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$§2A
$2B
$2C
$2D
$2E
$2F
$30
$31
$32
$33
$34-35
$36-37
$38-39
$3A-42
$43-54
$55-7F
$30

Description of the Cortland Tools: Part]

Display 40/80 Column
50/60 Hz

Display Text Color
Display Background Color
Display Border Color
User Volume

Bell Volume

System Speed

Slotl Internal/External
Slot2 Internal/External
Slot3 Internal/External
Slot4 Internal/External
Slot5 Internal/External
Slot6 Internal/External
Slot7 Internal/External
Startup Slot

Text Display Language
Keyboard Language
Keyboard Buffering
Keyboard Repeat Speed
Keyboard Repeat Delay
Double Click Time

. Flash Rate

Shift Caps/Lower Case

Fast Space/Delete Keys

Dual Speed

High Mouse Resolution
Month/Day/Year Format
24/am-pm Format

Minimum Ram for RAMDISK
Maximum Ram for RAMDISK
Free space for RAMDISK
Number of Languages
Number of Layouts

Reserved

AppleTalk node number

1/30/86

Description of the Cortland Tools: Part]

Clock Routines

These routines allow the clock to be set or read. Setting the clock requires that the time be
passed as an input parameter in a hex format.

Two tools are provided for reading the clock. One returns time in a hex format; the other
returns time in an ASCII format.

ReadTimeHex Returns current time in Hex format.
input ResultSpace WORD
input ResultSpace WORD
input ResultSpace WORD
output Year/Day WORD
output MonzthiSeconds WORD
output Minwe/Hour WORD

WriteTimeHex Sets clock to time specified in Hex format.

input Mirnwe/Hour WORD
input Month/Seconds WORD
input Year/Day WORD
input Starus WORD

Status indicates which parameters have changed, as follows:

Bit 6-15 Reserved

BitS5 1 if Year not changed

Bit4 1 if Day not changed

Bit3 1 if Month not changed
Bit2 1 if Second not changed
Bit1 1 if Minute not changed
Bit0 1 if Hour not changed

ReadASCIITime Reads elapsed time since 00:00:00, January 1, 1904, converts the
elapsed time to ASCII time output, and places the output in a
specified buffer.

input BufferAddress WORD

The ASCII time is in HH:MM:SS mm/dd/yy format, where:

HH Hour
MM Minute
SS Second
mm Month
ad Day

yy Year

The ASCI string has the high bit cleared.

Preliminary Notes 66 1/30/186

Description of the Cortland Tools: Part]

Text Routines

The routines specified below talk to any card that supports Pascal entry points.

WriteChar

WriteLine

WriteString

WriteText

WriteCString

Preliminary Notes

Combines a character with the global AND mask and global OR
mask, and then writes the character to the Pascal device specified by
the global slot number.

Input Character WORD

Combines a character string with the global AND mask and global
OR mask, and then writes the string to the Pascal device specified
by the global slot number. A carriage return and line feed are
concatenated to the string.

Input StringPrr LONG

The first byte of the character string spec1ﬁes the length of the
string.

Combines a character string with the global AND mask and global
OR mask, and then writes the string to the Pascal device specified
by the global slot number.

- Input StringPmr LONG
The first byte of the character string specifies the length of the
string.

Combines text from a specified location (pointer + offset) with the
global AND mask and global OR mask, and then writes the string to
the Pascal device specified by the global slot number.

Input TexPrr LONG
Input Offser WORD
Input Courz WORD

TextPrr + Offset specifies the memory location of the start of the
string; Count specifies the length of the string.

Combines a character string terminating with the value $00 with the
global AND mask and global OR mask, and then writes the string to
the Pascal device specified by the global slot number.

Input CStringPrr LONG

67 1/30/186

Description of the Cortland Tools: PartI

ReadChar

ReadBlock

ReadLine

InitPDev

ControlPDev

StatusPDev

Preliminary Notes

Reads a character from the Pascal device specified by the global slot
number, combines the character with the global AND mask and
global OR mask, and returns that combination as a result.

Input Résulepace WORD
Output Character WORD

Reads a block of characters from the Pascal device specified by the
global slot number, combines the characters with the global AND
mask and global OR mask, and writes the block to a specified
memory location.

Input ResultSpace WORD
Input Pointer . LONG
Input Offset WORD
Input MaxBlockSize WORD
Output CharsReceived WORD

Pointer + Offset specifies the starting memory location to write to.

