Writing Your Own Tool Set
A Summary of Information
from the Tool Locator

ERS

Steven E. Glass
February 18, 1986

What's in a Tool Set?

Every tool set has the following components:

Function Pointer Table
Individual Functions

Some tool sets have

Auxilary routines called by the individual functions

The Function Pointer Table

The Function Pointer Table (FPT)

following format:

Count+1
Addrof F1 -1
Addr of F2 - 1
Addrof F3 - 1
Addrof F4 - 1
Addr of F5 - 1
Notimp-1
Notimp-1
Notimp-1
Addrof F9 - 1

And so on...

4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes

is a table with four byte entries. It has the

Number of Functions plus one

Pointer to Boot init function minus one
Pointer to Startup function minus one
Pointer to Shutdown function minus one
Pointer to Version function minus one
Pointer to Reset function minus one
Pointer to Notimp minus one

Pointer to Notimp minus one

Pointer to Notimp minus one

Pointer to first non required function in tool
set minus one

Writing Your Own Tool Set Steven E. Glass

Installing Your Tool Set

So you will write code that has an FPT like this with pointers to your code. After
you have this you will want to install your tool into the system. You do this by
calling the tool locator function SetTSPtr. SetTSPtr takes three inputs as
follows: A

SystemOrUser word $0000 for system tool, $8000 for

user tool set.
Tool Set Number word a number between 1 and 255
Pointer to FPT long A four byte pointer to the FTP

described above.

~ When SetTSPtr is called, your tools is installed in the system and its boot
initialization function call is executed.

A handy way to do this in the current environment is to assemble code that
contains your tool set and preceed it with a routine to install it in the system. (An
example of this follows.) This way you can BRUN your code file from Applesoft
BASIC and have your tool installed. If you want to make sure that your code
runs outside of bank zero, you can have the installation routine move it to
another bank before the tool set is installed.

What about Memory Use?

There are three kinds of tools: 1) those that do not have any information that
must live between calls. 2) those that have information that must live between
calls but that information can be anywhere in memory; and 3) those that must
have information that lives between calls in bank zero. The first case is easy,
there is no extra work to do. Cases 2 and 3 require that the tool to do a little
work to prevent it from using fixed memory locations.

The Tool Locator provides a facility for doing this. It maintains a Work Area
Pointer Table (WAPT). This is a table with entries for each tool in the system.
The tool can put any value it wants in the table. So if a tool needs memory of
type 2, it can ask the memory manager for memory and put the handle to that
memory in the WAPT. Case 3 is a little trickier. We have z convention that tools
do not use memory in bank zero unless that memory is given to it by the
Application. Tools that work this way are QuickDraw Il and the event manager.
Both these tools require that the application pass the adcress of memory in
bank zero that can be used for zero page. Both these tools put this address in
the WAPT.

February 18, 1986 PAGE 2

. Writing Your Own Tool Set - Steven E. Glass

The tool locator provides two calls to help tool sets maintain work area
information: GetWAP and SetWAP.

Function Execution Environment

When your function is called, the machine is in full native mode and the three
registers are set with specific information to make the function's job easier.

A-Reg low word of entry in WAPT for tool
Y-Reg high word of entry in WAPT for tool
X-Reg Function number and Tool number

The stack is as follows on function entry.

Params 7 TOS just before call
RTL from Call 4
Another RTL 1

0 Current TOS

(TOS is top of stack.) It is the functions respensiblity to clean of any input
parameters from the stack before executing an RTL (unless the function is
documented as doing something different).

Signaling Errors .
By convention, functions return an error code in the a register and signal the
error with the carry flag. (Carry clear and zero in the a register indicates no
error.) Error codes have the following format:

Tool Set Number High Byte
Msg Number Low Byte

The high byte of the error code is set to the tool set number generating the error.

This way a quick draw call can pass on a error message from the memory
manager in an intelligent way.

February 18, 1986 PAGE 3

Writing Your Own Tool Set

Steven E. Glass

The Example
install START
cle , switch to full native mode and
xce » save initial state
php
rep #330 , 16 bit registers

PushWord #0

PushWord #$23

PushLong #CallTable
SetTSPtr

plp
xce
rns

END

; signal a system tool

; Put the tool number on the stack

; Point to call table

; restore machine state

CallTable

TheEND

START

long (TheEnd-CallTable)/4

long MyBoot!nit-1
long MyStartUp-1
long MyShutDown-1
long MyVersion-1
long MyReset-1
long Notimp-1

long Notimp-1

long Notimp-1

long FirstFunc-1
long LastFunc-1

END

MyBootlnit

START

February 18, 1986

; called when instailed

PAGE 4

~ Writing Your Own Tool Set

Steven E. Glass

Ida #0
cle
rti
END
MyStartUp START ; user passes me the loc to use in
; bank zero as word.
RTL1 equ 1
RTL2 equ RTL1+3
ZPToUse equ RTL2+3

lda ZPToUse,s

pea 0
pea $23
pea 0
pha -
_SetWAP
lda #0
cle

rt!

END

, get users value

; System call
; tool set number

; high word is zero

- low word is user's value

; set it

i\AyShutDown START

nevermind

cmp #0
beq nevermind

pea 0
pea $23
pea 0
pea 0
_SetWAP
Ida #0
clc

rtl

END

" February 18, 1986

; Clear out the WAPT entry

PAGE 5

Writing Your Own Tool Set

Steven E. Glass

MyVersion
RTL1
RTL2
VerNum

START

equ 1

equ RTL1+3
equ RTL2+3

Ida #$90

sta VerNum,s
ida #0

cle

rtl

END

; version 1.0 prototype

i\AyReset

START
Ida #0
cle

i

END

Notlmp

START

Ida #$23FF
sec

rl

END

f=irstF unc

START
lda #0
cle

rtl

END

LastFunc

START

lda #0
cle

February 18, 1986

PAGE 6

Writing Your Own Tool Set Steven E. Glass

rtl
END

; Notes

; The long directive deposits a 4-byte value in memory low bytes first

, The PushWord macro pushes a word onto the stack (either from a memory
X location or with a pea if # is used).

, The PushLong macro pushes a long on the stack (either from memory

; or with two peas if # is used).

February 18, 1986 PAGE 7

