
"••.,.-7'.

C©rt~~f1U~ W~f1U~©W M~f1U~@~rr

A[p)[p)~f1U~~~ A

W~f1U~©W C~~~~

wntnow MANAGELBOUIINES

Initialization andIerminatiQn

WindBootInit (not completed)

input: None.

output: None.

Called only by SetTSPtr.

WindStartup

input: uscrID:WORD • uscr's ID that Wmdow Manager can usc.

output: None

WindStartup initializes the Window Manager. Calls the Event Manager for zero page to
USCt clears the window list, and sets the default desktop pattern and color. It creates the
Window Manager port; you can get a pointer to this port with the GetWMgrPort
procedure. The desktop is the entire screen until the Menu Manager, if used, subtracts any
area needed for a system menu bar. Call this procedure once before all other Window
Manager routines. WindStartup does not draw the desktopt see Refresh.

WmdShutDown (not complded)

input: None.

output: None.

Frees any memory allocated by the Wmdow Manager.

August 13, 1986 AppendiH A~~

..

\ "......J

WindVersion

input: None.

output: wVersion:WORD - Wmdow Manager's version number.

WindReset (not completed)

input: None.

output: None.

WindStatus (not completed)

input: None.

output: status:WORD -

WNewRes

input: None.

output: None.

Called after the screen resolution has been changed. The Wmdow Manager will close its
port and open a new one (in the new resolution). Then the screen is not redrawn by the
Window Manager in the new resolution. Call Refresh when all resolution changes are
done, such as desktop pattern and window colors.

August 13, 1986
y~ell

AppendiH R OJ

Desktop

inputs: Operation:WORD - operation to perform!
Param:LONG - parameter needed for operation.

output: RctParam:LONG - possible return parameter.

Possible Operation numbers:

FromDesk III: 0 Subtract region from desktop region.
ToDesk III: 1 Add region to desktop region.
GetDesktop III: 2 Return handle of desktop region.
SetDesktop III: 3 Set handle of dektop region.
GetDeskPat III: 4 Return current desktop pattern.
SetDeskPat lIIll S Set new desktop pattern.
GetV1SDesktop = 6 Return desktop, less any windows.

Expected inputs and outputs:

Operation
Param
RetParam

Operation
Param
RetParam

Operation
Param .
RetParam

August 13, 1986

.PromDesk
= Handle of region to be subtracted from desktop region.
:lIB Not used (not even necessary to push room on stack).

=ToDesk
= Handle of region to be added to desktop region.
=Not used (not even necessary to push room on stack).

=GetDesktop
=Not used.
=Handle of desktop region.

=SetDesktop
=Handle of new desktop region.
=Same as Param.

yaget
RppendiH R [3]

Operation
Param
R.etParam

== GetDeskPat
==Not used.
== Current desktop pattern where:

$OOxxxxxx Where xxxxxx is the address of your routine that will
be called to draw the desktop. There are no inputs or
outputs,the cmrent port will be the Wmdow
Manager's, and the clipping region will be set to the
area needing to be drawn. Your routine should exit via
aRTL.

Warning: The cmrent direct page and data bank is not
defined on entry to your routine. If you
need to reference you own direct page you
will have to save the original and switch to
yours. The same is true with the data
bank, except here you can use long
addressing. When you exit your routine
the direct page and data bank must be the
same as it was on entry.

$8Oxxxxxx Where xxxxxx is the address of the pattern to be used
for the desktop.

$4OOOxxxx The default desktop pattern where xxxx is:
00xx == solid desktop pattern.
Olxx == dithered desktop pattern.
02xx == horizontal stripped desktop pattern.
xxNx =: N is the pattern's foreground color.
xxxN == N is the pattern's background color.

Operation == SetDeskPat
Param =: New desktop pattern (see GetDeskPat for definition).
R.etParam == Not used (not even necessary to push room on stack).

Desktop is redrawn with new pattern.

Operation ~GetVisDesktop
Param =: Handle of region that will be set to the visible desktop.
R.etParam =: Not used (not even necessary to push room on stack).

The desktop region is copied into the given region, and all visible windows are
subtracted from it.

......1 August 13, 1986 t~·tRppendiH R UJ

NewWindow

input: paramListLONG • pointer to a parameter list.

output: theWmdow:LONG· pointer to window port, zero if error.

Possible errors:
1=incorrect parameter list length.
2 =unable to locate memory for window record.

NewWindow creates a window as specified by its parameters, adds it to the window list,
and returns a pointer to the new window's port. It allocates space for the structure and
content regions of the window and asks the window definition function to calculate those
regions.

