.

e

e

March 10, 1986 Ver. 0.81

March 12, 1986 Ver. 0.82

April 18, 1986 Ver. 0.83

April 23, 1986 Ver. 0.84

April 29, 1986 Ver. 0.85

May 9, 1986 Vez. 0.86

June 11,1986 Ver. 0.87
June 26, 1986 Ver. 0.88

July 9, 1986 Ver. 0.89

July 16, 1986 Ver. 0.90

& Cortland Miscellaneous Tools

July 16, 1986

Written by Ray Montagne & Eagle Berns

R. Montagne

R. Montagne

R. Montagne

R. Montagne

R. Montagne

R. Montagne

R. Montagne

R. Montagne

Major revisions o the Miscellaneous Tool Set have occured.
The Integer Math functions have been removed, and now comprise the
INTEGER MATH TOOL SET. The Pascal and Basic I/O functions
have also been removed, and are now found in the TEXT TOOL SET.
A stack pointer indicator (sp—>) has been added to the parameter lists
for clarity. Basic functionality of most tool functions remaining in
the MISCELLANEOUS TOOL SET has not changed. However, ail
of the function numbers have changed. Many of the functional
descriptions have been rewritten foe clarity. Functions that have
changed are: (1) INTERRUPT CONTROL TOOLS

(2) FIRMWARE FLAG TOOLS

(3) INTERRUPT ENABLE STATUS TOOLS

System Death Manager. Additional information on interrupts source
control (Keyboard interrupts). Additional information on the
environment when using Firmware Entry. Additional information on
installing ROM based tasks into the HeartBeat queue.

ID Manager Type 8. System Death Error Codes. Additional Vectors.

Added vectors for STEP and TRACE. Additional parameters in the
GET ADDRESS function. This is the BETA 2.0 Implementation.

Added functions to set and get clamps for absolute devices. Mouse
calls will return an error if the card is not switched in rather than call

the system death manager.

ID Manager ID assignments. Read ASCII time (state of MSB).
Set/Get Vectors,

Added SETUP FILE ID to ID Manager.

No functional change, just added examples,

Montagne/Bemns Added SCRAP MANAGER ID tag. Eagle's Examples!!

Montagne

Systemn Death Syntax, System Death messages and Language
Card. More descriptive death codes. Stack example in MUNGER
was corrected.

Corrected tool number in death codes.

Cortland Miscellaneous Tools July 16, 1986

Miscellaneous Tools. So far the tools we have specified fall into broad catagories and each
deserve their own tool set. Unfortunately, ther are a number of routines in the firmware that do not
fall into any of these categories but still must be accessed from native mode. These routines
include: '

APPLE][entry points Mouse support " Clock support
Battery ram support Interrupt support ID Tag managment
VBL or HeartBeat managment System Death managment

Standard Tool Set Calls.

MTBootlnit Function number = $01

This tool call clears the TickCounter and the HeartBeat task link pointer. It
also sets the Mouse flag to 'NOT FOUND'. A block of memory with a
length of NIL is requested from the memory manager for use by the ID tag

manager.
Example:
_MTBOOTINIT
MTStartUp Function number = $02
This does nothing.
Example:
_MTSTARTUP

MTShutDown Function number = $03

This does nothing,.
Example:
MTSHUTDOWN

MTVersion ~ Function number = $04

Input Word Space for result
Sp—>

Output Word Version number
sp—> _

This tool returns the version number of thé Miscellaneous Tool Set.

Example:
- PEA $0000 - 3 SPACE FOR RESULT
-MTBOOTINIT

R. Montagne, E. Berns € CONFIDENTIAL ¢ Page 2

Cortland Miscellaneous Tools July 16, 1986
MTReset Function number = $05
This tool call clears the HeartBeat queue link pointer and sets the Mouse flag

to 'NOT FOUND".
Example:
_MTRESET
MTStatus Function number = $06
Input Word Space for result
sp—>
Output Word Status ($0000=Inactive, SFFFF=Active)
Sp—> '
This tool returns a status that indicates that the Miscellaneous Tool Set is
active.
Examplc:' i B
PEA $0000 ; SPACE FOR RESULT
MTISTATUS -
MTSparel Function number = $07
This does nothing,.
Example:
_MTSPARE1
MTSpare2 Function number = $08
This does nothing.
Example:
_MTSPARE2

R. Montagne, E. Berns & CONFIDENTIAL & Page 3

Cortland Miscellaneous Tools July 16, 1986

Battery Ram Tools. These routines allow the non volatile battery backed up ram to be read or
written.

WriteBRam Function number = $09

Input LongWord Buffer Address
sp—>

The 252 bytes of data at the memory location specified by the Buffer
Address plus four bytes of checksum data is written to the battery ram.

Example:
PUSHLONG #LABEL ; BUFFER ADDRESS
_WRITEBRAM
ReadBRam Function number = $0A
Input LongWord Buffer Address
Sp—>

The 252 bytes of data plus four bytes of checksum data is read from the
battery ram and stored at the memory location specified by the Buffer
Address.

Example: :
PUSHLONG #LABEL ; BUFFER ADDRESS
_READBRAM

WriteBParam Function number = $0B

Input Word Data (low byte only)
Input Word Parameter Reference Number (0-255)
sp—> ,

Data is written to the battery ram location specified by the Parameter
Reference Number.

Example: .
- PEA $0005 ; DATAINLOW BYTE
PEA $0028 ; REF = STARTUP SLOT
_WRITEBPARAM

R. Montagne, E. Berns € CONFIDENTIAL & Page 4

Cortland Miscellaneous Tools July 16, 1986
ReadBParam Function number = $0C

Input Word Space for result _
Input Word Parameter Reference Number (0-255)
Sp—>
Qutput Word Data (low byte only)
sp—>
Example:
PEA $0000 ; SPACE FOR RESULT
PEA $0028 ; REF = STARTUP SLOT
_READBPARAM

Data is read from the battery ram location specified by the Parameter
Reference Number.

