Chapter 3

Event Manager

3-2 Alpha Draft 6/10/86

Overview

The Event Manager allows applications to monitor the user's actions, such as those
involving the mouse, keyboard, and keypad.

The routines available in the Event Manager are summarized in the following table:

Table X.X - Event Manager Routines and Their Functions

Event Manager Standard Housekeeping Routines

EMBootlnit Initializes Event Manager at boot time,

EMStartUp Initializes the Event Manager when an application starts up.

EMShutDown Shuts down the Event Manager and releases any workspace
allocated to it.

EMVersion Returns the version of the Event Manager.

EMReset Returns an error if the Event Manager is active, but otherwise
does nothing. _

EMActive Returns status indicating whether the Event Manager is active.

DoWindows Returns address of the Event Manager 's zero page work area to

the Window Manager.

Tooibox Event Manager Routines These routines check events to see if they are of
interest to the application. If the events are of interest, and the
Desk Manager doesn't want them, the routines return with the

event.
GetNextEvent Returns the next available event of a specified type or types and,
if the event is in the event queue, removes it from the queue.
EventAvail Returns the next available event of a specified type or types, but

if the event is in the event queue, leaves it in the queue.

Mouse Reading Routines: These routines provide the ability to read the status of the

mouse.,

GetMouse Returns the current location of the mouse.

Button Checks the status of a specified mouse button.

Stilldown Checks a specified mouse bution to see if it is still down.
WaitMouseUp Checks a specified mouse buton to see if it is still down, and, if

not, removes preceding mouse-up event.

Posting and Removing Events
PostEvent Places an event in the event queue.

FlushEvents Removes all events of the type or types specified up to but not
including the first event of any type specified by a mask.

Event Manager

Aceessing Events Routines: These routines check events to see if they are of interest to

the application. If the events are of interest, the routines return
with the event.

GetOSEvent Returns the next available event of a specified type or types and,
if the event is in the event queue, removes it from the queue.
OSEventAvail Returns the next available event of a specified type or types, but

if the event is in the event queue, leaves it in the queue.

Miscellaneous Event Manager Routines:

TickCount Retumns a count of the number of ticks since the system last
, started up.
GetDbiTime Returns suggested maximum difference of ticks which
determines a double mouse-click..
GetCaretTime Returns the number of ticks between blinks of the caret marking

the insertion point.

GetCarerTime————Reterrs TE numper of Ucks befween W

Gn point.
SetSwitch Called by the Control Manager to inform Event Manager of a
pending switch event. Should not be called by an application.
SetEventMask Specifies the system event mask. Should not be called by an
application.

The Event Manager is also used by other parts of the Toolbox; for instance, the
Window Manager uses events to coordinate the ordering and display of windows on
the screen. Although the Event Manager is a single tool set, it can be conceptually

divided into two parts: the Operating System Event Manager and the Toolbox Event
Manager.

The Operating System Event Manager detects low-level, hardware-related events
such as mouse button presses and keystrokes. It stores information about these events
in the event queue and provides routines that access the queue.
The Operating System Event Manager also allows an application (o

@ post its own events into the event queue

8 remove events from the event queue -

8 set the system event mask, to control which types of events get posted into the
queue

The Toolbox Event Manager calls the Operating Systemn Event Manager to retrieve
events from the event queue. In addition, it reports window and switch events, which
aren't kept in the queue. The Toolbox Event Manager is the application's link to its
user. A typical event-driven application decides what to do from moment.to
moment by asking the Toolbox Event Manager for events and responding to them
one by one in whatever way is appropriate.

The Toolbox Event Manager also allows an application to
8 restict some of the routines to apply only to certain event types

3-4 Alpha Draft 6/10/86

8 directy read the current state of the mouse button
& monitor the location of the mouse
B8 find out how much time has elapsed since the system last started up

In general, events are collected from a variety of sources and reported 1o the
application on demand, one at a time. Events aren't necessarily reported in the
order they occurred because some have a higher priority than others.

Note: In the remainder of this documnent, OSEM denotes the Operating System
Event Manager and TBEM denotes the Toolbox Event Manager.

Event Types

Events are of various types. Some report actions by the user; others are generated by
the Window Manager, the Control Manager, device drivers, or the application itself
for its own purposes. Some events are handled by the system before the application
ever sees them; others are left for the application to handle. The event types are
discussed in the following sections.

Mouse events

Pressing the mouse bution generates 2 mouse-down event; releasing the button
generates a mouse-up event. Movements of the mouse cause the cursor position to
be updated but are not reported as events. Whenever an event is posted, the location
of the mouse at that time is reported in a field of the event record. The application
can obtain the current mouse position if needed by calling the TBEM routine
GetMouse. Because relative pointing devices such as joysticks must also be
supporied, the Event Manager differentiates between button 0 and button 1.

Keyboard events

The character keys on the keyboard and keypad generate key-down events when
pressed; this includes all keys except Shift, Caps Lock, Control, Option, and Open-
Apple, which are called modifier keys. Modifier keys are treated differenty and
generate no keyboard events of their own. Whenever an event is posted, the state of
the modifier keys is reported in a field of the event record.

The character keys on the keyboard and keypad also generate auto-key events when
held down. Two different time intervals are assodated with auto-key events. The first
auto-key event is generated after a certain initial delay has elapsed since the key was
originally pressed; this is called the delay to repeat. Subsequent auto-key events are
then generated each time a certain repeat interval has elapsed since the last such

Event Manager

event; this is called the repeat speed. The user can change these values with the
Control Panel.