The parameter list is:

param_Iength
wFrame
wTItle
wRefCon
wZoom
wColor
wYOrigin
wXOrigin
wDataH
wDataW
wMaxH
wMaxW
wScrollVer
wScrollHor
wPageVer
wPageHor
wlnfoRefCon
wFrameDefProc
wlnfoDefProc
wContDefProc
wPosition
wPlane
wStorage

WORD
WORD
LONG
LONG
REcr
LONG
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
WORD
LONG
LONG
LONG
LONG
REcr
LONG
LONG

Number of bytes in parameter table.
Bit vector that descibes the window.
Pointer to window's title.
Reserved for application's use only.
Size and position ofcontent when zoomed.
Pointer to window's color table.
Content's vertical origin.
Content's horizontal origin.
Height of entire document.
Width of entire document.
Maximum. height of content allowed by GrowWindow.
Maximum. width of content allowed by GrowWindow.
Number of pixels to scroll content vertically for arrows.
Number of pixels to scroll content horizontally for arrows.
Number of pixels to scroll content vertically for page.
Number of pixels to scroll content horizontally for page.
Value passed to information bar draw routine.
Address of standard window definition procedure.
Address of routine that draw's the information bar interior.
Address of routine that draw's the content region interior.
Window's starting position and size.
Window's starting plane.
Address of memory to use for window record.

Each parameter is covered in IDOl'e detail below.

August 13, 1986 t~ellAppendiH R []']

11511~1311~1111~91817161514131~1Iol

L:

wFrame

Total number of bytes in parameter table, including param_Iength. Use labels
in code to come up with the value (that's why I don't give it here). The value
is used mainly for error checking. Most errors with NewWindow occur
because of typing errors when creating the parameter list. The problem can be
compounded further by the assembler or complier skipping field because of
typing errors but not generating an error.

Wmdow frame type:

F_HILI1'ED
F..;,ZOOMED
F_AL.I.OCATED
F_CTRL_TlE
FJNFO
F_VIS
F_acoNTENT
F_MOVE
F_ZOOM
Renrved
F_GROW
F_BSCRl
F_RSCRl
Reserved
F_CLOSE
F_Tm.E

F..,AlLOCATED

August 13, 1986

1 == window is highlited, 0 ::: not highlighted. This flag
will be set by NewWindow, so whatever you pass will
be ignored.

1 == window is currently in a zoomed state, 0 == window is
not zoomed. This flag is not used is F_ZOOM is zero. .

1 :'III window record was allocated by the NewWindow, 0
== window recOId was not allocated by the NewWindow.
If this flag is set when OoseWindow is called, the
window recOId will be freed.

1 == the state of the window's controls is not tied to the
window's state. 0 == when the window is inactive
(unhighlighted), its controls are also considered inactive

.. without regard for the active state of the controL

1 == window has an information bar as part of the
window's frame, 0 == no information bar.

1 == window is visible, 0 == window is invisible.

rege!AppendiH A IT]

1 == if there is a button down event inside an inactive
window's content, the window will be selected and a
wInContent message will be returned by TaskMaster.
This feature is use ifyou would like to act on any button
down in the content, even if it was also used to activate the
window.

If this bit is zero TaskMaster will act in the same way,
except it will return an inNull message. This feature is use
ifyou would like to button down in an inactive content to
activate the window and then not use the same button
down event again.

1 == window can be dragged by its title bar, 0 == the
window's title bar is not considered a drag region and can
not, therefore, be moved. .

1 == window has a zoom box in its title bar, 0 =window
does not have a zoom box in its title bar. The window
must have a title bar in order to have a zoom box.

1 == window has a grow box, 0 == window does not have a
grow box.

1 • window has a bottom (horizontal) scroll bar as pan of
the window frame, 0 == no bottom scroll bar.

1 =window has a right (vertical) scroll bar as part of the
window frame, 0 == no right sCIoll bar.

1 =window has a close box in its title bar, 0 == window
does not have a close box in its title bar. The window
must have a title bar in order to have a close box.

1=window has a title bar as part of the window's frame;
o== no title bar.

wTItle

wRefCon

Warning: IfF_GROW is set, F_BSCRL or F_RSCRL must also be set.
That is to say, to have a window frame grow box, you must have at
least one window frame scroll bar.

Pointer to title of window. Ifwindow does not have a title bar this value can
be zero. The first byte in the string should be the length of the string,
follOWed byte the ASCII characters of the title. .

Application defined reference value. This value is reserved for the
application's use only, and can be any value desired.