R. Montagne, E. Berns € CONFIDENTIAL € Page 5

Cortland Miscellaneous Tools

Battery Ram Parameter Reference Numbers:

$00 Port 1 Printer / Modem

$01 Port 1 Line Length

$02 Port 1 Delete line feed after carriage return
$03 Port 1 Add line feed after carriage return
$04 Port 1 Echo

$05 Port 1 Buffer

$06 Port 1 Baud

$07 Port1 Data/Stop Bits

$08 Port 1 Parity

$09 Port 1 DCD Handshake

S0A Port 1 DSR Handshake

$OB Port 1 Xon / Xoff Handshake
$oC Port 2 Printer / Modem

$0D . Port 2 Line Length

SOE Port 2 Delete line feed after carriage return
$OF Port 2 Add line feed after carriage retumn
$10 Port 2 Echo

$11 Port 2 Buffer

$12 Port 2 Baud

$13 Port 2 Data / Stop Bits

$14 Pon 2 Parity

$15 Port 2 DCD Handshake

$16 Port 2 DSR Handshake

$17 Port 2 Xon / Xoff Handshake
$18 Display Color / Monochrome
$19 Display 40 / 80 column

$1A Display Text Color

$1B Display Background Color
$1C Display Border Color

$1D 50/ 60 Hertz

S1E User Volume

$1F Bell Volume

$20 System Speed

$21 Slot 1 Internal / External

$22 Slot 2 Internal / External

$23 Slot 3 Internal / External

$24 Slot 4 Internal / External

$25 Slot 5 Internal / External

$26 Slot 6 Internal / External

$27 Slot 7 Internal / External

$28 Startup Slot

$29 Text Display Language

$2A Keyboard Language

$2B Keyboard Buffering

$2C Keyboard Repeat Speed

$2D . Keyboard Repeat Delay

$2E Double Click Time

R. Montagne, E. Berns

€ CONFIDENTIAL &

July 16, 1986

Page 6

Cortland Miscellaneous Tools

$2F
$30
$31
$32
$33

$34
$35

$36
$37

$38-40
$41-51

$52-7F

- $80
$81-Al
$A2-FB

Flash Rate

Shift Caps / Lower Case
Fast Space / Delete Keys

Dual Speed
High Mouse Resolution

Month / Day / Year Format
24 Hour / AM-PM Format

Minimum Ram for RAMDISK
Maxirnum Ram for RAMDISK

Count / Languages
Count / Layouts

Reserved
AppleTalk Node Number

Operating system variables
Reserved

$FC-FF Checksum

R. Montagne, E. Berns

€ CONFIDENTIAL &

July 16, 1986

Page 7

Cortland Miscellaneous Tools July 16, 1986

Clock Tools. These routines allow the clock to be set or read. Setting the clock requires that the
time be passed as an input paramter in a hex format. Two tools are provided for reading the clocl.
One returns time in a hex format, while the other returns time in an ASCII format.

ReadTimeHex Function number = $0D

Input Word Space for result
Input Word Space for result
Input Word Space for result
Input Word Space for result
sp—>
Output Byte Day of Week (0-6 where 0 = Sunday)
Output Byte null
Output Byte Month (0-11 where 0 = January)
Output Byte + Day (0-30)
Output Byte Current Year minus 1900
Output Byte Hour (0-23)
Output Byte Minute (0-59)
Output Byte Second (0-59)
Sp—> B
Returns current time in Hex format.
Example:
PEA $0000 ; SPACE FOR RESULT
PEA $0000 ; SPACE FOR RESULT
PEA $0000 ; SPACE FOR RESULT
PEA $0000 ; SPACE FOR RESULT
-READTIMEHEX
WriteTimeHex Function number = SOE
Input Byte Month (0-11 where 0 = January)
Input Byte Day (0-30)
Input Byte Current Year minus 1900
Input Byte Hour (0-23)
Input Byte Minute (0-59)
Input Byte Second (0-59)
sp—>

- Sets the current time using Hex format.

Example:
PEA $0105
PEA $560A
PEA $1900
~WRITETIMEHEX

; FEBRUARY, STH
; 1986, 10TH HOUR
; 25TH MINUTE, 0 SEC.

R. Montagne, E. Berns & CONFIDENTIAL & Page 8

Cortland Miscellaneous Tools - July 16, 1986
ReadAsciiTime Function number = $0F

Input LongWord ASCII buffer address
Sp—>

Reads elapsed time since January 1, 00:00:00 1904, and converts to ASCII
time output which is placed in the apphcanons buffer. Note that ASCII time
always outputs tweaty characters with the MSB of each character set to a
one. ASCII time format is defined by the format set up in the battery ram
by the control panel. Format versus the battery ram parameter value is
shown below:

Date Format Time Format ASCII Time Format
0 1) mmy/dd/yy HH:MM:SS AM or PM
1 0 dd/mm/yy HH:MM:SS AM or PM
2 0 yy/mm/dd HH:MM:SS AM or PM
0 1 mm/dd/yy HH:MM:SS
1 1 HH:MM:SS
2 1 yy/mm/dd HH:MM:SS
Where: HH = Hour
MM = Minute
SS = Second
mm = Month
dd = Day
yy = Year
Example:
PUSHLONG #LABEL ; BUFFER ADDRESS
_READASCIOTIME

R. Montagne, E. Berns € CONFIDENTIAL & Page 9

Cortland Miscellaneous Tools . July 16, 1986

Vector Initialization Tools. These tools allow the application to set or get the current vector
for the interrupt handlers.

SetVector Function number = $10
Input Word Vector Reference Number
Input LongWord Address

sp—>

Sets the vector address for the interrupt manager or handler specified by the
vecotr reference number.

Example: '
PEA $O000E ; REF. = 1/4 SEC. IRQ
. PUSHLONG #LABEL ; HANDLER ADDRESS
SETVECTOR
GetVector Function number = $11
Input LongWord Space for result ,
Input Word Vector Reference Number
sp—>
Output LongWord Address
S§p=—>2>

Returns with the vector address for the interrupt manager or handler
specified by the vector reference number.

Example:
PEA $0000 : SPACE FOR RESULT
PEA $0000 :
- PEA $0015 ; REF. = 1 SEC. IRQ
_GETVECTOR

R. Montagne, E. Berns € CONFIDENTIAL ¢ Page 10

Cortland Miscellaneous Tools) July 16, 1986

Vector Reference Numbers:

$0000 Tool Locator #1

$0001 Tool Locator #2

$0002 User's Tool Locator #1

$0003 . User's Tool Locator #2

$0004 Interrupt Manager

$0005 COP Manager

$0006 Abort Manager

$0007 System Death Manager

$0008 AppleTalk Interrupt Handler

$0009 Serial Communications Controller Interrupt Handler
$000A Scan Line Interrupt Handler

$000B Sound Interrupt Handler

$000C Vertical Blanking Interrupt Handler
$000D Mouse Interrupt Handler

$000E Quarter Second Interrupt Handler
$000F Keyboard Interrupt Handler

$0010 Front Desk Bus Response Byte Interrupt Handler
$0011 Front Desk Bus SRQ Interrupt Handler
$0012 Desk Accessory Manager .
$0013 Flush Buffer Handler