Reads a character string terminating in an EOL character from the
Pascal device specified by the global slot number, combines the
characters with the global AND mask and global OR mask, and
writes the string to a specified memory location.

Input ResultSpace WORD
Input BufferPoinzer LONG
Input MaxBlockSize WORD
Input EOLCharacter WORD
Output CharsReceived WORD

BufferPointer specifies the buffer to write to.

Initializes the Pascal device.

Input ResultSpace WORD
Initializes the Pascal device.

Input ControlCode WORD

Makes the status call to the Pascal device.
Input RequestCode WORD

68 1/30/86

SetInGlobals

SetOutGlobals

GetInGlobals

GetOutGlobals

Preliminary Notes

Descriprion of the Cortland Tools: Part]

Sets the global parameters for the input device.

Input AndMask WORD
Input OrMask WORD

Input SlotNumber WORD

Sets the global parameters for the output device.

Input AndMask WORD
Input OrMask WORD
Input SlotNumber WORD

Returns the global parameters for the input device.

Input ResultSpace WORD
Input ResultSpace WORD
Input ResultSpace WORD
Output AndMask WORD
Output OrMask WORD
Output SlotNumber WORD

Returns the global parameters for the output device.

Input ResultSpace WORD

Input ResultSpace WORD

Input ResultSpace WORD

Output AndMask WORD

Output OrMask WORD

Output SlotNumber WORD
69

1/30/86

Description of the Cortland Tools: Part |

Vector Initialization Routines

These routines allow the application to set or get the current vector for the interrupt
handlers.

SetVector Sets the vector address for the interrupt manager or handler specified
by the vector reference number.
Input VectorRefNumber WORD
Input Address LONG

VectorRefNumbers are given below, under GetVector.

GetVector Returns the vector address for the interrupt manager or handler
specified by the vector reference number.

Input ResultSpace WORD
Input VectorRefNumber WORD
Input Address LONG

VectorRefNumbers are as follows:

$00 Tool Locator #1

$01 Tool Locator #2

$02 User's Tool Locator #1

$03 User's Tool Locator #2

$04 Interrupt Manager

$05 COP Manager

$06 System Death Handler

$07 AppleTalk Interrupt Handler

$08 Serial Com. Controller Interrupt Handler
$09 Scan Line Interrupt Handler

$0A Sound Interrupt Handler

$0B Vertical Blanking Interrupt Handler
$0C Mouse Interrupt Handler

$0D Quarter Second Interrupt Handler
$0E Keyboard Interrupt Handler

$OF FDB Response Byte Interrupt Handler
$10 FDB SRQ Interrupt Handler

$11 Desk Accessory Manager

$12 Flush Buffer Handler

$13 Key Micro Interrupt Handler

$14 One Second Interrupt Handler

$15 EXT VGC Interrupt Handler

$16 Other Unspecified Interrupt Handler
$17 Cursor Update Handler

$18-FF Invalid

Preliminary Notes | 70 1130186

Description of the Cortland Tools: Part]

HeartBeat Interrupt Queue

These tools allow a vector to be installed or removed from the HeartBeat Interrupt service

queue.

SetHeartBeat

HEARTBEAT
TASKCNT
START

Preliminary Notes

Installs the task specified by the pointer into the HeartBeat Interrupt
service queue.

Input Pointer ’ LONG

You must precede the task with a long word pointer which the tool
uses to link to the next HeartBeat interrupt service task; a word
parameter for a count which is used by the handler to keep track of
how many VBL occurences remain before service is rendered; and a
word parameter containing a signature value used to verify the
presence of the task header. The task should end by executing an
RTL back to the HeartBeat Interrupt handler. When this call is
made, the tool assumes that the heartbeat interrupt handler will be
used, and installs the HeartBeat interrupt handler into the VBL
interrupt vector. An example is as follows:

EQU *

DS 4,0 ;Link to next task
DW $nnnn ;# VBL's until service
DwW $AS5SA ;Signature word
EQU * ;task starts here

1LDA #nnnn ;task must reset count
STA TASKCNT

RTL ;back to handler

The count word and link long word are initialized by the tool. The
count word is decremented by the HeartBeat interrupt handler, and
is reset by the task. When a task is installed in the HeartBeat chain,
the four bytes reserved for the link will be loaded with a $0000.
The four bytes reserved for the link in the procedure just previous to
the procedure currently being installed will be loaded with the
address of the procedure currently being installed. Count specifies
how many heartbeats remain before service is rendered to a
procedure.

