Cortland Window Manager
Appendix A
Window Calls

8.0 3 [3 []

WindBootInit (not completed)
input: None.
output: None.

Called only by SetTSPtr.

WindStartup
input: userID:WORD - user's ID that Window Manager can use.

output: None

WindStartup initializes the Window Manager. Calls the Event Manager for zero page to
use, clears the window list, and sets the default desktop pattern and color. It creates the
Window Manager port; you can get a pointer to this port with the GetWMgrPort
procedure. The desktop is the entire screen until the Menu Manager, if used, subtracts any
area needed for a system menu bar. Call this procedure once before all other Window
Manager routines. WindStartup does not draw the desktop, see Refresh.

WindShutDown (not completed)

August 13, 1986 Appendiy A l—l 2

input: None.
output: None.

Frees any memory allocated by the Window Manager.

|Pa.ge

=

WindVersion
input: None.
output: wVersion:WORD - Window Manager's version number.

WindReset (not completed)
input: None.
output: None.

WindStatus (not completed)
input: None.

output: stams:WORD -

VWNewRes
input: None.
output: None.
Called after the screen resolution has been changed. The Window Manager will close its
port and open a new one (in the new resolution). Then the screen is not redrawn by the

Window Manager in the new resolution. Call Refresh when all resolution changes are
done, such as desktop pattern and window colors. '

August 13, 1986 Appendix A { 3

Desktop

inputs: Operation:WORD - operation to perform/
Param:L ONG - parameter needed for operation.

output: RetParam:I.ONG - possible return parameter.

Possible Operation numbers:
FromDesk =0 Subtract region from desktop region.
ToDesk =1 Add region to desktop region.
GetDesktop =2 Retum handle of desktop region.
SetDesktop =3 Set handle of dektop region.
GetDeskPat =4 Return current desktop pattern.
SetDeskPat =5 Set new desktop pattern.

GetVisDesktop =6 Return desktop, lcss any windows.

Expected inputs and outputs:
Operation = FromDesk

Param = Handle of region to be subtracted from desktop region.
RetParam = Not used (not even necessary to push room on stack).

Operation = ToDesk

Param = Handle of region to be added to desktop region.
RetParam = Not used (not even necessary to push room on stack).

Operation = GetDesktop
Param = Not used.
RetParam = Handle of desktop region.

Operation = SetDesktop
Param - =Handle of new desktop region.
RetParam = Same as Param.

August 13, 1986

Appendix A

|

August 13, 1986 Appendir A | 5

Operation = GetDeskPat
Param = Not used. '
RetParam = Current desktop pattern where:

$00xxxxxx Where xxxxxx is the address of your routine that will
be called to draw the desktop. There are no inputs or
outputs,the current port will be the Window
Manager's, and the clipping region will be set to the
arlcia Trlx‘.ccding to be drawn. Your routine should exit via
a

Warning: The current direct page and data bank is not
defined on entry to your routine. If you
need to reference you own direct page you
will have to save the original and switch to
yours. The same is true with the data
bank, except here you can use long
addressing. When you exit your routine
the direct page and data bank must be the
same as it was on entry.

$80xxxxxx Where xxxxxx is the address of the pattern to be used
for the desktop.

$4000xxxx The default desktop pattern where xxxx is:
= solid desktop pattern.
Olxx = dithered desktop pattern.
02xx = horizontal stripped desktop pattern.
xxNx = N is the pattern's foreground color.
xxxN N is the pattern’s background color.

Operation = SetDeskPat

Param = New desktop pattern (see GetDeskPat for definition).

RetParam = Not used (not even necessary to push room on stack).
Desktop is redrawn with new pattern.

Operation = GetVi

Param = Handle of region that will be set to the visible desktop.

RetParam = Not used (not even necessary to push room on stack).
The desktop region is copied into the given region, and all visible windows are
subtracted from it.

Pege

NewWindow
input: paramList:I.ONG - pointer to a parameter list.

output: theWindow:L.ONG - pointer to window port, zero if error.

Possible errors:
1 = incorrect parameter list length.
2 = unable to locate memory for window record.

NewWindow creates a window as specified by its parameters, adds it to the window list,
and returns a pointer to the new window's port. It allocates space for the structure and
content regions of the window and asks the window definition function to calculate those

regions.

The parameter list is:

param_length WORD Number of bytes in parameter table.

wFrame WORD Bit vector that descibes the window.

wTitle LONG Pointer to window's title.

wRefCon LONG Reserved for application's use only.

wZoom RECT Size and position of content when zoomed.

wColor LONG Pointer to window's color table.

wYOrigin WORD Content's vertical origin.

wXOrigin WORD Content's horizontal origin.

wDataH WORD Height of entire document..

wDataW WORD Width of entire document.

wMaxH WORD Maximum height of content allowed by GrowWindow.
wMaxW WORD Maximum width of content allowed by GrowWindow.
wScrollVer WORD Number of pixels to scroll content vertically for arrows.
wScrollHor WORD Number of pixels to scroll content horizontally for arrows.
wPageVer WORD Number of pixels to scroll content vertically for page.
wPageHor WORD Number of pixels to scroll content horizontally for page.

winfoRefCon LONG Value passed to information bar draw routine.
wFrameDefProc LONG Address of standard window definition procedure.
winfoDefProc = LONG Address of routine that draw's the information bar interior.
wContDefProc LONG Address of routine that draw's the content region interior.

wPosition RECT Window's starting position and size.
wPlane LONG Window's starting plane.
wStorage LONG Address of memory to use for window record.

Each parameter is covered in more detail below.

Peage

A

August 13, 1986 Appendix A

param_length Total number of bytes in parameter table, including param_length. Use labels
in code to come up with the value (that's why I don't give it here). The value
is used mainly for error checking. Most errors with NewWindow occur
because of typing errors when creating the parameter list. The problem can be
compounded further by the assembler or complier skipping field because of
typing errors but not generating an €rror.

wFrame Window frame type:

l15{14f13[12f11]10{ 9| 8l 7| 6] s{ 4] 3] 2| 1] o]

L F_HILITED
e - ZOOMED
F_ALLOCATED
F_CTRL_TE
F_INFO
F_VIS
F_QCONTENT
F_MOVE
F_ZOOM
Reserved
F_GROW
F_BSCRL
F_RSCRL
Reserved
F_CLOSE
F_TITLE

F_HILITED 1 = window is highlited, O = not highlighted. This flag
will be set by NewWindow, so whatever you pass will
be ignored.

F_ZOOMED 1 = window is currently in a zoomed state, 0 = window is
not zoomed. This flag is not used is F_ZOOM is zero.

F_ALLOCATED 1 = window record was allocated by the NewWindow, 0
= window record was not allocated by the NewWindow.
’ If this flag is set when CloseWindow is called, the
window record will be freed.

F_CIRL_TIE 1 = the state of the window's controls is not tied to the
window's state. 0 = when the window is inactive
(unhighlighted), its controls are also considered inactive
- without regard for the active state of the control.