$0014 Keyboard Micro Interrupt Handler
$0015 One Second Interrupt Handler

$0016 External VGC Interrupt Handler
$0017 Other Unspecified Interrupt Handler
$0018 Cursor Update Handler -

$0019 Increment Busy Flag (for Scheduler)
$001A Decrement Busy Flag (for Scheduler)
$001B Bell Vector (for Sound Tools)

$001C Break Vector (for Debuggers)

$001D Trace Vector

$001E Step Vector

$001F . Reserved Vector

$0020 Reserved Vector

$0021 Reserved Vector

$0022 Reserved Vector

$0023 Reserved Vector

$0024 Reserved Vector

$0025 Reserved Vector

$0026 Reserved Vector

$0027 Reserved Vector

$0028 Control Y Vector

$0029 Reserved Vector -
$002A ProDOS'16 MLI Vector

$002B OS Vector

$002C Message Pointer Vector

R. Montagne, E. Berns & CONFIDENTIAL & Page 11

Cortland Miscellaneous Tools July 16, 1986

HeartBeat Tools. These tools allow the application to insert or delete tasks from the HeartBeat
queue.

SetHeartBeat Function number = $12

Input LongWord Pointer
sp—>

Installs the task specified by the pointer into the HeartBeat queue. The
pointer must be set to the address of a task header that precedes the task.
The task header area consists of a longword link pointer, count word, and
signature word. The link pointer is maintained by the tool, and is set to a
value of $00000000 if the task is the last task in the quene. When a task is
installed, the link pointer of the previous task is set to point at the task
header for the task currently being installed. The count word is set by the
application prior to installing the task, and must be maintained by either the
task or the application. The count word indicates the number of VBL
interrupts that must occur before the associated task is executed. For
recurring tasks, the task shouid reset the count word. For tasks that are run
as a software one-shot, the application should reset the count word. The
tool will decrement a non zero count word each VBL interrupt. If the
decrement results in a count word of zero, the task will be executed. A
count word with a value of zero will not be decremented during VBL
interrupt, and effectively sets the task inactive until a non zero value is
stored to the count word. Tasks are executed in native mode with 8 bit 'm’
and 'x'. Task execution should terminate with an 'RTL' instruction. The
signature word must be set prior to installing a task, and is used by the tool
and the HeartBeat Interrupt Handler to check the integrity of the HeartBeat
queue. An example of a HeartBeat task that increments a location in
memory everty tenth VBL is shown below:

TasklHdr Start

de ocoveoooo 410" ; Space for Link Pointer
Task1Cnt dc ovev 2i'10' ; Count word preset to 10

. de h,'SAAS' ; Signature Word $ASSA

Taskl anop

rep #3$20 ; 16 bit 'm’

longa on

pilll; ; data bank = program bank

P

Ida #10 ; reset the task count

sta Task1Cnt

sep #320 ; 8 bit 'm’

longa off -

lda >TestLoc ; and increment an address

inc a

sta >TestLoc

oil

The following code will install the task shown above.

Install

anop
PUSHLONG #LABEL ; BUFFER ADDRESS
_SETHEARTBEAT ; INSTALL TASK

R. Montagne, E. Berns € CONFIDENTIAL & Page 12

Cortland Miscellaneous Tools July 16, 1986

Note that when a task is installed into the HeartBeat queue, the HeartBeat
Interrupt Handler will automatically be installed into the VBL Interrupt
Handler vector. Any handler previously installed in the VBL Interrupt
Handler vector will be displaced. Installing a task in the HeartBeat queue
does not automatically enable VBL interrupts. It is left to the application to
enable VBL interrupts. Also, since tasks are linked with simple pointers,
the tasks should reside in LOCKED' memory. Tasks that make use of
system resources should conform to the protocol set down in the
SCHEDULER ERS.

It may be desirable to have a ROM based task executing from a peripheral
card. In order to install a ROM based task, twelve bytes of ram must be
allocated for use by the task header, with the task executing a jump absolute
long to the rom based task. An example of this is shown below:

TasklHdr dc . 4i'0 ; Space for Link Pointer
TasklCnt dc 2i'10 " ; Count word preset to 10
TasklSig dc h,'SAAS' ; Signature Word $AS5A
TasklJmp anop

jmp >RomTaskl ; jump to ROM based task

An example that shows how a program can construct the task header area in
RAM for a ROM based task is shown below. Note that this program is run
in full native mode (16 bit 'm' and 'x").

InstallT1 entry
lda #30001 ; initialize task count
sta >Task1Cnt ‘
Ida #SAS5A ; initialize task signature
sta >Task1Sig
1da #RomTask1 ; now install 'TMP' to task
pha
xba
and #SFFO0
ora . #3005C
sta >TasklJmp
pla
and #$FF0O0
ora # RomTaskl
xba
sta : >Task1Jmp+2
PushLong #Label ; now install the task
_SetHeartBeat

Errors that may occur when installing a task in the HeartBeat queue include:
$0303 Task aiready installed in queue

$0304 No signature in task header
$030s Queue has been damaged-task signature missing during search

R. Montagne, E. Berns & CONFIDENTIAL & Page 13

Cortland Miscellaneous Tools July 16, 1986
DelHeartBeat Function number = $13

Input LongWord Pointer
sp—>

Deletes the task specified by the link address from the HeartBeat Interrupt
service queue.

Errors that may occur when deleting a task in the HeartBeat queue include:

$0305 Queue has been damaged-task signamre missing during search
$0306 Task was not found in queue

Example:

PUSHLONG #LABEL ; TASK ADDRESS
_DELHEARTBEAT | .

ClrHeartBeat Functon number = $14

Clears the HeartBeat queue root link pointer, aﬁ'ecti\)ély removing all tasks
from the queue. ‘

Example:
_CLRHEARTBEAT

R. Montagne, E. Berns € CONFIDENTIAL & Page 14

Cortland Miscellaneous Tools July 16, 1986

System Death Manager. This tool call jumps through the system death vector. At system
power-up time, a default system death manager is installed into the system death manager vector.
The default system death manager will display either a default system death message followed by
an error code, or a user defined system death message followed by an error code. The default
system death message will display a sliding Apple below a centered default message as shown
below:

FATAL SYSTEM ERROR-> XXXX
¢

If a system death call is made with a user defined message, the user defined message will be
displayed starting at the upper left hand comer fo the screen. The user defined message may
contain up to 254 characters. The text may be moved down by imbedding carriage return
characters in the text. Any desired delimiters between the text string and the error code should be
included in the text string.