You can install ROM-based heartbeat tasks, but to do so you must
permanently allocate twelve bytes of RAM to the task. The task
header must be loaded into RAM, followed by a JMP instruction
and the address of the ROM-based task as shown below:

71 1/30/186

Description of the Cortland Tools: Part]

HEARTBEAT
TASKCNT
START

ROMTASK

DelHeartBeat

ClrHeartBeat

HBptr (msb)
HBptr (bank)
HBptr (adrh)
HBptr (adrl)

Preliminary Notes

EQU =

DS 4,0 ;Link to next task

DW $nnnn ;# VBL's until service
DW $AS5A ;Signature word

EQU * ;task starts here

JMP >ROMTASK ;jump to rom based task

The ROM-based task still has the responsibility of resetting the task
counter.

EQU =

1DA #nnnn ;task must reset count
STA TASKCNT

RTL ‘back to handler

Deletes the task specified by the link address from the HeartBeat
Interrupt service queue.

Input Pointer LONG

Errors that may occur when making tool calls to set or delete
heartbeat tasks are as follows:

Error Code Descriptions
$0003 Task already installed in heartbeat queue.
$0004 No signature in task header.
$0005 Queue has been damaged.
$0006 Task was not found in queue.

Clears the HeartBeat Interrupt service queue.

HeartBeat Queue

RTL
RTL T
RTL T o
| +7 SIGNATURE(msb)
+7 SIGNATURE(msp) *$ SIGNATURE(sb)

+5 CNTR (msb)
+7 SIGNATURE(msb) *+6 SIGNATURE(sb)

+4 CNTR (sb)
+6 SIGNATURE(sb) :i mq' R (a"s"bﬁ’) +3 LINK = $00

+5 CNTR (msb) +2 LINK = $00
+3 LINK (msb
+4 CNTR (1sb) +2 LINK (bank) +1 LINK = S00
+3 LINK (msb +1 LINK (sdrh) LINK = $00
+2 LINK (bank) LINK (ackrl) Last Link in Chain
+1 LINK (adrh)
LINK (adrl)

72 1/30/186

System Death Manager

Description of the Cortland Tools: Part]

This tool call vectors through the system death vector. At system power-up time, a default
System Death Manager's vector will be installed. The default System Death Manager will
display either a default or application-specific error message and an error code. If the
pointer to the system death message is set to a value of $00000000, then the default system

death message will be displayed.

SysDeathMGR Causes system death.
Input ErrorCode WORD
Input PoinzterMsg LONG

System Death error codes are as follows :

Error Code

$0004

$0015
$0017-$0024
$0025
$0026
$0027

$0028

$0030
$0032-$0053
$0100

$0200

Preliminary Notes

D‘escription

Divide by zero.

Segment loader error.

Can't load package.

Out of memory.

Segment loader error.

File map trashed.

Stack overflow error.

Please insert disk (File manager alert).
Memory Manager error.

Can't mount system startup volume.
Heartbeat Task Queue damaged.

73 1/30/86

Description of the Cortland Tools: Part]

Get Address

This tool call returns an address of a byte, word, or long parameter referenced by the

firmware.
GetAddr Returns the address of a byte, word, or long parameter.
Input ResultSpace LONG
Input RefNumber WORD
Output PuTolntStatus LONG
RefNumbers are defined below:
Ref # Lcnzﬂ_! Parameter
0 IRQ Interrupt Flag (IRQ.IntFlag)
1 Byte IRQ Data Flag (IRQ.DataReg)
2 Byte IRQ Serial Port 1 Flag (IRQ.Seriall)
3 Byte IRQ Serial Port 2 Flag (IRQ.Serial2)
4 Byte IRQ Apple Talk Flag IRQ.APTLKHI)
5 LongWord HeartBeat Tick Counter (TickCnt)
The two bytes of intcrfupt status are defined as follows:
IRQ.IntFlag D7 1 = mouse button currently down
D6 1 = mouse button was down on last read
D5 Status of AN3
D4 1 = 1/4 second interrupted
D3 1 = VBL interrupted
D2 1 = Mega Il mouse switch interrupted
D1 1 = Mega II mouse movement interrupted
DO 1 = system IRQ line is asserted
IRQ.DataReg D7 1 = Response byte, 0 = Status byte
D6 1 = Abort
D5 1 = Desktop manager sequence pressed
D4 1 = Flush buffer sequence pressed
D3 1 =SRQ
DO-2 If all bits clear then no FDB data valid, else

Preliminary Notes

the bits indicate the number of valid bytes
received minus 1. (2-8 bytes total)

74

1/30/186

Description of the Cortland Tools: Part]

Mouse Tools

These tools interface with the mouse firmware. They can be used to set mouse mode,
inquire about mouse status, read the clamp and position values, and set the clamp values.

