
Writing Your Own Tool Set
A Summary of Information

from the Tool Locator
ERS

Steven E. Glass
February 18, l g8o

What's 'in a Tool Set?

Every tool set has the following components:

Function pointer Table
lndividual Functions

Some tool sets have

Auxilary routines cailed by the individuar functions

The Function pointer Table

The Function Pointer Table (FPÐ is a tabte with four byte entries. n näs tnefollowing format:

Count+1
Addrof F1 - 1

Addr ol F2 - 1

Addrof F3 - 1

Addrof F4 - 1

Addr of F5 - 1

Notlmp-'l
Notlmp-1
Notlmp-1
Addrof Fg - 1

4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes
4 bytes

4
4
4

bytes
bytes

Number of Functions plus one
Pointer to Boot ínit funstion minus one
Pointer to Startup function minus one
Pointer to Shutdown function minus one
Pointer to Version function minus one
Pointer to Resei function m¡nusìne
Pointer to Notlmp minus one
Pointer to Notlmp minus one
Pointer to Notlmb minus one
Pointer to first non required function in tool
set minus one

bytes

And so on...

Writing Your Own Tool Set

SystemOrUser

Tool Set Number

Pointer to FPT

Steven E. Glass

$0000 for system tool, 98000 for
user tool set.
a number between 1 and 2S5

A four byte pointer to the FTP
descríbed above.

lnstalling Your Tool Set

So you will write code that has an FPT like this with pointers to your code. After
you have this you will want to installyour to_ol into the system. Vou do this by
calling the tool locator function SetTSPtr. SetTSPtr tak-es three inputs as
follows:

word

word

long

When SetTSPtr is called, your tools is installed in the system and its boot
initialization funstion call is executed.

A handy way 1o do this in the curent environment is to assemble code that
conta¡ns your tool set andJreceed it with a routine to install it in the system. (An
9x-1mple of this follows..) I¡is T?y.yo.u can BRUN your code file from'Apptesòft
BASIC and have your tool installed. lf you want to make sure that yòur code
runs outside of bank zera, you can have the installation routine moíe it to
another bank before the tool set is installed.

What about Memory Use?

There are three kinds..of tools: 1) those that do not have any information that
must live between calls. 2) those that have information thai must live between
calls but that informatíon can be anywhere in memory; and 3) those ihat must
have information that lives betweencalls in bank zero. The first casJ is easy,
there is no extra work to do. Cases 2 and 3 require that the toorið ão a tittte
work to prevent it from usíng fixed memory locations.

Ïhe Tool Locator provides a facility for doing this. lt maintains a Work Area
Pointer Table (WAPT). This is a táble with õntries for each toot in the system.
The tool can put any value it wants in the table. So if a toot needs memory ot
type 2, it can ask the mgmory manager for memory and pur the handle to that
memory in the WAPT. Case 3 is a little trickier. We havà a convention thät toots
do not use memory ìn bank zero unress that memory is g,ven to ii bylhe
Application. Tools that work this way..are QuickDraw tt ãnd the euent r"nager.
Both these tools require that the apþtication_pass the adcress of memory in
bank zero that can óe used for zeio'page. Both tl'rese tools put this address in
the WAPT.

February 18, 1986 PAGE 2

Writing Your Own Tool Set Steven E. Glass

The tool locator provides two calls to help tool sets maintain work area
information: GetWAP and SetWAp.

Function Execution Environment

When your function is called, the machine is in fult native mode and the three
registers are set with specific information to make the function's job easier.

low word of entry in WAPT for tool
high word of entry in WAPT for tool
Funcrion number ano Tool numoer

The stack is as follows on function entry.

Reg
Reg
Reg

A.
Y.
X.

Params
RTL from Call
Another RTL

TOS just before call

Current TOS

7
4
1

0

(TOS is top of stack.) lt is the functions responsiblity to clean of any input
parameters from the stack before executing an RTL (unless the funstion ¡s
documented as doing something ditferent).

Signaling Errors

By convention, functions retum an error code in the a register and signal the
error with the carry flag. (Carry clear and zero in the a rõgister ¡nOiðåes no
error.) Error codes have the following format:

Tool Set Number High Byte
Msg Number Low Byte

The high byte of the error code is set to the tool set number generating the error
This way a quic.k dß* cail can pass on a error message trori tne n.rèrno.y
manager in an intelligent way.

Februâry 18, 1986 PAGE 3

Writing Your Own Tool Set

The Erample

Steven E. Glass)

t

lnstall START

CallTaþle START

TheEND

MyBootlnit START

long (TheEnd-CatfTabte)/4

long MyBooilnit-1
long MyStarrUp-1
long MyShutDown-1
long MyVersion-1
long MyReset-1
long Notlmp-1
long Notlmp-1
long Notlmp-1

long FirstFunc:1
long LastFunc-1

END

clc
xce
php

rep #$30

PushWord #0
PushWord #$Zg
PushLong #CailTabte

-SetTSPtr
plp
xce
rts

END

; 16 bit registers

; signal a system tool
; Put the tool number on the stack
; Point to call tab¡e

;switch to full native mode and
;save initial state

; restore machine state

February 18, 1986

; called when insrarted

PAGE 4

(^. ' Writing Your Own Tool Set

END

Steven E. Glass

lda #0
clc
rtl

(

MyStartUp START ; user passes me the loc to use in
; bank zero as word.

; get users value

;system call
;tool set number
; high word is zero
; low word is user"s value
;set it

RTLl
RTLz
ZPToUse

equ 1

equ RTL1+3
equ RTIJ+3

lda ZPToUse,s

pea 0
pea $23
pea 0
pha'

SetWAP

END

lda #0
clc
rtl

MyShutDown START

(
cmp #0
beq nevermind

pea 0
pea $23
pea 0
pea 0

-SetWAP

; clear out the WAPT entry

nevermind lda #0
clc
rtl

END

L
February 18, 1986 PAGE 5

Writing Your Own Tool Set Steven E. Glass

MyVersion
RTLl
RTI¿
VerNum

START
equ 1

equ RTL1+3
equ RTL2+3

lda #$90
sta VeNum,s
lda #0
clc
rtl

END

; version 1.0 prototype

MyReset START

lda #0
clc
ril'

END

Notlmp START

lda #$23FF
sec
rtl

END

,

FirstFunc START

lda #0
clc
rtl

END

LastFunc START

lda #0
clc

February 18, 1g8O PAGE 6

¡r Writing Your Own Toot Set

rtl '

END

Steven E. Glass

,

(^

Notes

F" þng. directive deposits a 4-byte value in memory low bytes first
The Pushword macro pushes a word onto the staãk'leither'fróm imernory

location or with a pea if # is used).
The PushLong macro pushes'a long on.the itact< (either from memory, or with two peas if # is used).

L

U
February 18, 1986 PAGE 7

(

(

(--

(