USER DEFINED MESSAGE OF UP TO 255 CHARACTERS XXXX

¢
SysDeathMgr Function number = $15
Input Word Error code
Input LongWord Pointer

Sp—>

If the longword pointer is set to zero, the default system death message and
the error code passed as the tool input are displayed. If pointer is set to
point to an ASCI string, the ASCII string will be displayed with the error
code. The first byte of the ASCII string should contain a count equal to the
number of characters to be displayed. The ASCII string should have the
MSB turned off. Note that this tool call will not return! Death Messages
cannot reside in the Language Card address space.

Example: ')
PEA $0004 ; YOUR ERROR CODE
PUSHLONG #LABEL ; STRING POINTER
_SYSDEATHMGR

R. Montagne, E. Berns & CONFIDENTIAL € Page 15

Cortland Miscellaneous Tools

Reserved System Death Error Codes:
30001 ProDOS'16 - Unclaimed interrupt
$0004 Divide by zero
$000A ProDOS'16 - Volume Control Block unusable
$000B ProDQS'16 - File Control Block unusable
$000C ProDOS'16 - Block zero allocated illegally
$000D ProDOS'16 - Interrupt with I/O shadowing off
$0015 Segment Loader error
$0017-24 Can't load a package
$0025 Out of memory
$0026 Segment Loader error
$0027 File map trashed
$0028 Stack overflow error
$0030 Please insert disk (file manager alert)
$0032-53 Memory manager error
$0100 Can't mount system startup volume

System death error codes above $0100 will be tools specific.
The high byte of the error code will contain the tool number
reporting the error. The low byte of the error code is defined
by the tool set reporting the error. No tool will report an error
with the low byte set to a value of $00.

R. Montagne, E. Berns € CONFIDENTIAL € | Page 16

DeathCode

$01XX Tool Locator
$02XX Memory Manager
$03XX Miscellaneous Tools
$04XX Quick Draw
$05XX Desk Manager
$06XX Event Manager
$07XX Scheduler

$08XX Sound Manager
$09XX Apple Desktop Bus Tools
$0AXX SANE

$0BXX Integer Math Tools
$0CXX Text Tools
$0DXX Ram Disk

SOEXX Menu Manager
SOFXX Window Manager
$10XX Control Manager
$11XX Loader

$12XX Printer 1

$13XX Printer 2

$14XX Line Edit

$15XX Pick Manager
$16XX Dialog Manager

July 16, 1986

Cortland Miscellaneous Tools July 16, 1986

GET ADDRESS Tools. These tools are provide to allow an application to determine the
address of a parameter used by the system firmware.

~ GetAddr Function number = §16
Input LongWord Space for result
Input Word Reference number
Sp—>
Qutput LongWord Pointer to parameter
sp—>

Parameter reference numbers and parameter size are defined below:

Ref # Length Parameter

$0000 Byte IRQ Interrupt Flag (IRQ.INTFLAG)
$0001 Byte IRQ Data Flag (IRQ.DATAREG)
$0002 Byte IRQ Serial Port 1 Flag (IRQ.SERIALI1)
$0003 Byte IRQ Serial Port 2 Flag (IRQ.SERIAL2)
$0004 Byte IRQ AppleTalk Flag (IRQ.APLTLKHI)
$0005 LongWord Tick Counter ~+ (TICKCNT)

$0006 Byte IRQ Volume (IRQ.VOLUME)
$0007 Byte IRQ Active (IRQ.ACTIVE)
$0008 Byte IRQ Sound Data (IRQ.SOUNDDATA)
$0009 20 Bytes Varables after a 'BRK' (BRK.VAR)
$000A 12 Bytes Event Manager Data (EVMGRDATA)
$000B Byte Mouse Location/Flag (MouseSlot) ‘
$000C 8 Bytes Mouse Clamps (MOUSECLAMPS)
$000D 8 Bytes Absolute device clamps (ABSCLAMPS)

Note that parameters with reference numbers from $0000 through $0004
should not be used by applications. These paramctcrs are only valid while

servicing an interrupt.

Example:
PEA $0000 ; SPACE FOR RESULT
PEA $0000 ‘
PEA $000C ; REF. = MOUSE CLAMPS
_GETADDR

R. Montagne, E. Berns € CONFIDENTIAL € Page 17

Cortland Miscellaneous Tools

July 16, 1986

Further definitdon of some parameters is provided below:

IRQINTFLAG D7
D6

DS
D4
D3
D1

IRQ.DATAREG D7

BRK.VAR Word

EVMGRDATA Word

MouseSlot Byte

1 = Mouse button down

1 = Mouse button down on last read
Status of AN3

1 = 1/4 second interrupted

1 = VBL interrupted

1 = Mega// Mouse switch interrupted

1 = Mega// Mouse movement interrupted
1 = System IRQ line is asserted

1 = Response byte, 0 = Status byte

1 = Abort

1 = Desktop manager sequence pressed

1 = Flush buffer sequence pressed

1 =SRQ

0 = No FDB data, 0 st number of valid bytes -1

A Register

X Register

Y Register

Stack Pointer
Direct Register
Processor Status
Data Bank Register
Emulation Flag
Program Bank Register
Program Counter
State

Shadow

CYA

MSlot

Journaling flag (JournalFlag)
Pointer to journal driver (JournaiPtr)

Location of the Mouse (MouseSlot)

This is a flag used by the MouseTools. If
MouseSlot contains a positive value, then it
indicates what slot the mouse resides in. If
MouseSlot contains a negative value, the
Mouse has not been initialized by the Mouse
Tools.

R. Montagne, E. Berns & CONFIDENTIAL & Page 18

Cortland Miscellaneous Tools July 16, 1986

MouseClamps Word Low X axis mouse clamp

Word Low Y axis mouse clamp

Word - High X axis mouse clamp

Word High Y axis mouse clamp
(Note that setting the mouse clamp values directly is not a viable method of
setting the mouse clamps. Setting mouse clamps correctly can only be
guaranteed using the mouse toolis.)

AbsClamps Word Low X axis absolute device clamp

Word Low Y axis absolute device clamp

Word High X axis absolute device clamp

Word High Y axis absolute device clamp
(There is no built in firmware to clamp absolute device position within the
absolute device clamp bounds. Absolute device drivers must be responsible
for clamping position within the clamp bounds.)

R. Montagne, E. Berns & CONFIDENTIAL & Page 19

Cortland Miscellaneous Tools July 16, 1986

Mouse Tools. These tools are provide to interface with the Mouse. These tools will work with
both the built in Front Desk Bus Mouse or the Apple][Mouse. Note that the 'InitMouse' call must
be executed first. An error will be returned if a dispatch to the mouse is executed with the mouse
firmware switched out.