ReadMouse Returns mouse position, status, and mode.

Input ResultSpace WORD

Input ResultSpace WORD

Input ResultSpace WORD

Output Xposition WORD

Output Yposition WORD

Output Status&Mode WORD
InitMouse Initializes mouse clamp values to $000 minimum and $3FF

maximum, and clears mouse mode and status.
Input Mouselook WORD
MouseLook values are as follows:
-0 = Search for mouse
1-7 = Specify mouse slot
SetMouse Sets the mode value for the mouse.
Input ModeValue WORD

Modevalue 1s as follows:

$00 Turn mouse off.

$01 Set transparent mode.

$03 Set movement interrupt mode.

$05 Set button interrupt mode.

$07 Set button or movement interrupt mode.

$08 Turn mouse off, VBLIRQ active.
$09 Set transparent mode, VBLIRQ active.

$0B Set movement interrupt mode,
VBLIRQ active.
$0D Set button interrupt mode, VBLIRQ active.
$OF Set button or movement interrupt mode,
VBLIRQ active.

Preliminary Notes 75 1/30/86

Description of the Cortland Tools: Part I

HomeMouse Positions mouse at minimum clamp position.
ClearMouse Sets both X and Y axis position to $000.
ClampMouse Sets clamp values to new values, and then sets mouse position to the
. minimum clamp values.
Input XaxsMinClamp WORD
Input XaxisMaxClamp WORD
Input YaxasMinClamp WORD
Input YaxisMaxClamp WORD

GetMouseClamp Returns the current mouse clamp values.

Input ResultSpace WORD
Input ResultSpace WORD
Input ResultSpace - WORD
Input ResultSpace WORD
Input YaxisMinClamp WORD
Input YaxisMaxClamp WORD
Input XaxisMinClamp WORD
Input XaxisMaxClamp WORD
PostMouse Positions mouse at the coordinates specified in the input parameters.
Input Xposition WORD
Input Yposition WORD
ServMouse Returns the mouse interrupt status.
Input ResultSpace WORD
Output InSeatus WORD

ID Management

This tool is used to insert, delete, or inquire status regarding an identification reference.
The ID is used to tag segments as belonging to a specific application or desk accessory.

GetNewID' Returns a value ID number and type.
Input Type WORD
Output IDnum&Type WORD

Preliminary Notes 76 1/30/186

Description of the Cortland Tools: Part]

DeleteID Removes a specified ID from the current ID list.
Input IDnum&Type WORD

StatusID Returns with Carry set if ID not active, Carry clear if ID is active.
Input IDnum&Type WORD

Interrupt Control

This tool allows certain interrupt sources to be enabled or disabled.

IntSource Enables or disables the interrupts source specified by the source
reference number.

Input SrcRefNumber WORD

SrcRefNumbers are shown below:

Ref # Source

$0000 Enable Keyboard interrupts

$0001 Disable Keyboard interrupts
$0002 Enable Vertical Blanking interrupts
$0003 Disable Vertical Blanking interrupts
$0004 Enable Quarter Second interrupts
$0005 Disable Quarter Second interrupts
$0006 Enable One Second interrupts
$0007 Disable One Second interrupts
$0008 Enable Keyboard Buffering

$0009 Disable Keyboard Buffering
$000A Enable FDB Data Interrupts

$000B Disable FDB Data Interrupts

Preliminary Notes 77 1/30186

Description of the Cortland Tools: Part I

Firmware Entry Points

FWentry Allows some Apple II entry points to be called from full native
mode.

Input ResultSpace BYTE

Input ., ResultSpace WORD
Input ResultSpace WORD
Input ResultSpace WORD
Input AregistertToFirm WORD
Input XregisterToFirm WORD
Input YregisterToFirm WORD
Input EntryRefNumber WORD
Output AregistertFromFirm WORD
Output XregisterFromFirm WORD
Output YregisterFromFirm WORD
Output ProcessorStarus BYTE

Note that all inputs in word format will be truncated to a byte value
prior to dispatching to the firmware entry point.