F_INFO 1 = window has an information bar as part of the
window's frame, 0 = no information bar.
F_VIS 1 = window is visible, 0 = window is invisible.
{Page

August 13, 1986 Appendix A | 7

F_QCONTENT

F_MOVE

F_ZOOM

F_GROW

F_BSCRL

F_RSCRL

F_CLOSE

F_TITLE

1 = if there is a button down event inside an inactive
window's content, the window will be selected and a
winContent message will be returned by TaskMaster.
This feature is use if you would like to act on any button
down in the content, even if it was also used to activate the
window.

If this bit is zero TaskMaster will act in the same way,
execpt it will return an inNull message. This feature is use
if you would like to button down in an inactive content to
activate the window and then not use the same button
down event again.

1 = window can be dragged by its title bar, 0 = the
window's title bar is not considered a drag region and can
not, therefore, be moved.

1 = window has a zoom box in its title bar, 0 = window
does not have a zoom box in its title bar, The window
must have a title bar in order to have a zoom box.

1 = window has a grow box, 0 = window does not have a
grow box.

1 = window has a bottom (horizontal) scroll bar as part of
the window frame, 0 = no bottom scroll bar.

1 = window has a right (vertical) scroll bar as part of the
window frame, O = no right scroll bar.

1 = window has a close box in its title bar, 0 = window
does not have a close box in its title bar. The window
must have a title bar in order to have a close box.

1 = window has a title bar as part of the window's frame,
0 = no title bar.

Warning: If F_GROW is set, F_BSCRL or F_RSCRL must also be set.
That is to say, to have a window frame grow box, you must have at
least one window frame scroll bar.

wTitle Pointer to title of window. If window does not have a title bar this value can
be zero. The first byte in the string should be the length of the string,
followed byte the ASCII characters of the title.

wRefCon Application defined reference value. This value is reserved for the
application's use only, and can be any value desired.

August 13, 1986

Pege
8

Appendix A

wZoom

wColor

wYOrigin

wXOrigin

wDataH
wDataW

wMaxH

wMaxW

wScrollVer
wScrollHor

wPageVer

wPageHor

August 13, 1986 . fippendix A

Rectangle of the content region when the window is zoomed. If the bottom
side of the rectangle is zero, a defanlt RECT will be used. The default will be
set so that the window will use the entire screen.

Pointer to window's color table. This is the color table used to draw the
window's frame., Zero to use the default color table.

Vertical offset of content region. This value is the vertical value passed to
SetOrgin when TaskMaster is used to draw inside the content region. Itis
also used to compute the right (or vertical) scroll bar. Zero if not using
window frame scroll bars.

Horizontal offset of content region. This value is the horizontal value passed
to SetOrgin when TaskMaster is used to draw inside the content region. It
is also used to compute the bottom (or horizontal) scroll bar. Zero if not using
window frame scroll bars.

Height of entire data area. Used to compute the right scroll bar. Zero if not
using window frame scroll bars.

Width of entire data area. Used to compute the bottom scroll bar. Zero if not
using window frame scroll bars.

Maximum content height allowed when growing the window. This value is
passed to GrowWindow when called by TaskMaster. If set to zero, a
default value will be used, so that the window will take up the height of the
desktop. Zero if not using window frame grow box.

Maximum content width allowed when growing the window. This value is
passed to GrowWindow when called by TaskMaster. If set to zero, a
default value will be used, so that the window will take up the width of the
desktop. Zero if not using window frame grow box.

Number 6f pixels to scroll the content region when the up or down arrows are
selected in the right scroll bar. Used only if the scroll bar is part of the frame
and TaskMaster is used. Zero if not using window frame scroll bars.

Number of pixels to scroll the content region when the left or right arrows are
selected in the bottom scroll bar. Used only if the scroll bar is part of the
frame and TaskMaster is used. Zero if not using window frame scroll bars.

Number of pixels to scroll the content region when the up or down page
regions are selected in the right scroll bar. Used only if the scroll bar is part
of the lirmm and TaskMaster is used. Zero if not using window fram
scroll bars. '

Number of pixels to scroll the content region when the left or right page
regions are selected in the bottom scroll bar. Used only if the scroll bar is part
of the frame and TaskMaster is used. Zero if not using window frame
scroll bars.

Page
9
=

winfoRefCon Value passed to Information Bar draw routine. The value can be anything the
application would like, such as a pointer to a string to be printed in the
information bar. Zero if not using window frame information bar.

wFrameDefProc Pointer to window's definition procedure. Zero for a standard document
window.

winfoDefProc Address of routine that will be called to draw in the information bar. Zero if
not using window frame information bar.

wContDefProc ~ Address of routine that will be called to draw the window's content region. If
you are using window frame scroll bars this value must be set. If you are not
using window frame scroll bars this value can be zero. However, if you are
not using window frame scroll bars, but you would like TaskMaster to
handle update events, set this value. The routine will be called when the
content region needs to be drawn. On entry, the current port will be the
window's, the visible region region will be set to the update area, and the
origin set. There are no input or output parameters. Exit the routine via RTL.

wPosition A rectangle given in global coordinates, determines the window's size and
location, and becomes the portRect of the window's grafPort; note, however,
that the portRect is in local coordinates. NewWindow sets the top left
corner of the portRect to (0,0). For the standard types of windows, this
RECT defines the content region of the window.

wPlane Pointer to window port this window should appear behind. Zero for bottom
most, $FFFFFFEF for top most.
wStorage Address of memory to use for window's record. If set to zero, the record will

be allocated. Because window records are not completely defined, the size
needed for a window record is unknow. Therefore, you must allow 325
bytes for a window record. Actually, it is best to have the record allocated by
the Window Manager. Being able to use your own memory for a window -
record is provided for in case you need to put up a window to say there is no
memory left, and therefore the Window Manager could not allocate one.

Note: The bit map, pen pattern, and other characteristics of the window's
grafPort are the same as the default values set by the OpenPort
procedure in QuickDraw. (NewWindow actually calls OpenPort to
initialize the window's grafPort.) Note, however, that the coordinates of
the grafPort's portBits.bounds and visRgn are changed along with its
portRect.

NewWindow also sets the window class in the window record to indicate that the
window was created directly by the application.

August 13, 1986 ' Appendix A | 10

MI

CloseWindow
input: theWindow:LONG - pointer to window's port.
output: None.

CloseWindow removes the given window from the screen and deletes it from the
window list. It releases the memory occupied by all data structures associated with the
window, including the memory taken up by the window record if it was allocated by
NewWindow. Call this procedure when you're done with a window.

Any update events for the window are discarded. If the window was the frontmost
window and there was another window behind it, the latter window is highlighted and an

appropriate activate event is generated.