Window events

The Window Manager generates events to coordinate the display of windows on the
screen. These events are either Activate or Update events.

Aclivate events

These events are generated whenever an inactive window becomes active or an active
window becomes inactive. They generaily occur in pairs (that is, one window is
deactivated and then another is activated).

Update events

These events occur when all or part of 2 window's contents need to be drawn or

redrawn, usually as a result of the user opening, closing, activating, or moving a
window.

Other events

Deviee driver events

These events may be generated by device drivers in certain situations; for example,
a driver might be set up to report an event when its transmission of data is
interrupted. Device driver events are placed in the event queue with the OSEM
procedure PostEvent.)

Applieation-defined events

An application can define as many as four application events of its own and use them
for any desired purpose. Application-defined events are placed in the event queue
with the OSEM procedure PostEvent,

3-6 Alpha Dratt 6/10/86

Switch events

A switch event is generated by the Control Manager whenever a button-down event
has occurred on the switch control.

Desk accessory events

A desk accessory event is generated whenever the user enters the special keystoke 1o
invoke a "classic" desk accessory .

Null events

A null event is returned by the Event Manager if it has no other events to report.

Event Priority

Events are retrieved from the event queue in the order they were originally posted.
However, the way that various types of events are generated and detected causes
some events to have higher priority than others. Also, not all events are kept in the
event queue. Furthermore, when an application asks the TBEM for an event, it can
specify particular types that are of interest. Specifying such events can cause some
events to be passed over in favor of others that were actually posted later,

The TBEM always returns the highest-priority event available of the requested types.
The priority ranking is as follows:

1. Activate (window becoming inactive before window becoming active).
2. Switch.

3. Mouse-down, mouse-up, key-down, auto-key, device driver, application-
defined, desk accessory (all in FIFO order).

4. Update (in front-to-back order of windows).

Activate events take priority over all others; they're detected in a special way, and are
never actually placed in the event queue. The TBEM checks for pending activate
events before looking in the event queue, so it will always return such an event if one is
available. Because of the special way activate events are detected, there can never be
more than two such events pending at the same time; at most there will be one for a
window becoming inactive followed by another for 2 window becoming active.

Next in priority are switch events, which are generated by the Control Manager and
are also not placed in the event queue. If no activate events are pending, the TBEM
checks for a switch event before looking in the event queue. If a switch event is
available, the TBEM then checks to see if any update events are pending, and if so, it

Event Manager

returns the update event to the application. The switch event is not returned to the
application until there are no pending update events. This is to ensure that all of the
windows are updated before the application is switched.

Category 3 includes most of the event types. Within this category, events are
retrieved from the queue in the order they were posted.

Next in priority are update events. Like activate and switch events, these are not
piaced in the event queue, but are detected in another way. If no higher-priority
event is available, the TBEM checks for windows whose contents need o be drawn. If
it finds one, it rerurns an update event for that window. Windows are checked in the
order in which they're displayed on the screen, from front to back, so if two or more

windows need to be updated, an update event will be returned for the frontrnost such
window. .

Finally, if no other event is available, the TBEM returns a null event.

Note: If the queue should become full, the OSEM will begin discarding old events to

make room for new ones as they're posted. The events discarded are always the
oldest ones in the queue.

Event Records

Every event is represented internally by an event record containing all pertinent

information about that event. The event record includes the following information:
8 the type of event <

the time the event was posted (in ticks since system startup)

8 the location of the mouse at the time the event was posted (in global
coordinates)

B the state of the mouse buzons and modifier keys at the time the event was posted

@ any additional information required for a particular type of event, such as -
which key the user pressed or which window is being activated

Every event, including null events, has an event record containing this information.

Event records are defined as follows:

whas INTEGER {event code}
message LONGINT {event message}
when LONGINT {ticks since startup}
where Point {mouse location}
modifiers INTEGER {modifier flags}

The when field contains the number of ticks since the system last startied up, and the
where field gives the location of the mouse, in global coordinates, at the time the
event was posted. The other three fields are described in the following sections.

3-8 Alpha Draft 6/10/86

Event Code

The what field of an event record contains an event code identifying the type of the

event. The event codes are assigned as follows:

0 - null event

1 - mouse down event

2 - mouse up event
.3 - key down event

4 - undefined

5 - auto-key event

6 - update event

7 - undefined

8 - activate event

9 - switch event

10 - desk acomssory event

11 - device driver event

12 - application-defined event
13 - application-defined event
14 - application-defined event
15 - application-defined event

Event Message

The m&saée field of an event record contains the event message, which conveys
additional information about the event The nature of this information depends on
the event type, as shown in the following table.

Table X-X: Event Messages

Event type Event message

Key-down ASCI character code in low-order byte
Auto-key ASCII character code in low-order byte
Activate Pointer to window

Update Pointer to window

Mouse-down Buton number (0 or 1) in low-order word
Mouse-up Button number (0 or 1) in low-order word
Device driver Defined by the device driver

Application Defined by the application

Switch . Undefined

Desk Accessory Undefined

Event Manager

Null Undefined

Modifier Flags

The modifiers field of an event record contains further information about activate
events and the state of the modifier keys and mouse butions at the time the event was
posted, as shown below. The application might look at this field to find out, for
instance, whether the OPEN-APPLE key was down when a mouse-down event was
posted (which could affect the way objects are seleced) or when a key-down event was
posted (which could mean the user is choosing 2 menu item by typing its keyboard
equivalent). The modifier flags are shown in the following figure.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1l 0