Reference # Entry point Address
0 Belll SFBDD
1 Wait $SFCAS
2 Count $FDED

Tick Counter

GetTick Returns the current value of the tick counter.
Input ResultSpace LONG
Output TickCount LONG

Basic Entry Points

The following functions allow the basic entry points to be called from full native mode.
The functions use the global parameters defined earlier in this tool set.

Basiclnit Initializes the basic device, as defined by the output slot in the
Global parameters.
Input InitCharacter WORD
Output TickCount LONG

InitCharacter must have the character in the low byte of the word.

Preliminary Notes 78 1/30/186

Basicln

BasicOut

Description of the Cortland Tools: Part]

Returns data from the basic device.

Input ResultSpace WORD
Output Dan WORD

The Daza is returned in the low byte of the word.

Outputs a data byte to the basic device.

Input Dan WORD

HEX to ASCII

HexIt

Converts a word integer into four ASCII bytes.

Input ResultSpace LONG
Input Integer WORD
Output ASCllint LONG

PackBytes and UnPackBytes

PackBytes and Unpackbytes provide for the packing and unpacking of any data. The
functions are usually used for graphic images.

PackBytes

Preliminary Notes

-~

Packs bytes into packed format.

Input StartPtr LONG
Input SizePtr LONG
Input BufferPmr LONG
Input BufferSize LONG
Output NumPackBytes WORD

StartPrr is equal to the start of the area to be packed. SizePrris
equal toa WORD containing the size of the area. BufferPrr is equal
to the start of the output buffer area.

Upon completion of the call, the pointer to the area to be packed is
moved forward to the next packable byte, and the size of area
pointed to by the second input parameter is reduced by the number
of bytes traversed. Therefore, packing data and writing it to a file
could be accomplished by using code similar to the Pascal code
segment that follows:

79 1/30186

Description of the Cortland Tools: Part |

FUNCTION packbytes (VAR picprr : POINTER;
VAR picsize : POINTER;

bugptr : POINTER;

bugsize : INTEGER)

: INTEGER; EXTERNAL;

picsize := $7d00;

bufsize := $400; {note: if large enough, could require but one call}

REPEAT

howmuch := PackBytes(picptr,picsize,bufptr bufsize);
write(f,bufptr,howmuch),; '
UNTIL picsize=0;
UnPackBytes Unpacks bytes from packed format.

Input BufferPmr LONG
Input BufferSize WORD
Input UnpackAreaP1r LONG
Input SixePtr LONG
Output NumUnpackBytes - WORD

BufferPtr points to the buffer containing the packed data.

BufferSize contains the size of the buffer containing the packed data.
UnpackAreaP1r is a pointer to the area where the unpacked data will
be placed. SixePrr contains the size of the area to contain the
unpacked data. NumUnpackByres is the number of bytes
unpacked.

Upon completion, the pointer to the unpacked data is positioned one
past the last unpacked byte and the size of the area is reduced by the
amount unpacked. Therefore, the following Pascal code segment
could be used to unpack data from a file:

Preliminary Notes & 1/30/186

Description of the Cortland Tools: Part]

FUNCTION unpackbyzes (buforer : POINTER;
bufsize : INTEGER;
VAR picprr : POINTER;

VAR picsize : POINTER)
: INTEGER; EXTERNAL;

mark :=0; {i.e. start of a file}
picsize := $7D00
bufsize := $400; {note: if large enough, could require but one call}
REPEAT
setfilemark(mark),
read(f,bufptr,bufsize);

howmuch := unpackbytes(bufptr bufsize picptr,picsize);
mark := mark + howmuch;

UNTIL ((picsize=0) or eof(f)); {eof test in case of bad data)

The packed data is in the form of 1 byte containing a flag in the first 2 bits and a-
count in the remaining 6 bits, followed by one or more data bytes depending on the
flags. Their description is as follows:

00xxxxxx : (xxxxxx : 0 -> 63)

1 to 64 bytes follow - all different

Olxxxxxx : (XXxXxxX : 2, 4, 5, or 6)

3, 5, 6, or 7 repeats of next byte

10xxxxxx : (xxxxxx : 0 -> 63) 1 to 64 repeats of next 4 bytes

IIxxxxxx : (xxxxxx : 0 -> 63) 1 to 64 repeats of next 1 byte

taken as 4 bytes (as in '10' case)

Preliminary Notes 81 1/30/86