. ReadMouse Function number = $17

Input Word Space for result
Input Word Space for result
Input Word Space for result
sp—>
Output Byte High Byte X Position
Qutput Byte Low Byte X Position
Output Byte High Byte Y Position
Qutput Byte Low Byte Y Position
Output Byte Mouse Status
Qutput Byte Mouse Mode
sp—>
Returns Mouse position, status and mode.
Example: ' '
PEA $0000 ; SPACE FOR RESULT
PEA $0000
PEA $0000
_READMOUSE
InitMouse Function number = $18
Input Word Mouse slot
$0000 = Search slots for Mouse

$0001-7 = Slot Mouse resides in
sp—>

Initializes the mouse clamp values to $0000 minimum and $03FF
maximum. Mouse mode and status are cleared.

Example:
PEA $0000 ; REQUEST SEARCH
_INITMOUSE :

R. Montagne, E. Berns & CONFIDENTIAL & Page 20

Cortland Miscellaneous Tools July 16, 1986
SetiMouse Function number = $19 -

Input Word Mode (in low byte)
sp—>

Mode is set to new value as follows:

$00 - Turn off Mouse

$01 Set transparent mode

$03 Set movement interrupt mode

$05 Set button interrupt mode

$07 Set button or movement interrupt mode

$08 Turn mouse off, VBL IRQ active

$09 Set transparent mode, VBL IRQ active

$0B Set movement interrupt mode, VBL IRQ active

$0D Set button interrupt mode, VBL IRQ active

$OF Set button or movement interrupt mode, VBL IRQ active

Example:
PEA $0001 ; TRANSPARENT MODE
_SETMOUSE .

HomeMouse Function number = $1A

Positions the Mouse at the minimum clainp position.

Example:
_HOMEMOUSE
ClearMouse Function number = $1B
Sets both the X and Y axis position to $0000 if minimum clamps are
negative (delta or relative mode), or to the minimum clamp position if the
clamps are positive (absolute mode).

Example:
_CLEARMOUSE

R. Montagne, E. Berns € CONFIDENTIAL & - Page 21

Cortland Miscellaneous Tools

ClammpMouse

; Input

e Input
Input
Input

sp—>

Function number = $1C

Word X axis minimum clamp value
Word X axis maximum clamp value
Word Y axis minimum clamp value
Word Y axis maximum clamp value

Sets the clamp values to new values, and then sets the Mouse position to the
miminum clamp vaiues.

Example:

GetMouseClamp

Input
Input
Input
Input
Sp—>

Output
Output
d Output
Output

Sp—>

$0000

PEA ; X MINIMUM
PEA $O03FF ; X MAXIMUM
PEA $0000 ; Y MINIMUM
PEA $O03FF ; Y MAXIMUM
_CLAMPMOUSE

Function number = $1D

Word Space for result

Word Space for result

Word Space for result

Word Space for result

Word X axis minimum clamp value
Word X axis maximum clamp value
Word Y axis minimum clamp vaiue
Word Y axis maximum clamp value

Returns the current values of the Mouse clamps.

Exampie:

R. Montagne, E. Berns

PEA $0000 ; SPACE FOR RESULT
PEA $0000
PEA $0000
PEA $0000
-GETMOUSECLAMP

& CONFIDENTIAL &

July 16, 1986

Page 22

Cortland Miscellaneous Tools July 16, 1986

PosMouse Function number = $1E
Input Word X axis position
Input Word Y axis positdon
sp—>
Posidons the Mouse to the coordinates specified.
Example:
PEA $013C ; X POSITION
PEA $028F ; Y.POSITION
_POSMOUSE
ServeMouse Function number = $1F
Input Word " Space for result
sp—>
Qutput Word Interrupt status (in low byte)
Sp—> .

Returns mouse interrupt status.

Example:
PEA $0000 ; SPACE FOR RESULT
_SERVEMOUSE

R. Montagne, E. Berns &€ CONFIDENTIAL € Page 23

Cortland Miscellaneous Tools July 16, 1986

ID Tag Manager. These tools are used to create, delete and inquire status of an ID Tag. The ID
Tag is used to mark memory segments as belonging to a specific application or desk accessory. ID
tags are made up of three fields encoded in a word parameter. These are the TYPE field, AUX 1D
field, and MAIN ID field. The type field is encoded in bits 12-14, Aux ID in bits 8-11, and the
Main ID in bits 0-7. The AUX ID field is defined by the caller. The Main ID field is generated by
the ID Tag manager. The ID Tag will always be assigned with a non zero value in the Main ID
field. The Type field has fixed assignments as shown in the table below:

c Jp o Jofejrfe]slefsfa]rlo]

-T g
[TYPE FIELD AUX ID FIELD..... MAIN ID FIELD...........

0= MEMORY MANAGER 0 - SF Defined by User 0 = Reserved

1 = APPLICATION 1-FF Assigned by [D Manager

2 = CONTROL PROGRAM

3 = ProDOS ‘

4 = TOOL KITS (ID $41XX = Miscellaneous Tools)

5 = DESK ACCESSORIES ($42XX = Screp Manager)

6 = RUN TIME LIBRARIES

7= SYSTEM LOADER

8 = FIRMWARE / SYSTEM FUNCTION

9 = TOOL LOCATOR

A=SETUPFILE

B = UNDEFINED | B

C = UNDEFINED

D = UNDEFINED

E = UNDEFINED

F = UNDEFINED

GetNewID Function number = $20

Input Word Space for result
Input Word ID Tag

sp—>

Output Word ID Tag
Sp—> ‘

Caller passes a full 16 bit ID tag as input with the TYPE defined as the only
relevant parameter. The AUX ID field is specified by the caller, and will
not be reassigned by the ID manager. The next available MAIN ID will be
concatenated to the TYPE and AUX ID fields, and the resulting ID Tag will
be returned to the caller. Note that the TYPE field must be non zero. Note
that only 255 ID tags can be assigned for any TYPE ID. If an ID cannot be
assigned because all the ID tags for that TYPE have been assigned, then an
error will be returned indicating that the ID is not available.

Example:
PEA $0000 ; SPACE FOR RESULT
PEA $5100 ; ITS A DESK ACC.
_GETNEWID

R. Montagne, E. Berns & CONFIDENTIAL & Page 24

Cortland Miscellaneous Tools July 16, 1986
DeleteID Function number = $21

Input Word ID Tag
sp—>

The caller passes the tool a full 16 bit ID tag as input with the TYPE and
MAIN ID fields defined as the only relevant parameters. Any ID tags with
the same MAIN ID and TYPE are deleted from the current ID tag list. This
tool call will not report an error if the tag is not found. It assumes that 1f its
not there, that is what you wantcd anyway.