KeyPad ChangeFlag
ControlKey

ActiveFlag

OptionKey

CapslLock

ShiftKey

AppleKey

BenlState

BtnlState

The ActiveFlag and ChangeFlag bits give further information about activate events.
The ActiveFlag bit is set to 1 if the window pointed to by the event message is being
activated, or 0 if the window is being deactivated. The ChangeFlag bit is set to 1 if the
active window is changing from an application window to a system window or vice
versa. Otherwise, it's set to 0. The KeyPad bit gives further information about key-
down events; it's set to 1 if the key pressed was on the keypad, or 0 if the key pressed
was on the keyboard. The remaining bits indicate the state of the mouse button and
modifier keys. Note that the BtnOState and Btn1State bits are set to 1 if the
corresponding mouse button is up, whereas the bits for the five modifier keys are set
to 1 if their corresponding keys are down.

3-10 Alpha Draft 6/10/86

Event Masks

Some of the TBEM and OSEM routines can be restricted to operate on a specific
event type or group of types; in other words, the specified event types are enabled
while all others are disabled. For instance, instead of just requesting the next
available event, the application can specifically ask for the next keyboard event.

An application can specify which event types a particular call applies to by supplying
an event mask as a parameter. This is an integer in which there's one bit position for
each event type, as shown below. The bit position representing a given type
corresponds to the event code for that type—for example, update events (event code
6) are specified by bit 6 of the mask. A 1 in bit 6 means that this call applies to update
events; a 0 means that it doesn't. The

-
n
[
o
'—J
w
[
[%)
-
H
-
o
w
o
~J
o
w
o
w
[N}
—

Device Switch Update Key=-down | Mouse~down
driver
Application Desk Activate Auto=key Mouse-up
defined Accessory

Note: Null events can't be disabled; a nuil event will always be reported when none of
the enabled types of events are available.

There's also a global system event mask that controls which event types get posted
into the event queue by the OSEM. Only event types corresponding to bits set in the
system event mask are posted; all others are ignored. When the system starts up, the
system event mask is set to post all events.

Using the Event Manager

If an application will be using the Event Managers and the Window Manager, it must
initialize the Event Managers before initializing the Window Manager. The TBEM
and OSEM are iniualized by calling the TBEM routine EMStartUp. Because the
TBEM needs to share data with the Window Manager, they must both use the same
zero-page work area. When the Window Manager is initialized, it must call the TBEM
routine DoWindows to obtain the address of the zero-page work area that has been

Event Manager

assigned to the Event Managers. If DoWindows is not called, the TBEM will assume
that windows are not being used and will not azempt to return window events.

Event-driven applications have a main loop that repeatedly calls GetNextEvent to
retrieve the next available event, and then takes whatever action is appropriate for
each type of event. Some typical responses to commonly occurring events are
described in the next section. The program is expected to respond only to those
events that are direcily related to its own operations. After calling GetNextEvent, it
should test the Boolean result to find out whether it needs to respond to the event:
TRUE means the event may be of interest to the application; FALSE usuaily means it
will not be of interest.

In some cases, the application may simply want to look at a pending event while
leaving it available for subsequent retrieval by GetNextEvent. It can do this with the
EventAvail call.

Responding o Mouse Events

On receiving 2 mouse-down event, an application should first call the Window
Manager to find out where on the screen the mouse button was pressed, and then
respond in whatever way is appropriate. Depending on the part of the screen in
which the button was pressed, the application may have to call Toolbox routines in
the Menu Manager, the Desk Manager, the Window Manager, or the Conuol
Manager.

If the application attaches some special significance to pressing a modifier key along
with the mouse button, it can discover the state of that modifier key when the mouse

button was down by examining the appropriate flag in the modifiers field of the event
record.

If the application wishes to respond to mouse double-clicks, it will have to detect
them itself. It can do so by comparing the time and location of 2 mouse-up event
with those of the immediately following mouse-down event. The application should
assume a double-click has occurred if both of the following are true:

8 The umes of the mouse-up event and the mouse-down event differ by a number
of ticks less than or equal 10 the vaiue returned by the TBEM function
GetDbiTime.

3-12 Alpha Draft 6/10/86

8 The locations of the two mouse-down events separated by the mouse-up event
are sufficiently close to each other. Exactly what this means depends on the
partcular application. For instance, in a word-processing application, two
locations might be considered essentially the same if they fall on the same
character, whereas in a graphics application they might be considered
essentially the same if the sum of the horizonul and vertical changes in position
is no more than five pixels.

Mouse-up events may be significant in other ways; for example, they might signal the
end of dragging to select more than one object. Most simple applications, however,
will ignore mouse-up events.

Responding to Keyboard Events

For a key-down event, the application should first check the modifiers field to see
whether the character was typed with the Open-Apple key held down; if so, the user
may have been choosing 2 menu item by typing its keyboard equivalent.

If the key-down event was not 2 menu command, the application should then
respond to the event in whatever way is appropriate. For example, if one of the
windows is active, it might want to insert the typed characier into the active
document; if none of the windows. is active, it might want to ignore the event

Usually the application can handle auto-key events the same way as key-down events,
You may, however, want it to ignore auto-key events that invoke comrands that
shouldn't be continually repeated.

Responding to Window Events

When the application receives an activate event for one of its own windows, the
Window Manager will already have done all of the normal "housekeeping” associated
with the event, such as highlighting or unhighlighting the window. The application
can then take any further action that it may require, such as showing or hiding a scroll
bar or highlighting or unhighlighting a selection.