Warning: If you allocated memory yourself and stored a handle to it in the refCon
field, CloseWindow won't know about it—you must release the
memory before calling CloseWindow.

ol
R

b

August 13, 1986 ' Appendix A | 1

Window Record and Global Access
GetWMegrPort

input: None.
output: wPort:LONG - pointer to Window Manager's port.

SetWMgrlcons
input: NewFont:LONG - handle of new icon font to use, negative to not replace font.
output: OldFont:LONG - handle of icon font before replacement, if any.
See WINDOW MANAGER ICON FONT for more information about the font.

SetWRefCon

inputs: refCon:LONG - reserved LONG for application's use
theWindow:LONG - pointer to window's port.

output: None.

SetWRefCon is used to set a LONG value that is inside the window record and is
reservered for the application's use.

GetWRefCon
input: theWindow:LONG - pointer to window's port.
output: refCon:LONG - reserved LONG for application's use

GetWRefCon is used to retrieve a LONG value from a window's record that was passed
to either NewWindow or SetWRefCon by the application sometime before this call.

SetWTitle

inputs: title:LONG - pointer to string for new title.
theWindow:LONG - pointer to window's port.

output: None,

August 13, 1986 Appendir A |l 12

Updates window's record with new title pointer

. Page |
August 13, 1986 Appendir A | 13

p——— 4

GetWTitle
input: theWindow:LONG - pointer to window's port.
output: title:LONG - pointer to string of window's title.

SetFrameColor

inputs: newColor:LONG - pointer to 8 word pattern/color table, zero for system.
theWindow:LONG - pointer to window's port, zero to set default.

output: None.

See WINDOW FRAME COLORS AND PATTERNS for a definition of the color table.
Does not redraw the window. Do a HideWindow and ShowWindow before and after this
call to redraw the window in its new colors.

If newColor is zero, the pointer to the system default color table will be used. If
theWindow is zero, the default window color table will be set. To understand defaults,
system, and all this, it necessary to understand how the Window Manager finds a color
table to use for drawing. First, a field in the window record is checked for a pointer to a
color table. The field is zero after allocated by NewWindow, and remains zero until a
SetFrameColor. If a pointer is found in the window's record, that is the table used. If a
zero is found, the default table is used. Now comes the tricky part, the default table starts
out as the system table, but can be changed by SetFrameColor when theWindow is
zero.

GetFrameColor

inputs: newColor:LONG - pointer to 8 word table that will be set with the color table.
theWindow:LONG - pointer to window's port.

output: None.

See WINDOW FRAME COLORS AND PATTERNS for a definition of the color table.

FrontWindow
input: None.
output: theWindow:LONG - pointer to the active window's port.

FrontWindow returns a pointer to first visible window in the window list (that is, the
active window). If there are no visible windows, it returns zero.

ol
&

e

August 13, 1986 Appendix A |1

|

GetNextWindow
input: theWindow:LONG - pointer to window's port.
output: NextWindow:LONG - pointer to next window's port in list, zero is last.

GetNextWindow returns a pointer the next window after theWindow in the window list,
or zero if theWindow is the last window in the window list.

GetWKind
input: theWindow:LONG - pointer to window's port.
output: WindowKind:WORD - TRUE if system window, FALSE if application window.
GetWKind returns the kind of window theWindow is.

GetWFrame
input: theWindow:LONG - pointer to window's port.
output: wFlag:WORD - bit vector of window's frame type.

GetWFrame returns the same type of bit vector passed to NewWindow. See
NewWindow for the definition of the bits of wFlag.

SetWFrame

input: wFlag:WORD - bit vector of window's frame type.
theWindow:LONG - pointer to window's port.

output: None.

SetWFrame sets the same type of bit vector passed to NewWindow. See
NewWindow for the definition of the bits of wFlag. The window frame is not redrawn.

August 13, 1986 Appendix A || 15

GetStructRgn
input: theWindow:LONG - pointer to window's port.
output: WStructRgn:LONG - handle of window's structure region.
See WINDOW REGIONS for a definition of what the structure region is.

GetContRgn
input: theWindow:L.ONG - pointer to window's port.
output: WContRgn:LONG - handle of window's content region.
See WINDOW REGIONS for a definition of what the content region is.

GetUpdateRgn
input: theWindow:LONG - pointcr to window's port.
output: WUpdateRgn:LONG - handle-of window's structure region.
See BeginUpdate for an explaination of how the update region is used.

GetDefProc
input: theWindow:LONG - pointer to window's port.
output: WDefProc:LONG - pointer theWindow's definition procedure.

GetDefProc returns the address of the routine that is called to draw, hit test, and
otherwise define, a window's frame and bebavior.

Page
August 13, 1986 Appendir A | 16

SetDefProc

input: WDefProc:LONG - pointer theWindow's definition procedure.
theWindow:LONG - pointer to window's port.

output: None.
SetDefProc sets the address of the routine that is called to draw, hit test, and otherwise

define, a window's frame and behavior. See DEFINING YOUR OWN WINDOWS for
an explaination of what a definition procedure does.

GetWControls
input: theWindow:LONG - pointer to window's port.
output: ControlList:LONG - address of first control in window's control list, zero = none.
GetWControl returns the address of the first control in the window's control list. The
window's control list is the list of controls created by the application with calls to

NewControl in the Control Manager. The window's control list is separate from the
window frame's control list, explained in GetFControl.

GetFControls
input: theWindow:LONG - pointer to window's port.
output: FControlList:LONG - address of first control in window's frame, zero = none.
GetFControls returns the address of the first control in the window frame's control list.

The window frame's control list is the list of controls created by the window definition
procedure for standard window controls like scroll bars.

GetInfoText
input: theWindow:LONG - pointer to window's port.
output: InfoText:LONG - value that will be passed to the information bar draw routine.
See INFORMATION BAR DRAW ROUTINE.

August 13, 1986 Appendix A

£

SetInfoText

input: InfoText:LONG - value that will be passed to the information bar draw routine.
- theWindow:LONG - pointer to window's port.

output: None.

See INFORMATION BAR DRAW ROUTINE.

GetFullRect
input: theWindow:LONG - pointer to window's port.
output: wFullSize:LONG - pointer to RECT to be used as content's zoomed size.
If the zoom flag is set in the frame flag, see GetWFrame, then wFullSize will equal
theWindow's last size and position. Otherwise, wFullSize will equal the size and position

of theWindow's content region (port) the next time the window is zoomed via a call to
ZoomWindow.

SetFullRect

input: wFullSize:LONG - pointer to RECT to be used as content's zoomed size.
theWindow:LONG - pointer to window's port.

output: None.

If the zoom flag is set in the frame flag, see GetWFrame, then wFullSize will equal
theWindow's last size and position. Otherwise, wFullSize will equal the size and position

of theWindow's content region (port) the next time the window is zoomed via a call to
ZoomWindow.

August 13, 1986 Appendir A | 18

GetCOrgin
inputs: theWindow:LONG - pointer to window's port.
output: LONG - low WORD = y arigin, high WORD = x origin.