Example:
PEA $5101 ; DELETE DESK ACC TAG
_DELETEID
StarsID Function number = $22
Input Word ID Tag
Sp—>

The caller passes the tool a full 16 bit ID tag as mput with the TYPE and
MAIN ID fields defined as the only relevant parameters. If the ID tag is
active, no error will be returned. IftheIDtag:smacuve,ancrmrmllbe
returned indicating that the ID tag is not available.

Example: : :
PEA $5101 ; DELETE DESK ACC TAG

STATUSID

R. Montagne, E. Berns & CONFIDENTIAL & Page 25

Cortland Miscellaneous Tools July 16, 1986
Interrupt Control Tools. This tool allows certain interrupt sources to be enabled or disabled.
IntSource Function number = $23

Input Word Source Reference Number
sp—>

This tool call enables or disables the interrupt source specified by the source
reference number. Source reference numbers are shown below:

Ref, # Source and Action

$0000 Enable Keyboard Interrupts

$0001 Disable Keyboard Interrupts
$0002 Enable Vertical Blanking Interrupts
$0003 Disable Vertical Blanking Interrupts
$0004 Enable Quarter Second Interrupts
$0005 Disable Quarter Second Interrupts
$0006 Enablé One Second Interrupts
$0007 Disable One Second Interrupts
$0008 THIS DOES NOTHING

$0009 THIS DOES NOTHING

$O00A Enable FDB Data Interrupts
$000B Disable FDB Data Interrupts
$000C Enable Scan Line Interrupts
$000D Disable Scan Line Interrupts
SO00E Enable External VGC Interrupts
$O00F Disable External VGC Interrupts

Example:
PEA $0002 ; ENABLE VBL IRQ
_INTSOURCE

ABOUT KEYBOARD INTERRUPTS.....

When keyboard interrupts are enabled, there is no hardware enable of the
keyboard interrupt. The firmware installs a task into the HeartBeat queue
and enables VBL interrupts. This causes the HeartBeat interrupt handler to
be installed into the VBL interrupt vector. This task will check the status of
‘'the keyboard register during each VBL interrupt. If a key is pending, the
task will dispatch to the KeyBoard interrupt handler via the keyboard
interrupt vector (as installed by the tool 'SETVECTOR'). Since the
HeartBeat handler will be installed into the VBL interrupt vector, this
precludes the application from installing it's own VBL interrupt handler if
keyboard interrupts are to be used. If keyboard interrupts are disabled, the
keyboard task is removed from the HeartBeat queue, however the VBL
interrupt will not be disabled. If the application wishes to disable keyboard
interrupts, and does not wish to have the additional overhead of the VBL
interrupts running in the background, the application must disable VBL
interrupts also. If no other tasks have been installed into the HeartBeat
queue, the additional interrupt overhead is minimal (Interrupt dispatcher and
HeartBeat interrupt handler which only increments the tick count before
rewurning). :

R. Montagne, E. Berns & CONFIDENTIAL & - Page 26

Cortland Miscellaneous Tools July 16, 1986

Firmware Entry Tools. This tool allows the Apple][emulation mode entry points to be
supported from full native mode. This tool will preserve the state of the data bank and direct page
registers prior to dispatching to the firmware entry point. During the executon of the firmware
task, the data bank and direct page registers are set to a value of zero. The data bank and direct
page registers are restored on retumn from the firmware entry point

FWentry Function number = $24
Input Word Space for result
Input _ Word Space for result
Input Word Space for result
Input Word Space for result
Input Word Accumulator atentry (low byte only)
Input Word X Register at entry (low byte only)
Input Word Y Register at entry (low byte only)
Input = Word Emulation mode entry point (16 bits)
sp—> . ’
Output Word Processor status at exit (low byte only)
Output Word Accumulator at exit (low byte only)
Qutput Word X register at exit . (low byte only)
Output Word Y register at exit (low byte only)
sp—>

This call dispatches to the specified emulation mode entry point with the
registers set to the values passed to the tool as input. On return, the register
contents resulting from the entry point dispatch will be passed on the stack.
Note that only the least significant byte is relevant on the register input and

output.

Example:
PEA $0000 ; SPACE FOR RESULT
PEA $0000 ; SPACE FOR RESULT
PEA $0000 . ; SPACE FOR RESULT
PEA $0000 ; SPACE FOR RESULT
PEA $0000 ; AREG .
PEA $0000 ; X REG
PEA $0000 ; YREG
PEA $FDDA ; ENTRY POINT
_FWENTRY
BCS FWERR ; BRANCH IF ERROR
PLY ; GET FW REGISTERS
PLX
PLA
PLP
PLP

R. Montagne, E. Berns ¢ CONFIDENTIAL ¢ Page 27

Cortland Miscellaneous Tools - July 16, 1986
Tick Count Tool. This tool allows caller to read the current value of the tick counter.
GetTick Function number = $25

Input LongWord Space for result
sp—> .

Output LongWord Current value of Tick Counter
sp—>

Note that the tick count is only incremented by the heartbeat interrupt
handler. This means that the heartbeat interrupt handler must be installed,
and VBL interrupts must be enabled in order to get an incrementing tick
count. Please see the section on heartbeat tasks.

Example: '
PEA $0000 ; SPACE FOR RESULT
PEA $0000 ; SPACE FOR RESULT
GETTICK

R. Montagne, E. Berns & CONFIDENTIAL & Page 28

Cortland Miscellaneous Tools

PackBytes and UnPackBytes Tools.

July 16, 1986

and unpacking of any data, but is ususally used for graphic images.