On receiving an update event for one of its own windows, the application should
usually update the contents of the window.

Responding to Other Events

An application will never receive a desk accessory event because these are
intercepted and handled by the Desk Manager.

Event Manager

If the application receives a switch event, it should call a (currently unnamed) routine
in the Switcher that will save the current state and switch to the next application.

Posting and Removing Events

If an application is using application-defined events, it will need to call the OSEM
function PostEvent to post them into the event queue. Device drivers can post events
the same way. This function is sometimes also useful for reposting events that have
been removed from the event queue with GetNextEvent.

In some situations, you may want your application to remove from the event queue

some or all events of a certain type or types. It can do this with the OSEM procedure
FlushEvents. :

Other Operations

In addition to receiving the user's mouse and keyboard actions in the form of events,
applications can directly read the mouse location and state of the mouse buttons by
calling the TBEM routines GetMouse and Button, respectively. To follow the mouse
when the user moves it with the button down, the application can use the TBEM
routines StillDown or WaitMouseUp.

The TBEM routine TickCount returns the number of ticks since the last system start-
up. This value can be compared to the *when” field of an event record to discover
the delay since that event was posted.

The TBEM function GetCaretTime returns the number of ticks between blinks of the
"caret” (usually a vertical bar) marking the insertion point in editable text. An
application should call GetCaretTime if it is causing the caret to blink itself, The
application would check this value each time through the main event loop to ensure a
constant frequency of blinking.

Applications should never call the TBEM routines DoWindows and SetSwitch, and

will probably never cail the OSEM routines GetOSEvent, OSEventAvail, and
SetEventMask. '

USING ALTERNATIVE POINTING DEVICES

The Event Manager can use an alternative pointing device, such as a graphics tablet,
instead of the mouse. When an alternative pointing device is being used, its XY

3-14 Alpha Dratt 6/10/86

location and button status will appear in the event records instead of the mouse
information. Mouse-up and Mouse-down events will be posted when the alternative
device's buttons change state. An application which uses the Event Manager will not
know that an alternative pointing device is being used; it will work the same as it does
with the mouse. ‘

More than one pointing device can also be used. In this case, whichever device is
currently moving or changing state will be the device whose XY location appears in
the event records. The cursor will also correspond to the device which is currendy
moving or changing state.

Installing Device Drivers

In order to use an alternative pointing device, a device driver must be written for it
and installed in the system. The user should install the device driver by executing a
startup program. If the starup program is a desk accessory, the user can install the
driver while using an application. The startup program should initialize the device
and install the device driver into the system as detiled in the following paragraphs.

Devices Using Their Own Cards

If the device communicates using its own card, install the device driver by taking the
following steps:

1. Determine which slot the device's card is in. Store the slot number in the
appropriate byte of the device driver header (described below).

2. Next, perform any initialization needed by the device such as setting up scaling
and offset values, setting the correct operation mode, etc.

3. Install the driver into either the Heartbeat Queue or the IRQ_Other interrupt
vector depending on whether or not the device generates interrupts.

If the device does not generate interrupts, the driver should be installed as a task in
the Heartbeat queue. Install the driver using the SetHeartBeat routine in the
Miscellaneous Tool Set.

If the device does generate interrupts, the driver should be installed in the
IRQ_Other interrupt vector after first saving the previous contents of the vector.
The contents of the vector are obtained by calling the GetVector routine, in the
Miscellaneous Tool Set, with a reference number of $§17. The driver is then
installed by calling the SetVector routine, in the Miscellaneous Tool Set, with a
reference number of $17.

Event Manager

15

Devices Communicating Through the Serial Port

If the device communicates through the Serial port, install the device driver by taking
the following steps:

1. Determine which port the device is connected to. Store the port number in the
appropriate byte of the device driver header (described below).

2. lnitialize the device by calling the Serial Init routine,

3. Install the driver in the Serial firmware's completion vector. This is done by
issuing a Setntinfo call to the Serial firmware. The command list for the call
should specify that 'character available' interrupts should be passed to the driver.

3. Tumn on buffering by calling the Serial Write routine with the following three
characters - control I, B, E. ‘

Deviees Communicating Through the Apple Desktep Bus

If the device communicates though Apple Desktop Bus, install the device driver by
taking the following steps:

1. Determine the address number assigned to the device. Store the address number
in the appropriate byte of the device driver header (described below).

2. Install the driver in the ADB firmware's SRQ List completion vector. This is done
by calling the SRQPL routine in the ADB Tool Set.

3. Enable SRQ for the device using the Send routine in the ADB Tool Set

Removing Device Drivers

The user should remove the device driver by executing 2 shutdown program. If the
shutdown program is a desk accessory, the user can remove the driver while using an
application. The shutdown program should shut down the device and remove the
device driver from the system as follows -

Devices Using Their Own Cards

If the device communicates using its own card, remove the device driver by taking the
following steps:

1. Shut down the device if possible.

2. If the driver is installed in the Heartbeat queue, remove it by calling the
DelHeartBeat routine in the Miscellaneous Tool Set. If the driver is installed in the
IRQ_Other interrupt vector, restore the previous contents of the vector,

3. Remove the driver from memory.

3-16 Alpha Draft 6/10/86

Devices Communicating Through the Serial Port

If the device communicates through the Serial port, remove the device driver by
taking the following steps:

1. Turmn off buffering by calling the Serial Write routine with the following three
characters - Control I, B, D.

2. Remove the driver from memory.

Devices Communicating Through the Apple Deskiop Bus

If the device communicates through Apple Desktop Bus, remove the device driver by
taking the following steps:

1. Disable SRQ for the device.

2. Remove the driver from the ADB firmware's SRQ List completion vector. This is
done by calling the SRQRMV routine in the ADB Tool Set.