These values are used by TaskMaster for setting the origin of the window's port when

handling an update event. The values are also used to compute scroll bars in the window
frame.

SetCOrigin

inputs: xOrigin:WORD - content region's horizontal offset into the data area.
yOrigin:WORD - content region's vertical offset into the data area.
theWindow:LONG - pointer to window's port.

output: None.

See GetCOrigin for a description of origins. Setting these values will not generate any
update event, although the entire content will probably needed to be redrawn.

SetOrgnMask

inputs: originMask:WORD - mask used to put horizontal origin on a grid.
theWindow:LONG - pointer to window's port.

output: None.

SetOrgnMask is useful when you are using a scrollable window in 640 mode with
dithered colors. The video hardware of the Cortland is such that different pixel position
get their color from different color tables. By using the effect it is possible to produce
many more colors than the two bits per pixels might suggest. However, the pixels are then
horizontally position dependent to keep the same color. Scrolling windows can change the
color by putting the pixels in the wrong horizontal position. That's where SetOrgnMask
comes in. OriginMask will be ANDed by TaskMaster with any new horizontal origin that
is created to force the origin to certain boundaries. The defauit is $FFFF, single pixel.

August 13, 1986 Appendix A

Page
19|
e

StartDrawing
input: theWindow:LONG - pointer to window's port.
output: None.
StartDrawing can be used for drawing in a window's content region outside of update
events. StartDrawing will make the window the current port, and set its origin. After
the call, any drawing, outside of update events, will occur inside theWindow's content and
in the proper coordinate system.

Note: StartDrawing is only of use with standard document window's with
frame scroll bars. Otherwise, only a SetPort would be needed to make the

proper port current.

GetDataSize
inputs: theWindow:LONG - pointer to window's port.
output: dataSize:LONG - low WORD is the height, high WORD is the width.

The height and width of the data area is returned. The data area is the total amount of data
that can be viewed in a window, either through resizing or scrolling,

SetDataSize

inputs: dataWidth:WORD - width of data area.
dataHeight:WORD - height of data area.
theWindow:L.ONG - pointer to window's port.

output: None.
See GetDataSize. Setting these values will not change the scroll bars or generate update
events.
Page
August 13, 1986 Appendix A | 20

GetMaxGrow
inputs: theWindow:LONG - pointer to window's port.
output: maxGrow:LONG - low WORD is the max height, high WORD is the max width.

These values are pasted to GrowWindow by TaskMaster. The content region will not
be allowed to be sized to exceed these values.

SetMaxGrow

inputs: maxWidth:WORD - maximum content width allowed when resizing.
maxHeight: WORD - maximum content height allowed when resizing.
theWindow:LONG - pointer to window's port.

output: None.

See GetMaxGrow.

* GetScroll
inputs: theWindow:LONG - pointer to window's port.
output: scrol:LONG - low WORD is the vertical amount, high WORD the horizontal.

Returns the number of pixels that TaskMaster will scroil the content region when the
user selects the arrows on window frame scroll bars,

SetScroll

inputs: hScroll: WORD - number of pixels to scroll horizontally.
vScroll: WORD - number of pixels to scroll vertically.
theWindow:LONG - pointer to window's port.

output: None.

See GetScroll.

Page
August 13, 1986 Appendik A | 21

e

GetPage
inputs: theWindow:LONG - pointer to window's port.
output: page:LONG - low WORD is the vertical amount, high WORD the horizontal.

Returns the number of pixels that TaskMaster will scroll the content region when the
user selects the page regions on window frame scroll bars.

SetPage
inputs: hPage:WORD - number of pixels to page vertically.
vPage:WORD - number of pixels to page horizontally.
theWindow:LONG - pointer to window's port.
output: None.

See GetPage.

GetCDraw
inputs: theWindow:LONG - pointer to window's port.
output: contDraw:LONG - address of routine that is called to draw the content region.
TaskMaster will call this routine when it gets an update event for that window. See
CONTENT DRAW ROUTINE for more infomation about the draw routine,
SetCDraw

inputs: contDraw:LONG - address of routine to draw content region.
theWindow:LONG - pointer to window's port.

output: None.
See GetCDraw.

Page I
August 13, 1986 Appendix A [22|

GetInfoDraw
inputs: theWindow:LONG - pointer to window's port.
output: InfoDraw:LLONG - address of routine that will draw on the infomation bar.
The standard window definition procedure will call this routine whenever the window's

frame needs to be draw, if the window has an infomation bar. See INFORMATION BAR
DRAW ROUTINE for more infomation about the draw routine,

SetInfoDraw

inputs: InfoDraw:LONG - address of routine that will draw on the information bar.
theWindow:LONG - pointer to window's port.

output: None.
See GetInfoDraw.

Page
August 13, 1986 Appendir A | 23
P

Window Shuffling

SelectWindow
input: theWindow:LONG - pointer to window's port.
output: None.

SelectWindow makes theWindow the active window as follows: It unhighlights the
previously active window, brings theWindow in front of all other windows, highlights
theWindow, and generates the appropriate activate events. Call this procedure if you are

not using TaskMaster and there's a mouse-down event in the content region of an
inactive window.

HideWindow
input: theWindow:LONG - pointer to window's port.
ouput: None.
HideWindow makes theWindow invisible. If theWindow is the frontmost window and
there's a window behind it, HideWindow also unhighlights theWindow, brings the

window behind it to the front, highlights that window, and generates appropriate activate
events. If theWindow is already invisible, HideWindow has no no effect.

ShowWindow

inputs: theWindow:LONG - pointer to window's port.

output: None.

Makes theWindow visible and draws it if it was invisible. It does not change the
front-to-back ordering of the windows. Remember that if you previously hid the
frontmost window with HideWindow, HideWindow will have brought the window
behind it to the front; so if you then do a ShowWindow of the window you hid, it will
no longer be frontmost. If theWindow is already visible, ShowWindow has no effect.

August 13, 1986 fippendix A | 24

ShowHide

input: showFlag:WORD - TRUE to show, FALSE to hide.
theWindow:LONG - pointer to the window's port.
ouput: None.

If showFlag is TRUE, ShowHide makes theWindow visible if it's not already visible
and has no efect if it is already visible. If showFlag is FALSE, ShowHide makes
theWindow invisible if it's not already invisible and has no effect if it is already invisible.
Unlike HideWindow and ShowWindow, ShowHide never changes the highlighting
or front-to-back ordering of windows or generates activate events.

Warning: Use this procedure carefully, and only in special circumstances where
you need more control than allowed by ShowWindow and
HideWindow. You could end up with an active window that isn't

highlighted.

BringToFront
input: theWindow:LONG - pointer to window's port.
output: N_one.

BringToFront brings theWindow to the front of all other windows and redraws the
windows as necessary, but does not do any highlighting or unhighlighting. Normally you
won't have to call this procedure, since you should call SelectWindow to make a
window active, and SelectWindow takes care of bringing the window to the front. If
you do call BringToFront, however, remember to call HiliteWindow to make the
necessary highlighting changes.