PackBytes and UnPackBytes provide for the packing

PackBytes Function number = $26
Input Word Space for result
Input LongWord Pointer to pointer to start of area to be packed
Input LongWord Pointer to a word containing size of the area
Input LongWord Pointer to start of the ouput buffer area
Input Word Size of the output buffer area

sp—>
Output Word Number of packed bytes generated

sp—>

Upon completion of the call, the pointer to the area to be packed is moved
forward to the next packable byte, and the size of area pointed to by the
second input parameter is reduced by the number of bytes traversed. An
-assembly language example follows:

-]

®* PACKBYTES example: Pack a screen image snd write it w fils "

®

PB START

da #$7D00 ;size of &ea w pack

st PicSizs

lda #SE12000 ;addr of screent image

sta PicPer

lda #3SAE12000

sta PicPir+2

lda #ouffer ;pointer to loca buffer

su BufPrr

Ida # Buffer

sta BufPu+2
loop PUSHWORD #0 :Space for resuit

PUSHLONG PicPwr iPointer to data to pack

PUSHLONG #PicSize ;Pointer to word with size of area

PUSHLONG BufPw iPointer to stert of output area

PUSHWORD BufSize isize of cutput buffer area

JLPACKBYTES

pla ;get howmuch we did peck this pess

sta HowMuch »

CALL WRITE(£BufPr. HowMuch) ;do IO to write "HowMuch" bytes from "BufPur” to file “f”

lda PicSize ;see if more to pack;

bns loop ;theve is, go beck for more

ns
PicPw ds 4 set to $12000 on entry (screen area)
PicSize ds 2 1sizs of a picture; set to $7d00 on enwry
BufPer ds 4 iset to point to "Buffer” on entry
BufSize de i2'$400 ;local buffer for storing packed stuff
HowMuch ds 2 ilocal storage for value from packbytes
Buffer ds $400 ;acmal buffer

END

R. Montagne, E. Berns € CONFIDENTIAL &

Page 29

AT

Nt

Cortland Miscellaneous Tools July 16, 1986
An equivalent example in PASCAL follows:

Function packbytes (VAR picper : POINTER;
VAR picsize : POINTER;
: POINTER;
bufsize : POINTER;
: INTEGER; EXTERNAL;

[}

picsize := $7D00;
bufsize ;= $400; (note: if large enough, could require but one call}
REPEAT
howmuch := PackBytes (picprr,picsize, bufper bufsize);
write (f,bufptr,howmuch);
UNTIL picsize=0

R. Montagne, E. Berns & CONFIDENTIAL & Page 30

S
b

Cortland Miscellaneous Tools

July 16, 1986

UnPackBytes Function number = $27
Input Word Space for result
Input LongWord Pointer to the buffer containing packed data
Input Word Buffer size
Input LongWord Pointer to pointer to area to unpack data into
Input LongWord Pointer to word containing the size of the area
sp—> to contain the unpacked data
Output Word Number of bytes unpacked
sp—>

Upon completion, the pointer to the unpacked data is positioned one past the
last upacked byte and the size fo the area is reduced by the amount
unpacked. An assembly language example follows:

* UNPACKBYTES example: UnPack a file "f” onto ths screen

@

FB

loop

BufPw
bufsize
PicPr
PicSize

Buffer

3

g § EEEFEER

g EEEERR agg fEERT

R. Montagne, E. Berns

Meek
#37D00

- PicSizs

#3E12000
PicPw
#SAE12000
PicPr+2

SETFILEMARK(f Mexk)
READ(f BufPw,BufSize)

#0

- BufPe

bufsize
PicPwr
#PicSize

Mark

piesi

EOK()

4 Buffer
23400

€ CONFIDENTIAL &

;mnkisduﬁiémnkweposiﬁmm
isize of &ea to unpeck into

;addr of screen image

;position file “f" to position "Mark"
‘Read BufSize" bytes” into "BufPir”

:Space for result
:Pointer to stert of output area
isize of output buffer area
;Pointer to dats to pack

;Pointer to word with size of area

;get how much we did unpack this pass
;add to previous marik pos.

isee if more to.unpeacks
;there isn't, so we're dons

;didwegetmepdofﬁlc(ufetycheck)
mo, go beck for more

;pointer to buffer erea

Jocal buffer for storing packed scuff
;set 10 $¢12000 on entry (screen area)
isize of 2 picture: set to $7d00 on entry
;file mark position

;actmal buffer

Page 31

Cortland Miscellaneous Tools July 16, 1986

An equivalent example in PASCAL follows:

Function unpaclcb.ytes (bufpur : POINTER;
: bufsize : POINTER;
VAR picr : POINTER;

VAR picsize : POINTER;
: INTEGER; EXTERNAL;

rmrk 0 '[i.e, seart of file}
= $7D00

bufszze = $400; (note: if large enough, could require but one call}
REPEAT

setfilemark(mark);

read(f,bufptr bufsize);

howmuch := UnPackBytcs (btginr,blq‘sxze,pchzr,ptcsxze),

mark := mark-+howmuch;
UNTIL ((picsize=0) or eof(f)); [eof test in case of bad data}

The packed data is in the form of 1 byte containing a flag in the first 2 bits
and a count in the remaining 6 bits, followed by one or more data bytes
depending on the flags. Their description is as follows:

003X (XXX : 0 -» 63) =] to 64 bytes follow - unique
01X+ (OXXXXX 1 2,4,5 or 6) = 3,5,6 or 7 repeats of next byte
103CGGOX (XXX : 0 -> 63) = 1 to 64 repeats of next 4 bytes
TXEOOX (XXX : 0 -> 63) =] to 64 repeates of next 1 byte
taken as 4 bytes (as in '10’ case)

R. Montagne, E. Berns & CONFIDENTIAL ¢ Page 32

Cortland Miscellaneous Tools July 16, 1986

Munger. Munger lets you manipulate bytes in a string of bytes. The basic operation is that of
searching a destination string for a target string and if found, replacing it with a replacement string.
The end of the destination string, if the string is shortened, is padded with a pad character. If the
string is elongated, Characters are truncated off of the end. Special cases to allow various other
functons are defined below.

Munger Function number = $28

Input Word Space for result
Input LongWord Pointer (destptr)
Input LongWord Pointer (destien)
Input LongWord Pointer (targptr)

Input Word Integer (targlen)

Input LongWord Pointer (repiptr)

Input Word * Integer (repllen)

Input LongWord Pointer (pad)
Sp—>

Output Word Amount of Pad / Truncations
sp—> a
Where input is:

destptr: Pointer to pointer to the text to be manipulated
destlen: Pointer to number of bytes to manipulate _
targptr: Pointer to string to be searched for from destptr
targlen: Number of bytes for targptr

replptr: Pointer to string to replace when targptr found
repllen: Number of bytes for repiptr

pad: Character value to pad shortened input with

And output is:
destptr: Updated to one past end of any replacement
destlen: Old value reduced by bytes scanned across
pad: Number of bytes padded (or truncated)
Mt.mgcr: * Zero if target found, negative if not
Special cases:
If targptr is O, the substring of length targlen is éphced by the replptr string.
If targlen is O, replptrs string is inserted at destptr.
If replptr is 0, destptr is updated to past the end of the match of the targptr string.

If repllen is 0, (and replptr is not) the targptr string is deleted rather than replaced
(since the replacement string is empty).