3. Remove the .driver from memory.

Device drivers will be called with the processor in native 8-bit mode and must exit in
native 8-bit mode. If a device driver will be installed as a2 Heartbeat task, it must be
written in accordance with the instructions in the Miscellaneous Tool Set, under the
Heartbeat Interrupt Tools. All other device drivers must be written according to
interrupt routine guidelines. '

All device drivers should begin with a 6 byte header as follows -

BRA CodeStart (this generates 2 bytes of code)
2 bytes of device information
2 bytes initialized to $8989 which is the device driver signature

If the device driver is installed 4s a Heartbeat task, the driver header should be
immediately after the Heartbeat task header.

The low byte of device information should be set up as follows -
Bit O - Set if the device has its own card and does not generate interrupts
Bit 1 - Set if the device has its own card and does generate interrupts
Bit 2 - Set if the device communicates through the Serial port
Bit 3 - Set if the device communicates through Apple Desktop Bus
Bit 4 - Reserved for future use
Bit 5 - Reserved for future use
Bit 6 - Set if the device is a relative device
Bit 7 - Set if the device is an absolute device

The high bye of device information should be initialized to $FF. The startup
program should then set up this byte differently depending on the type of device
being installed -

Event Manager

Card device - byte will contain the slot # where the card was found
Serial device - byte will contain the port # the device is connected to
ADB device - byte will contain the address # assigned to the device

A device driver should perform the following steps:
1.

Call the GetAddr routine in the Miscellaneous Tool Set to obtain the address of the
relative or absolute clamp values (depending on whether the driver is for a relative
or absolute device). Save the address so that this call only has to be made the first
time the device driver is executed.

. If the driver is installed as 2 Heartbeat task, reset the heartbeat task counter to 1 or

2. Poll the device to obuin its current XY position and button state.

If the driver is for a serial device, issue an InQStatus call to determine how many
characters are in the serial firmware's input queue. Read the characters by calling
the Serial Read routine.

If the driver is for an ADB device, there will be a buffer pointer on the stack at
offset 7. The first byte in the buffer specifies the number of data bytes in the buffer.
Read the data bytes.

. Determine if the device's XY position or button state has changed. If no changes,

exit.

. Pushawcrdondwsudcwhiduissetupasfollows-

Bit 1 - set if XY position has changed, else clear
Bit 2 - set if button state has changed, else clear

. Read the keyboard modifiers latch at $C025 (must be done in 8-bit mode) and

push the byte on the stack. Push a byte of 0 on the stack.

. Determine the device's absolute X position. Get the current X clamps, using the

address saved above, and clamp the X position. Push a2 word contzining the
clamped, absolute X position on the stack.

. Determine the device's absolute Y position. Get the current ¥ clamps, using the

address saved above, and clamp the Y position. Push a word containing the
clamped, absclute Y position on the stack.

8.Push a word on the stack which is set up as follows -

9.

Bit 8 - Previous state of bugon 1 0 if up, 1 if down)
Bit 12 - Current state of button 1

- Bit 14 - Previous state of butzon 0
Bit 15 - Current state of button 0

Call the FakeMouse routine in the Event Manager (must be called in native 16-bit
mode).

10. Go back to native 8-bit mode.
11. RTL :

3-18 Alpha Draft 6/10/86

The Journaling Mechanism

The Event Manager has a journaling mechanism that can be accessed through
assembly language. The journaling mechanism “decouples” the Event Manager from
the user and feeds it events from a file that contains a recording of all the events that
occurred during some portion of a user's session. Specifically, this file is a recording
of all calls to the TBEM routines GetNextEvent, EventAvail, GetMouse, Button, and
TickCount.

When a journal is being recorded, every call to any of these routines is sent to a
journaling device driver, which records the call (and the results of the call) in a file.
When the journal is plaved back, these recorded TBEM calls are taken from the
journal file and sent directly to the TBEM. The result is that the recorded sequence of
user-generated events is reproduced when the journal is played back.

The journaling device driver does not exist , but hooks are present in the Event
Manager which allow one to be written. In order to use journaling, the address of the
journaling driver must be placed in the EM variable journalptr. The Event
Manager calls the journaling device driver by jumping through journalptr.
Journalptr is set to $00000000 when EMStartUp is executed.

The information pushed on the stack is as follows:

The locations of journalptr and journalflag should be obtained by calling the
Miscellaneous Tools routine GetAddr. The journalflag controis whether
journaling is active, and, if so, whether it is in recording or playback mode. If
journalflag is set to 0, journaling is not active, If journalflag is non-zero,
journaling is active. A positive value indicates recording mode and 2 negative value
indicates playback mode. journalflag is set to $00 when EMStartUp is executed.

If journaling is active, the TBEM routines GetNextEvent, EventAvail, GetMouse,
Button, and TickCount will push information on the stack and do 2 JSL to the
journaling device driver whose address is at SE100E9. The journaling driver shouid
remove the information from the stack before retumning.

The values for the journalcode and resultpointer are summarized in the
following table:

Event Manager

praevious contents
journalflag Word indicating current value stored at SE100E7.
Jjournalcode Word indicating Code for the routine calling the journaling driver.
resultpointer Pointer to the actual data being returned by the routine.
& SP

19

Table X-X: Journal Codes and Result Pointers

Journal Code Routine

3-20

BodN = O

TickCount
GetMouse
Button
GetNextEvent
EventAvail

Alpha Draft 6/10/86

Result Pointer points to:

LONG

Point
BOOLEAN
Event Record
Event Record

EMBootinit

Called at boot time. Does nothing. Should not be called by an application.