SendBehind

inputs: behindWindow:LLONG - pointer to window record or -2 to send to bottomn.
theWindow:LONG - pointer to window's port.

. output: None.

SendBehind sends theWindow behind behindWindow, redrawing any exposed
windows. If behindWindow is -2 ($FFFFFFFE), it sends theWindow behind all other
windows. If theWindow is the active window, it unhighlights theWindow, highlights the
new active window, and generates the appropriate activate events.

Page
August 13, 1986 fippendig A |2

p————

(&1}

Window Drawing
HiliteWindow

fHilite:WORD - TRUE to highlight window frame, FALSE to unhighlight.
theWindow:LONG - pointer to window's port.

output: None.

If fHilite is TRUE, this procedure highlights theWindow. If fHilite is FALSE,
HiliteWindow unhighlights theWindow. The exact way a window is highlighted and
unhighlighted depends on its window definition procedure.

Normally you won't have to call this procedure, since you should call SelectWindow to

make a window active, and SelectWindow takes care of the necessary highlighting
changes. Highlighting a window that isn't the active window should never be done.

Refresh

input: None.
output: None.

Redraws the entire desktop and all the windows. Useful when the entire screen was
clobblered by some application specific, non-Window Manager, operation.

=
August 13, 1986 Appendix A | 26

[

User Interaction

FindWindow

inputs: whichWindow:LONG - address of where to store pointer of window.
intX - x coordinate to check (global).
pointY - y coordinate to check (global).

outputs: Location: WORD:

When a mouse-down event occurs, the application should, if not using TaskMaster, call
FindWindow with pointY,pointX equal to the point where the mouse button was pressed
(in global coordinates, as stored in the where field of the event record). FindWindow
tells which part of which window, if any, the mouse button was pressed in. If it was
pressed in a window, theWindow parameter is set to the window port pointer; otherwise,
it's set to zero. The WORD returned by FindWindow is one of the following predefined

constants:
wNoHit = $0000
winDesk = $0010

winMenuBar = $0011
wInContent = $0013

winDrag = $0014
winGrow = $0015
winGoAway =3$0016
winZoom = $0017
wIininfo = $0018
winFrame = $001B

winSysWindow = $8xxx

August 13, 1986

Not on the window at all.

On the desktop area.

On the system menu bar.

In window's content region.

In window's drag (title bar) region.

In window's grow (size box) region.

In window's go-away (close box) region.
In window's zoom (zoom box) region.

In window's information bar.

In window, but not any of the above areas.
In a system window, lower part is one of the above.

Page
Appendix A [27|

DragWindow

inputs: grid:WORD - drag resolution, zero for default.
startX - starting x coordinate of cursor (global).
startY - starting y coordinate of cursor (global).
grace:WORD - grace buffer around Bounds. ‘
BoundsRect:LONG - pointer to RECT to use as cursor boundary, zero for default.
theWindow:LONG - pointer to window's port.

output: None.

When there is a mouse-down event in the drag region of theWindow, and TaskMaster is
not being used, the application should call DragWindow with startY,startX equal to the
point where the mouse button was pressed (in global coordinates, as stored in the where
field of the event record). DragWindow pulls a dotted outline of theWindow around,
following the movements of the mouse until the button is released. When the mouse
button is released, DragWindow call MoveWindow to move theWindow to the
location to which it was dragged. The window will be dragged and moved in its current

plane.
grid

Allowed horizontal resolution movement. If grid is one, the window can
be positioned at any horizontal position. If grid is two, the window can
only be moved a multiple of 2 pixels horizontally. If grid is four, the
window can only be moved a multiple of 4 pixels horizontally. The only
allowed values are; 1, 2, 4, 8, 16, 32, 64, 128... The grid parameter is
provided to speed up window moves by eliminating the need for bit
shifting, if the grid value is the correct value. If gnid is passed as zero, a
gz%mlt value will be used. The defaults are; 4 for 320 mode and 8 for
mode.

startY,startX The point where the mouse button was pressed, in global coordinates, as

BoundsRect

August 13, 1986

stored in the where field of the event record. This point is used with the
tracked cursor position to compute the movement delta.

Grace is the distance, in pixels, that you will allow the cursor to move -
away from BoundsRect before the dragged outline should be snapped
back to its starting position. TaskMaster uses 8 for this value. The
BoundsRect is expanded by the value of grace to compute the slopRect
passed to DragRect. See DragRect for more information.

Pointer to a RECT, in global coordinates, that is passed to DragRect as
the limitRect parameter. See DragRect for more information. If zero is
passed for the pointer, the bounds of the desktop, less 4 all around, will
be used.

Appendix A |28

GrowWindow

inputs: minWidth: WORD - minimum width of content region to allow.
minHeight: WORD - minimum height of content region to allow.
startX - starting x coordinate of cursor (global).
startY - starting y coordinate of cursor (global).
theWindow:LONG - pointer to window's port.

output: newSize:LONG - high WORD = new height, low WORD = new width.

When there's a mouse-down event in the grow region of theWindow, the application
should call GrowWindow with startY,startX equal to the point where the mouse button
was pressed (in global coordinates, as stored in the where field of the event record).
GrowWindow pulls a grow image of the window around, following the movements of
the mouse until the button is released. The grow image for a document window is a dotted
outline of the entire window and also the lines delimiting the title bar, size box, and scroll
bar areas. The diagram below illustrates this for a document window containing both
scroll bars. In general, the grow image is defined in the window definition function and is
whatever is appropriate to show that the window's size will change.

O)

...........

. Size returned in
high-order WORD.

_/

Z o

v

Size returned in low-order WORD.

The application should subsequently call SizeWindow to change the portRect of the
window's grafPort to the new one outlined by the grow image. The sizeRect parameter
specifies limits, in pixels, on the vertical and horizontal measurements of what will be the
new portRect. SizeRect.top is the minimum vertical measurement, sizeRect.left is the
minimum horizontal measurement, sizeRect.bottom is the maximum vertical measurement,
and sizeRectright is the maximum horizontal measurement.

GrowWindow returns the actual size for the new portRect as outlined by the grow image
when the mouse button is released. The high-order WORD of the LONG is the vertical

[Page |
August 13, 1986 Appendix A | 29

measurement in pixels and the low-order WORD is the horizontal measurement. A return
value of zero indicates that the size is the same as that of the current portRect.

TrackGoAway

inputs: startX - starting x coordinate of cursor (global).
startY - starting y coordinate of cursor (global).
theWindow:LONG - pointer to window's port.

outpﬁt: GoAway:WORD - TRUE if go away selected when button released, else FALSE.