There is one case in which munger performs a replacement even if it doesn't find

all for the target string. If the destptr string in ints entirety is at the beginning of
the targptr string, then the destptr string is totally replaced by the replptr string.

R. Montagne, E. Berns & CONFIDENTIAL & Page 33

Cortland Miscellaneous Tools : July 16, 1986

* MUNGER example : editing a line of text

@

* Changes "robert irwin eagle toranaga mercia houdini berns”
* into “"robert irwin EAGLE torensaga marcia houdini berns"

MG START
ids #Name iset pointer to name
sta DestPr
ida #ANgme
sta DestPrr+2
Ide) #48 ;get length
sta DestLen
FUSHWORD #0 ispess for result
PUSHLONG DestPix spointer to textsring to menipulate
PUSHLONG #Destlen iPointer to word with number bytes to change
PUSHLONG #eaglelLC :Points 10 "eagle” (lower case)
PUSHWORD #5 "eagle” has 5 lstiers
PUSHLONG #eaglelC iPointer to "EAGLE" (upper case)
PUSHWORD = #5 {"EAGLE" hes 5 letiers
PUSHLONG #PAD Pad cher (don't care for this exmmple)
MUNGER
pla ~+[THIS WILL BE ZERO, AS WILL PAD]
s

DestPir ds 2 ;on enkry, will point 1o neme

Destlen ds- 2 ;on entry will be set to "NLen"

PAD ds 2 ped valve

ezglelL.C de c'esgle’

eagleUC de ¢EAGLE

name de c'robert irwin eagle wrenaga mercia houdini berms’

R. Montagne,' E. Berns & CONFIDENTIAL € Page 34

Cortland Miscellaneous Tools July 16, 1986
An equivalent example in Pascal follows:

Function munger (VAR desprr : POINTER;
VAR destlen : %Tn%%g’

wrgpr :

wrglen : INTEGER;

replpr : POINTER;

repllen : INTEGER;

VAR PAD : INTEGER;

: INTEGER; EXTERNAL;

{segment to replace a word in lower case with it's upper case equivalent)

name = 'Tobert irwin eagle toranoga marcia houdini bems,
I':= LEN (name);
i := munger(name, I,'eagle’.5,'EAGLE'S p);

{upon completion, i is O, p is 0, and name is robert irwin EAGLE
toranaga marcia houdini berns'}

Interrupt Enable State Tool. This fﬁnction returns with the state of hardware interrupt enable
states for interrupt sources that can be controlled by the miscellaneous tool set.

GetIRQenbl Function number = $29

Input Word Space for result
sp—>

Output Word Status of hardware interrupt enables
sp—>

Status in returned word is defined below:
D8-15 Undefined

D7 1 = Keyboard interrupts enabled
D6 1 = Vertical blanking interrupts enabled
DS 1 = Quarter second interrupts enabled
D4 1 = One second interrupts enabled
D3 Reserved
D2 1 = Front Desk Bus data interrupts enabled
D1 1 = Scan line interrupts enabled
DO 1 = External VGC interrupts enabled
Example:
PEA $0000 ; SPACE FOR RESULT
_GETIRQENBL

R. Montagne, E. Berns € CONFIDENTIAL € Page 35

Cortland Miscellaneous Tools July 16, 1986
SetAbsClamp Function number = $2A

Input Word X axis minimum clamp value

Input Word X axis maximum clamp value

Input Word Y axis minimum clamp value

Input Word Y axis maximum clamp value

sp—>

Sets the clamp values for absolute devices to new values.

Example:
PEA $0000 ; X MINIMUM CLAMP
PEA $03FF -y X MAXIMUM CLAMP
PEA $0000 ; Y MINIMUM CLAMP
PEA $O3FF ; Y MAXIMUM CLAMP
SETABSCLAMP

GetAbsClamp Function number = $2B

Input Word Space for result
Input Word Space for result
Input Word Space for result
Input Word Space for result
sp—>
Output Word X axis minimum clamp value
Output Word X axis maximum clamp value
Output Word Y axis minimum clamp value
Output Word Y axis maximum clamp value
sp—> .

Returns the current values of the absolute device clamps.

Example:
PEA $0000 ; SPACE FOR RESULT
PEA $0000
PEA $0000
PEA $0000
_GETABSCLAMP

R. Montagne, E. Berns ¢ CONFIDENTIAL & Page 36

Cortland Miscellaneous Tools July 16, 1986

Miscellaneous Tool Set Error Codes

$0000
$0301
$0302
$0303
$0304
$0305
$0306
30307
$0308
$0309
$030A
$030B

No Error

Bad Input Parameter

No Device for Input Parameter

Task is already in Heartbeat queue

No signature in task header was detected during insert or delete
Damaged queue was detected during insert or delete
Task was not found during delete

Firmware task was unsuccessful

Detected damaged HeartBeat Queue

Anempted dispatch to a device that is not connected
Undefined

ID tag not available

R. Montagne, E. Berns € CONFIDENTIAL € Page 37

Cortland Miscellaneous Tools
Summary of functions within the Miscellaneous Tool Set

Function Number Descnption
$01 1 MTBootlnit
$02 2 MTStartUp
$03 3 MTShutDown
$04 4 MT Version
$0s 5 MTReset
$06 6 MTStatus
$07 7 MTSparel
$08 8- MTSpare2
$09 9 WriteBRam
$0A 10 ReadBRam
$OB 11 WriteBParam
$0C 12 ReadBParam
$OD 13 ReadTimeHex
$SOE 14 WriteTimeHex
$SOF 1§ ReadAsciiTime
$10 16 SetVector
$11 17 GetVector
$12 18 SetHeartBeat
$13 19 DelHeartBeat
$14 20 ClrHeartBeat
$1s 21 SysDeathMgr
$16 22 GetAddr
$17 23 ReadMouse
$18 24 InitMouse
$19 25 SetMouse
$1A 26 HomeMouse
$1B 27 ClearMouse
$1C 28 ClampMouse
$1D 29 GetMo
$1E 30 PosMouse
$1F 31 ServeMouse
$20 32 GetNewID
$21 33 DeleteID
$22 34 StatusID
$23 35 IntSource
$24 36 FWentry
$25 37 GetTick
$26 38 PackBytes
$27 39 UnPackBytes .
$28 40 Munger
o4 it

etAbsClamp
$2B 43 GetAbsClamp
ERROR CODES
R. Montagne, E. Berns @ CONFIDENTIAL &

July 16, 1986

. Page 38

	v4_06_01
	v4_06_02