Stack & Parameter Definition

Stack Before and After Call

Call does not affect the stack.

Cc

Call should not be made from an application.

Pascal

Call should not be made from an application.

Event Manager

21

EMStartUp

Initializes the Event Manager, sets size of event queue, specifies minimum and
maximum mouse clamp values, and defines ID program will use to get memory from
the Memory Manager.

Stack & Parameter Definition

Stack Before Cail

previous contents
zercpageaddrs Integer specifying starting address in bank 0 for EM's one-page work area.

queuesize Integer specifying maximum number of event records the queue can hold.
Xminclamp Integer specifying minimum X damp value for the mouse.

Xmaxclamp Integer specifying maximum X clamp value for the mouse.

Yminclamp Integer specifying minimum Y clamp value for the mouse.

Ymaxclamp Integer specifying maximum Y clamp value for the mouse.

programlID Integer specifying IDto use to get memory from Memory Manager.

= SP
Stack After Call

l previous coatents

| ¢ SP

If queuestze is equal (0 zero, a default size of 20 will be used. If queuesize is greater
than 3639, an error will be returned and the Event Manager will not be initialized.

Before the Event Manager passes the clamp values to the mouse, it decrements
XMaxClamp and YMaxClamp by one.

If the event queue cannot be allocated due to insufficient memory, an error is

returned and the Event Manager is not initialized. Duplicate EMStartUp calls also
cause an error to be returned.

3-22 Alpha Draft 6/10/86

Pascal

Event Manager 23

EMShutDown

Shuts down the Event Manager and releases any workspace allocated to it.

Stack & Parameter Definition

Stack Before and After Call

Call does not affect the stack.

Pascal

3-24 Alpha Draft 6/10/86

EMVersion

Rerumns the version of the Event Manager.

Stack & Parameter Definition

Stack Before Call

previous contents

resultspace

Stack After Call

previous contents

versioninfo

Word allowing space for the output.

¢ SP

Word indicating which version of the Event Manager is present.

<« SP

Pascal

Event Manager

25

EMReset

Returns an error if the Event Manager is active; otherwise does nothing.

Stack & Parameter Definition

Stack Before and After Call

Call does not affect the stack.

Pascai

326 Alpha Draft 6/10/86

EMActive

Returns a non-zero value if the Event Manager is active; returns zero if the Event

Manager is inactive.

Stack & Parameter Definition

Stack Before Call

previous contents

resultspace

Stack After Call

previous contents

activeflag

Word allowing space for the output.
<= SP

Integer indicating zero if Event Manager not active, non-zero if active.

<SP

0

Pascal

Event Manager

27

DoWindows

Returns the address of the zero-page work area used by the Event Manager to the
Window Manager.

DoWindows is called by the Window Manager when the Window Manager is
initialized. The Window Manager uses the high end of the ZeroPageAdrs returned by
DoWindows; the Event Manager uses the low end. This routine should not be used by
an application.

Stack & Parameter Definition

Stack Before Cail

L

previous contents

resultspace Word allowing space for the output.
& SP

Stack After Call

previous contaents

€= SP

c

Call should not be made from an application.

Pascal

Call should not be made from an application.

3-28 Alpha Draft 6/10/86

zeropageaddrs Integer returning the zero page address of the EM's work area.

Event Manager 29

GetNextEvent

Returns the next available event of a specified type or types and, if the event is in the
event queue, removes it from the queue.

Stack & Parameter Definition

Stack Before Cail

previcus contents

resultspace

Word allowing space for the output.

eventmask

Integer spedifying which types of events are to be retrieved.

eventptr

Pointer to event record in which the event will be placed..

Stack After Call

¢~ SP

previous contents

handleevent?

Boolean returning TRUE if application should handle event;

&= SP FALSE if system or nuil event.

c

Pascal

3-30 Alpha Draft 6/10/86

GetNextEvent returns the next available event of any type designated by the mask,
subject to the following priority order:

1. Activate (window becoming inactive before window becoming active).

2. Switch.

3. Mouse-down, mouse-up, key-down, auto-key, device driver, application-
defined, desk accessory, all in FIFO order.

4. Update (in front-to-back order of windows).

If no event of any of the designated types is available, GetNextEvent returns a null
event. This priority order is further discussed in "Event Priority ".

Events in the queue that aren't designated in the mask are left in the queue. The
events can be removed by calling the FlushEvents tool.

Before reporting an event to the application, GetNextEvent first calls the Desk
Manager tool SystemEvent to see whether the system wants to intercept and respond
to the event. If so, or if the event being reported is a null event, GetNextEvent returns
a Boolean result of FALSE; a Boolean resuit of TRUE means that the application
should handle the event itself. The Desk Manager intercepts the following events:

g desk accessory events
® activate and update events directed to a desk accessory

B8 mouse-up and keyboard events, if the currendy acive window belongs to a desk
accessory

In each case, the event is intercepted by the Desk Manager only if the desk accessory
can handle that type of event. As a rule, all desk accessories should be set up to
handle activate, update, and keyboard events and should not handle mouse-up
events.

Event Manager

3

EventAvail

Returns the next available event of a specified type or types. If the event is in the
event queue, leaves the event in the queue. Otherwise, the call works exacly like

GetNextEvent.