When there's a mouse-down event in the go-away region of theWindow, and the
application is not using TaskMaster, the application should call TrackGoAway with

" thePT equal to the point where the mouse button was pressed (in global coordinates, as
stored in the where field of the event record). TrackGoAway keeps control until the
mouse button is released, highlighting the go-away region as long as the mouse location
remains inside it, and unhighlighting it when the mouse moves outside it. The exact way a
window's go-away region is highlighted depends on its window definition procedure. If
the mouse button is released inside the go-away region, TrackGoAway unhighlights the
go-away region and returns TRUE (the application should then eventually perform a
CloseWindow). If the mouse button is released outside the go-away region,
TrackGoAway returns FALSE (in which case the application should do nothing). -

TrackZoom

inputs: startX - starting x coordinate of cursor (global).
startY - starting y coordinate of cursor (global).
theWindow:LONG - pointer to window's port.

output: Zoom:WORD - TRUE if zoom region was selected, else FALSE.

When there's a mouse-down event in the zoom region of theWindow, and the application
is not using TaskMaster, the application should call TrackZoom with thePT equal to
the point where the mouse button was pressed (in global coordinates, as stored in the
where field of the event record). TrackZoom keeps control until the mouse button is
released, highlighting the zoom region as long as the mouse location remains inside it, and
unhighlighting it when the mouse moves outside it. The exact way a window's zoom
region is highlighted depends on its window definition procedure. If the mouse button is
released inside the zoom region, TrackZoom unhighlights the zoom region and returns
TRUE (the application should then eventually perform a ZoomWindow). If the mouse
button is released outside the zoom region, TrackZoom returns FALSE (in which case
the application should do nothing). '

August 13, 1986 Appendix A || 30

TaskMaster

input: EventMask:WORD - used to call GetNextEvent.
TaskRec:LLONG - pointer to an extended event record to use.

output: TaskCode:WORD - task code, zero equal no further task to perform.
Possible eror: 3 = bits 12-15 are not clear in TaskMask field of TaskRec.
See USING TASKMASTER for more information.

TaskMaster uses TaskRec and EventMask to pass to GetNextEvent. An outline of
TaskMaster follows:

Call SystemTask for possible desk accessories.
Call GetNextEvent with a TaskRec and EventMask.

"If GetNextEvent returns 'no event' TaskMaster will exit and return inNull.
The message field of the TaskRec is duplicated into the TaskData field.

If event code is key down event:
If TaskMask bit #0 = Q:
‘ TaskMaster exits and returns i
Call MenuKey for the system menu bar with the key from TaskRec.
If MenuKey returns 'no selection made' TaskMaster exits and returns inKey.
If TaskMask bit #4 = 0:
TaskMaster exits and returns winMenuBar.
If the item selected has an ID number greater than 255:
TaskMaster exits and returns winMenuBar.
Else the item belongs to a desk accessory and:
Call OpenNDA to open the desk accessory selected. .
Call HiliteMenu to unhighlight the selected menu.
TaskMaster exits and returns inNull.

If event code is update event:

If TaskMask bit #1 = 0:
TaskMaster exits and returns inUpdate.

If the window with the update has an update draw routine (see NewWindow):
Switch to window's port.
Window's origin is set according to the origin values in its record.
The window' s updatc draw routine is called (routine in application).
Window's origin is returned to zero,zero.
The previous port is restored.
TaskMaster exits and returns inNull.

Else TaskMaster is unable to process the event:
TaskMaster exits and returns inUpdate.

August 13, 1986 Appendix A | 31

If event code is button down event:
If TaskMask bit #2 = (:
TaskMaster exits and returns inButtDwn,
Call FindWindow which place any found window pointer in the TaskData field.

If FindWindow returns winMenuBar:

If TaskMask bit #3 = 0:
Low-order WORD of TaskData field in TaskRec = zero.
TaskMaster exits and returns winMenuBar.

Call MenuSelect.

If MenuSelect returns ‘'no sclccnon made":
TaskMaster exits and returns i

Else if the item selected ID numbcrgxmtcrﬂxan 255 OR TaskMask bit #4 = 0:
Low-order WORD of TaskData field in TaskRec = selected item's ID.
High-order WORD of TaskData field in TaskRec = selected menu's ID.
TaskMaster exits and returns winMenuBar.

Else the item belongs to a desk accessory and:
Call OpenNDA to open the desk accessory selected.
Call HiliteMenu to unhighlight the selected menu.
TaskMaster exits and returns inNull.

Else if FindWindow returns a value that is negative:
If TaskMask bit #5 = 0:
TaskData = window pomtcr returned from FindWindow.
TaskMaster exits and returns value returned by FindWindow.
FindWindow found something in a system window.
Call SystemClick with the window and result from FindWindow.
NOTE: This is as far as system windows can go in TaskMaster.
TaskMaster exits and returns inNull.

Else if FindWindow returns winDrag:

If TaskMask bit #6 = 0:
TaskData = window pointer returned from FindWindow.
TaskMaster exits and returns winDrag.

If the command key is not down and the window is not active:
Call SelectWindow to make the window active.

Call DragWindow.

TaskMaster exits and returns inNull.

Else if FindWindow returns winContent:

If TaskMask bit #7 = 0:
TaskData = window pointer returned from FindWindow.
TaskMaster exits and returns winContent.

If the window is not active:
Call SelectWindow to make the window active.

l‘_JscTaskMastex' exits and returns inNull,
TaskData = window pointer returned from FindWindow.
TaskMaster exits and returns winContent,

August 13, 1986 Appendir A | 32

Else if FindWindow returns winGoAway:

If TaskMask bit #8 = 0:
TaskData = window pointer returned from FindWindow.
TaskMaster exits and returns winGoAway.

Call TrackGoAway.

If TrackGoAway returns TRUE:
TaskData = window pointer returned from FindWindow.
TaskMaster exits and returns winGoAway.

TaskMaster exits and returns inNull.

Else if FindWindow returns wInZoom

If TaskMask bit #9 = 0:
TaskData = window pointer returned from FindWindow.
TaskMaster exits and returns winZoom.

Call TrackZoom.

If TrackZocom returns TRUE:
Call ZoomWindow.

TaskMaster exits and returns inNull.

Else if FindWindow returns winGrow:
If TaskMask bit #10 =0:
TaskData = window pointer returned from FindWindow.
TaskMaster exits and returns winGrow.
Call GrowWindow.
Call SizeWindow with results from GrowWindow
TaskMaster exits and returns inNull.

- Else if FindWindow returns winFrame:

If TaskMask bit #11 = 0:

TaskData = window pointer returned from FindWindow.
TaskMaster exits and returns winFrame.

If the window is not active:

Call SelectWindow to make the window active.
TaskMaster exits and returns inNull.

Else if button down event occurred in a window frame scroll bars:
TaskMaster does some unorthodox window and port manipulation.
Calls TrackControl with an action procedure within TaskMaster.
NOTE: The window owner of frame scroll bar is the Window Manager's.
The action procedure in TrackMaster performs scrolling and updates.

l_:_‘lse'l’askMaster exits and retuns inNull.
TaskMaster exits and returns winFrame.