An event returned by EventAvail cannot be accessed if, in the meantime, the queue
becomes full and the event is discarded. However, because the oldest events are the
ones discarded, useful events will be discarded only in an unusually busy

environment.

Stack & Parameter Definition

Stack Before Cail

previous contents

resultspace

eventmask

evencptr

Stack After Call

Word allowing space for the output

Integer spedifying which types of events are to be retrieved.

Pointer to event record in which the event will be placed..
—sp ‘

previous contents

handleevent?

Boolean returning TRUE if application should handle event;

€~ SP - FALSE if system or null event.

Pascal

3-32 Alpha Dratt 6/10/86

GetMouse

Returns the current mouse location.

The location is given in the local coordinate system of the current GrafPort (for
example, the currently active window). This differs from the mouse location stored
in the where field of an event record; that location is always in global coordinates.

Stack & Parameter Definition

Stack Before Call

previous contents

mouselocptr Pointer 10 a record in which the current mouse location will be returned..
&« SP

Stack After Caill

previous contents

Pascal

Event Manager .33

Button

Returns the current state of a specified mouse button.

Stack & Parameter Definition

Stack Before Cail

previous contents

resultspace Word allowing space for the output
buttonnumber Integer specifying number of buton (0 or 1) to check.
&SP
Stack After Call

previous contents

buttandown? Boolean returning TRUE if the button is down, or FALSE if it isn't
¢ SP

An error is returned if buttonnumberis not 0 or 1.

Pascal

3-34 Alpha Draft 6/10/86

StillDown

Tests whether a specdified mouse button is still down.

Usually called after a mouse-down event, StllDown is a true test of whether the mouse
button is still down from the original press. (Button is not a true test, because it
returns TRUE whenever the mouse button is currently down, even if the buaon was
released and pressed again since the original mouse-down event.)

Stack & Parameter Definition

Stack Before Call

previous contents

resultspace Word allowing space for the output
butzonnumber Integer specifying number of button (0 or 1) to check.
&= SP
Stack After Cail

previous contents

buctondown? Boolean returning TRUE if the button is down,and there are no mouse.

<= SP events pending in the event queue.

An error is returned if bwstonnumberis not 0 or 1.

Pascal

Event Manager

35

WaitMouseUP

Tests whether the mouse button is still down, and, if the button is not still down from
the original press, removes the preceding mouse-up event before returning FALSE.
An error is returned if ButtonNum is not 0 or 1.

WaitMouseUp could be used, for example, if an application attached some special
significance to mouse double-clicks and to mouse-up events. WaitMouseUp would
allow the application to recognize a double-click without being confused by the
intervening mouse-up.

Stack & Parameter Definition

Staek Before Call

previous contents

resultspace Word allowing space for the output.
buttonnumber Integer specifying number of buton (0 or 1) to check.
<SP
Stack After Call

previous contents

buttondown? Boolean returning TRUE if the button is down,and there are no more

| |~ sp mouse events pending in the event queue.

An error is retumed if buttonnumberis not Q or 1.

Pascal

3-36 Alpha Draft 6/10/86

PostEvent

Places an event in the event queue.

An application must be careful when it posts any events other than its own
application-defined events into the queue. Attempting to post an activate or update
event (which aren't normally placed in the queue), for example, will interfere with
the normal operation of the Event Manager.

If PostEvent is used to repost an event, the event time, mouse location, state of the
modifier keys, and state of the mouse buttons will all be changed from the originally
posted event. This can alter the meaning of the event.

Stack & Parameter Definition

Stack Before Call

previous contents
resultspace Word allowing space for the output.
eventcode Integer specifying type of event to be placed in the queue.
eventmsg Longint specifying event message.
<« SP
Stack After Call

previous contents

resultcode Integer returning O if event posted, 1 if event type not designated in system
¢ SP event mask.

In the eventmsg , the current state of the modifier keys and mouse buttons are
supplied in the high-order word of the message. The current time and mouse
location are also recorded in the message.

Event Manager 37

Pascal

3-38 Alpha Draft 6/10/86

FlushEvents

Removes all events of the type or types specified up to but not including the first event
of any type specified by stopmask If the event queue doesn't contain any event of the
types specified by eventmask, FlushEvents does. nothing,

Stack & Parameter Definition

Stack Before Call

previous contents

resultspace

eventmask

stopmask

Stack Atfter Call

Word allowing space for the output
Integer spedifying type or types of events 1o be removed from the queue.
Integer specifying the first event type to not be removed (0 to remove.

previous concents

resultcode

= SP all events).

Integer returning 0 if all events removed, or the event code indicating

< SP what type of event caused the process to slop.

Pascal

Event Manager 39

GetOSEvent

Returns the next available event of a specified type or types and, if the event is in the
event queue, removes it from the-queue.

GetOSEvent returns the next available event of any type designated by the mask. If no
event of any of the designated types is available, GetOSEvent returns a null event.

Events in the queue that aren't designated in the mask are left in the queue. The
events can be removed by calling the FlushEvents tool.

Stack & Parameter Definition

Stack Before Cail

previous contents
resultspacs Word allowing space for the output,
evantmask Integer spedifying which types of events are (0 be retrieved.
eventptr Pointer (0 event record in which the event will be placed..
¢ SP
Stack After Cail

previous contents

| & SP FALSE if null event.

Pascal

3-40 Alpha Draft 6/10/86

eventthere? Boolean returning TRUE if any of the events specified are available;

OSEventAvail

Returns the next available event of a spedified type or types. If the event is in the
event queue, leaves the event in the queue, Otherwise, the call works exactly like

GetOSEvent.

An event returned by OSEventAvail cannot be accessed if, in the meantime, the
queue becomes full and the event is discarded. However, because the oldest events
are the ones discarded, useful events will be discarded only in an unusually busy

environment.

Stack & Parameter Definition

Stack Before Call

previous contents

resultspace

eventmask

eventptr

Stack After Call

previous contents

eventthere?

Word allowing space for the output

Integer spedifying which types of events are to be retrieved.

Pointer to event record in which the event will be placed..
€= SP

Boolean returning TRUE if any of the events specified are available;

- Sp FALSE if null event.

Pascal

Event Manager

4

TickCount

Returns the current number of ticks (sixtieths of a second) since the system last started
up.

Applications should not rely on the tick count being exact. The tick count is h
incremented during the VBL interrupt, but that interrupt can be disabled. Also,
since an interrupt task can keep control for more than one tick, an application should
also not rely on the tick count being incremented to a certain value (for example,
testing whether the tick count has become equal to its old value plus 1). Instead, the
application should check for a "greater than or equal to” condition.

Stack & Parameter Definition

Stack Befere Cail

previous coatents

resultspace Long allowing space for the output.
&SP

Stack After Call

previous contents

| numberofticks Longint returning the number of ticks since system start-up.

l «— sp

Paseal

3-42 Alpha Draft 6/10/86

GetDbiTime

Returns the suggested maximum difference (in ticks) between mouse-up and mouse-
down events in order for the mouse clicks to be considered a double click.The user
can adjust this value by using the Control Panel.

Stack & Parameter Definition

Stack Before Call

previous contents

resultspace

Stack After Call

previous contents

maxticks

Long allowing space for the output.
— SP

Longiat returning the maximum number of ticks berween mouse clicks.

¢ SP

Pascal

Event Manager

43

GethrefTime

Returns the time (in ticks) between blinks of the "caret” (usually a vertical bar)
marking the insertion point in text

If an application is not using TextEdit, the application must cause the caret to blink.
On every pass through the program's main event loop, the application should check
numticks against the elapsed time since the last blink of the caret .

The user can adjust this value

by using the Control Panel.

Stack & Parameter Definition

Stack Before Call

previous contents

resultspace Long allowing space for the output.
¢ SP
Stack After Call
previous contents
aumticks Longint reurning the number of ticks between blinks of the caret,
€& SP

Pascal

3-44 Alpha Draft 6/10/86

SetSwitch

Informs the Event Manager of a pending switch event. SetSwitch is called by the
Control Manager and should not be called by an application.

Stack & Parameter Definition

Stack Before and After Call

Call does not affect the stack.

C

Call should not be made from an application.

Pascal

Call should not be made from an application.

Event Manager 45

SetEventMask

Sets the avétem event mask to the specified event mask.

The Event Manager will post only those event types that correspond to bits set in the

mask. It will not post activate, update, or switch events, because those events are not
stored in the event queue.

The system event mask is initially set to post all events. An application should not
change the system event mask, because desk accessories may depend upon receiving
certain types of events,

Stack & Parameter Definition

Stack Before Call

previous contents

systemeventmask Integer specifying the system event mask.
¢ SP

Stack After Cail

previous contents

& SP

Pascal

3-46 Alpha Dratft 6/10/86

@~
.

The Toolbox Event Manager

Second

digit First digit
3 4 S§ 6 7T 8 9 A B b E F
Ole|P| |plAjée|t|=|é]-
11AlQ|a|q|Ale] |£]i]|-
2|/BIRIb|r|Clij¢|c|}|"
3lC|s|cls|E|li|E|2|V]|”
A(D|T|d[t(N]i|s|¥|]]"
SIE{Ule|ulO|i|@|b]|=]"
6IF|VIfIVvI|IUIA|q|a|Al+
716G IWg|wlad|d|B|Z|«|O
BIH|X|h{Xx|a{0o{®[T|»|YV
9|1l (Yijifytalol|®|T
Jlzlilzlals|™|[]|o
K D k[(]a]6] |2|A
SIRANERRRERK 0| A
=M1 m{)|c|u|=[Q]|0O
>IN~ In| " |é|0|A|elC
AR : BNEEIE

— stands for & nonbresking space, the seme width as e digit.
The sheded cherscters cannot normally be generated from the Macintosh keybosard
ot keypad,

FakeMouse

FakeMouse allows an alternative pointing device, such as a graphics tablet, to be used
in place of or in conjunction with the mouse.

Stack & Parameter Definition

Stack Before Call

previous contents

changedflag

modlatch

padding

Xpasitlion

Yposition

buttonstacus

Stack After Call

previous conteats

Integer specifying the .

Byte specifying the .
Byte specifying the .

Integer specifying the .
Integer specifying the .
Integer specifying the .
- SP

- SP

Pascal

Event Manager

47

Event Manager Error Codes

The error codes returned by the Event Manager are summarized in the following
table:

Table X-X: Event Manager Error Codes

Error Code Means

$0601 Duplicate EMStartUp call

$0602 Reset Error.

$0603 Event Manager not aclive.

$0604 Illegal event code.

$0605 Illegal button number.

$0606 Queue size 100 large.

$0607 Not enough memory available for queue.
$0681 Fatal system error - event queue damaged.
$0682 Fatal system error - queue handle damaged.

3-48 Alpha Draft 6/10/86

	v4_10_01
	v4_10_02
	v4_10_03