Else:
TaskData = window pointer returned from FindWindow.
TaskMaster exits and returns value returned from FindWindow.

Else:
TaskMaster exits and returns event code.

August 13, 1986 Appendix A

2

MoveWindow

inputs: newX - new x coordinate of content region's upper left corner (global).
newY - new y coordinate of content region's upper left corner (global).
theWindow:LONG - pointer to window's port.

output: None.

MoveWindow moves theWindow to another part of the screen, without affecting its size.
The top left comer of the window's portRect is moved to the screen point newY ,newX.
The local coordinates of the window's top left corner remain the same. If the front
parameter is TRUE and theWindow, MoveWindow makes theWindow the active
window by calling SelectWindow.

SizeWindow

inputs: newWidth:WORD - new width of window.
newHeight: WORD - new height of window:.
theWindow:LONG - pointer to window's port.

output: None.

SizeWindow enlarges or shrinks the portRect of theWindow's grafPort to the width and
height specified by newWidth and newHeight, or does nothing if newWidth and
newHeight are zero. The window's position on the screen does not change. The new
window frame is drawn; if the width of a document window changes, the title is again
centered in the title bar, or is truncated if it no longer fits.

|Page
August 13, 1986 Appendir A || 34

P

ZoomWindow
input: theWindow:LONG - pointer to window's port.
output: None.

ZoomWindow will flip the size and position of theWindow between its current size and
position, to its maximum size, passed to NewWindow. If called again, before
theWindow is moved or resized, theWindow will be resize and positioned to the size and
position before the last ZoomWindow was performed. When a SizeWindow or |
MoveWindow is performed, while a window is zoomed, the last size becomes the new -
size and position.

|

Y|
wll®
|£82) Bid

August 13, 1986 Appendix A || 35|

InvalRect
input: badRect:LONG - pointer to RECT to be added to the update region.
output: None.

InvalRect accumulates the given rectangle into the update region of the window whose
grafPort is the current port. This tells the Window Manager that the rectangle has changed
and must be updated. The rectangle is given in local coordinates and is clipped to the
window's content region.

For example, this procedure is useful when you're calling SizeWindow for a document
vnndowmatconmnsasxzeboxorscmllbarsthatarenotmsxdc the window's frame,
Suppose you're going to call SizeWindow with fUpdate=TRUE. If the window is
enlarged, you'll want not only the newly created part of the content region to be updated,
but also the two rectangular areas containing the (formcr) size box and scroll bars; before
calling SizeWindow, you can call InvalRect twice to accumulate those areas into the
update region. In case the window is made smaller, you'll want the new size box and
scroll bar areas to be updated, and so can similarly call InvalRect for those areas after
calling SizeWindow. As another example, suppose your application scrolls up text in a
document window and wants to show new text added at the bottom of the window. You
<.:zo.1:l cgs«:: altgie added text to be redrawn by accurnulating that area into the update region
with InvalRect.

InvaiRgn
input: badRgn:LLONG - handle of region to be added to the update region.
output: None.

InvalRgn is the same as InvalRect but for a region that has changed rather than a
rectangle,

I
g

August 13, 1986 Appendix A

I

ValidRect
input: goodRect:LONG - pointer to a RECT to be removed from the update region.
output: None.

ValidRect removes goodRect from the update region of the window whose grafPort is
the current port. This tells the Window Manager that the application has already drawn the
rectangle and to cancel any updates accurnulated for that area. The rectangle is clipped to
the window's content region and is given in local coordinates. Using ValidRect results
in better performance and less redundant redrawing in the window.

For example, suppose you've called SizeWindow with fUpdate=TRUE for a document
window that contains a size box or scroll bars not part of the window frame. Depending
on the dimensions of the newly sized window, the new size box and scroll bar areas may
or may not have been accumulated into the window's update region. After calling
SizeWindow, you can redraw the size box or scroll bars immediately and then call
ValidRect for the areas they occupy in case they were in fact accumulated into the update
region; this will avoid redundant drawing.

ValidRgn
input: goodRgn:LONG - handle of a region to be subtracted from the update region.
output: None.

Validlilgn is the same as ValidRect but for a region that has been drawn rather than a
_rectangle.

BeginUpdate
input: theWindow:LONG - pointer to window's port.
output: None.

Call BeginUpdate when an update event occurs for theWindow. BeginUpdate
replaces the visRgn of the window's grafPort with the intersection of the visRgn and the
update region and then sets the window's update region to an empty region. You would
then usually draw the entire content region, though it suffices to draw only the visRgn; in
either case, only the parts of the window that require updating will actually be drawn on
the screen. Every call to BeginUpdate must be balanced by a call to EndUpdate. (See
"HOW A WINDOW IS DRAWN".) BeginUpdate calls can be nested (that is
BeginUpdate may be called several times, for several different windows, before
EndUpdate is called for each window).

August 13, 1986 Appendix A

EndUpdate

input: theWindow:LLONG - pointer to window's port.
output: None.

Call EndUpdate to restore the normal visRgn of theWindow's grafPort, which was
changed by BeginUpdate as described above.

August 13, 1986

fppendix R |38

MI

Miscellaneous Routines

PinRect
inputs: theRect:RECT - boundary of given point.
theXPt:WORD - the x coordinate of the point to be pinned.
theXPt: WORD - the x coordinate of the point to be pinned.
output: pinnedPt:LONG - point inside theRect nearest to thePt.
PinRect "pins" thePt inside theRect: If thePt is inside theRect, thePt is returned;
otherwise, the point associated with the nearest pixel within theRect is retumned. (The
high-order WORD of the pinnedPt is the vertical coordinate; the low-order WORD is the
horizontal coordinate.) More precisely, for theRect (left,top) (right,bottom) and thePt
(h,v), PinRect does the following:
- If h < left, it returns left.
- If v < top, it returns top.
- If h > right, it returns right-1.
- If v > bottom, it returns bottom--1.

Note: The 1 is subtracted when thePt is below or to the right of theRect so that
a pixel drawn at that point will lie within theRect.

CheckUpdate
input: theEvent:LONG - pointer to an even record.
output: Flag:WORD - TRUE if update event found, else FALSE.

CheckUpdate is called by the Event Manager. From the top to the bottom in the window
list, it looks for a visible window that needs updating (that is, whose update region is not
empty). If a window with something in its update region is found, an update event for that
window is stored in theEevnt and returns TRUE. If it doesn't find such a window, it
returns FALSE.

August 13, 1986 Appendir A || 39

|

DragRect (not completed)

input: theRgn:LONG - handle of region to be dragged.
startX:WORD - starting x coordinate of cursor (global).
startY:WORD - starting y coordinate of cursor (global).
limitRect:LONG - pointer to bounds RECT for dragging.
slopRect:LONG - pointer to RECT which is maximum cursor movement area.
axis:WORD - movement contraint.
actionProc:LONG - address of routine to call while dragging.

output: deltaDrag:LLONG - high WORD is vertical delta, low WORD is horizontal delta.

Called when the mouse button is down inside theRgn, DragGrayRgn drags a dotted
(gray) outline of the region's bounds, which should be in global coordinates, following the
movements of the mouse until the button is released. DragWindow calls this function
before actually moving the window. You can call it yourself to pull around the outline of
any region, and then use the information it returns to determine where to move the region.
The startY,startX parameters are assumed to be the point where the mouse button was
originally pressed, in the global coordinates.

LimitRect and slopRect are also in global coordinates. To explain these parameters, the
concept of "offset point” must be introduced: This is initially the point whose vertical and
horizontal offsets from the top left comer of the region's enclosing rectangle are the same
as those of startY,startX. The offset point follows the mouse location, except that
DragGrayRgn will never move the offset point outside limitRect; this limits the travel of
the region's outline (but not the movements of the mouse). SlopRect, which should
completely enclose limitRect, allows the user some "slop" in moving the mouse.
DragGrayRgn's behavior while tracking the mouse depends on the location of the mouse
with respect to these two rectangles:

- When the mouse is inside limitRect, the region's outline follows it normally. If the
mouse button is released there, the region should be moved to the mouse location.

- When the mouse is outside limitRect but inside slopRect, DragGrayRgn "pins" the,
offset point to the edge of limitRect. If the mouse button is released there, the region
should be moved to this pinned location.

- When the mouse is outside slopRect, the outline disappears from the screen, but
DragGrayRgn continues to follow the mouse; if it moves back into slopRect, the
outline reappears. If the mouse button is released outside slopRect, the region
should not be moved from its original position.

Page
August 13, 1986 Appendix R || 40
ey

The diagrams below illustrates what happens when the mouse is moved outside limitRect
but inside slopRect, and outside the slopRect.

s limitRect
Offset Point %
Wp—wuee glopRect
Region's Bounds
v
e

Outside limitRect, Outside both the limitRect

but inside siopRect. and the slopRect.

The top diagram shows the starting position. As the cursor is moved, an outline of the
window is dragged with it. The outline will seem to be glued to the cursor at the offset
point. However, if the cursor moves outside of the limitRect, the outline will be left ‘
behind, as shown in the lower left diagram. As the cursor is moved outside of the
limitRect, but within the slopRect, the outline will get as close to the cursor as possible
without letting the offset point leave the limitRect. And finally, if the cursor moves outside
the slopRect, the outline will snap back to its starting position. If the cursor moves back
into the slopRect, the outline will snap out to get as close as it can.

If the mouse button is released within slopRect, the high-order word of the value returned
by DragGrayRgn contains the vertical coordinate of the ending mouse location minus
that of startY,startX and the low-order word contains the difference between the horizontal
coordinates. If the mouse button is released outside slopRect, both words are zero.

Pege]
August 13, 1986 Appendix ﬂE 41

The axis parameter allows you to constrain the region's motion to only one axis. It has
p y

one of the following values:
CONST noConstraint = 0 {no constraint}
hAxisOnly = 1 {horizontal axis only)
vAxisOnly - 2 {vertical axis only}

If an axis constraint is in effect, the outline will follow the mouse's movements along the
specified axis only, ignoring motion along the other axis.

The actionProc parameter is a pointer to a procedure that defines some action to be
performed repeatedly for as long as the user holds down the mouse button; the procedure
should has no parameters. If actionProc is NIL, DragGrayRgn simply retains control
until the mouse button is released.

o]
plE
e KD

August 13, 1986 Appendix A

eyl

Constants

F_HILITED $0001 Window is highlighted.
F_ZO00MED 80002 Window is zoomed.

F_ALLOCATED $0004 Window record was allocated.
F_CTRL_TIE $0008 Window state tied to controls.
F_INFO $0010 Window has an information bar.
F_VIS $0020 Window is visible.

F_MOVE $0080 Window is movable.

F_200M $0100 Window is zoomable.

F_GROW $0400 Window has grow box.

F_BSCROLL 50800 Window has horizontal scroll bar.
F_RSCROLL $1000 Window has vertical scroll bar.
F_CLOSE $4000 Window has a close box.
F_TITLE $8000 Window has a title bar.
WIND_SIZE 325 Size of WindRec.

wDraw 0 Draw window frame command.
wHit 1 Hit test command.

wCalcRgns 2 Compute regions command.

wNew 3 Initialization command.
wDispose 4 Dispose command.

wNoHit 0

winDesk 16

wIinMenuBar 17

wInSysWindow 18

wInContent 19

wInDrag 20

winGrow 21

winGoAway 22

wInZoom 23

wInInfo 24

wInFrame 27

BOTTOM_MOST 0 To make window bottom.
TOP_MOST =1 To make window top.

TO_BOTTOM =2 To send window to bottom.
noConstraint No constraint on movement.

0
hAxisOnly 1 Horizontal axis only.
vAxisOnly 2 Vertical axis only.

August 13, 1986 Appendix A || 43

e

Data Tvpes

what
message
when
where
modifiers
TaskData
TaskMask

wnext
wport
wstrucRgn
wcontRgn
wupdateRgn
wcontrol
wFrameCtrl
wframe

FrameColor
TitleColor
TBarColor
GrowColor
InfoColox

param_length
wF rame
wlitle
wRefCon
wZoom
wColor
wY¥Origin
wXOrigin
wDataH
wDhataWw
wMaxH

wMaxW
wScrollVer
wScrollHoxr
wPageVer
wPageHor
wInfoRefCon
wFrameDefProc
winfoDefProc
wContDefProc
wPosition
wPlane
wStorage

August 13, 1986

Integer
LonglInt
LongInt
LonglInt
Integer
LongInt
Integer

Pointer
Port
Handle
Handle
Handle
Handle
Handle
Integer

Integer
Integer
Integer
Integer
Integer

Integer
Integexr
Pointer
LongInt
RECT

Pointer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
LongInt
Pointer
Pointer
Pointer
RECT

LongInt
Pointer

Same as event
Same as event
Same as event
Same as event
Same as event

record.
record.
record.
record.
record.

TaskMaster return value,.
TaskMaster feature mask.

Pointer to next window Record.

Window's port.

Region of frame plus content.

Content region.

Update region.

Window's control list.
Window frame's control list.

Bit flags.

Color of window frame.
Color of title and bar.

Color/pattern
Color of grow

of title bar.
box.

Color of information bar.

Appendix A

Page

N
N

Error Codes

ParamlLenErr 1 NewWindow First word of parameter list is the wrong size.
AllocateErr 2 NewWindow Unabile to allocate window record.
TaskMaskErr 3 TaskMaster Bits 12-15 are not clear in TaskMask field of TaskRec.

August 13, 1986 Appendix A | 45

	v5_03_01
	v5_03_02
	v5_03_03