August 13, 1986 mAppendiH A IT]

wZoom

wColor

wYOrigin

wXOrigin

wDataH

wDaraW

wMaxH

wMJJXW

wScrollVer

wScrollHor

wPageVer

wPageHor

Rectangle of the content region when the window is zoomed. If the bottom
side of the rectangle is zero, a default RECI' will be used. The default will be
set so that the window will use the entire screen.

Pointer to window's color table. This is the color table used to draw the
window's frame. Zero to use the default color table.

Vertical offset of content region. This value is the vertical value passed to
SetOrgin when TaskMaster is used to draw inside the content region. It is
also used to compute the right (or vertical) scroll bar. Zero if not using
window frame scroll bars.

Horizontal offset ofcontent region. This value is the horizontal value passed
to SetOrgin when TaskMaster is used to draw inside the content region. It
is also used to compute the bottom (or horizontal) scroll bar. Zero ifnot using
window frame scroll bars.

Height of entire data area. Used to compute the right scroll bar. Zero if not
using window frame scroll bars.

Width ofentire data area. Used to compute the bottom scroll bar. Zero ifnot
using window frame scroll bars.

Maximum content height allowed when growing the window. This value is
passed to GrowWindow when called by TaskMaster. If set to zero, a
default value will be used, so that the window will take up the height of the
desktop. Zero if not using window frame grow box.

Maximum content width allowed when growing the window. This value is
passed to GrowWindow when called by TaskMaster. If set to zero, a
default value will be used, so that the window will take up the width of the
desktop. Zero if not using window frame grow box.

Number of pixels to scroll the content region when the up or down arrows are
selected in the right scroll bar. Used only if the scroll bar is part of the frame
and TaskMaster is used. Zero ifnot using window frame scroll bars.

Number ofpixels to scroll the content region when the left or right arrows are
selected in the bottom scroll bar. Used only if the scroll bar is part of the
frame and TaskMaster is used. Zero if not using window frame scroll bars.

Number of pixels to scroll the content region when the up or down page
regions are selected in the right scroll bar. Used only if the scroll bar is part
of the frame and TaskMaster is used. Zero if not using window frame
scroll bars.

Number of pixels to scroll the content region when the left or right page
regions are selected in the bottom scroll bar. Used only if the scroll bar is part
of the frame and TaskMaster is used. Zero if not using window frame
scroll bars.

August 13, 1986 . y~~RppendiH R []]

wInfoRefCon

wPlane

wStorage

Value passed to Information Bar draw mutine. The value can be anything the
application would like, such as a pointer to a string to be printed in the
information bar. 2'..cro ifnot using window frame information bar.

wFrameDefProc Pointer to window's definition procedure. Zero for a standard document
window.

wInfoDefProc Address ofmutine that will be called to draw in the information bar. Zero if
not using window frame information bar.

wContDefProc Address of routine that will be called to draw the window's content region. If
you are using window frame scroll bars this value must be set. Ifyou are not
using window frame scroll bars this value can be zero. However, if you are
not using window frame scroll bars, but you would like TaskMaster to
handle update events, set this value. The mutine will be called when the
content region needs to be drawn. On entry, the current port will be the
window's, the visible region region will be set to the update area, and the
origin set. There are no input or output parameters. Exit the mutine via RTL.

wPosition A rectangle given in global coordinates, determines the window's size and
location, and becomes the portRect of the window's grafPort; note, however,
that the portRect is in local coordinates. NewWindow sets the top left
comer of the portRect to (0,0). For the standard types of windows, this
REcr defines the content region of the window.

Pointer to window port this window should appear behind. Zero for bottom
most, $FFFFFFFF for top most.

Address of memory to use for window's record. If set to zero, the record will
be allocated. Because window records are not completely defined, the size
needed for a window record is unknow. Therefore, you must allow 325
bytes for a window record. Actually, it is best to have the record allocated by
the Window Manager. Being able to use your own memory for a window .
record is provided for in case you need to put up a window to say there is no
memory left, and therefore the WIndow Manager could not allocate one.

Note: The bit map, pen pattern, and other characteristics of the window's
grafPort are the same as the default values set by the OpenPort
procedme in QuickDraw. (NewWindow actually calls OpenPort to
initialize the window's grafPort.) Note, however, that the coordinates of
the grafPort's portBits.bounds and visRgn are changed along with its
portRect.

NewWindow also sets the window class in the window record to indicate that the
window was created directly by the application.

August 13, 1986 rag'llRppendiH R [J]]

' .. _~."" ..

CloseWindow

input: theWindow:LONG - pointer to window's port.

output: None.

OoseWmdow removes the given window from the screen and deletes it from the
window list. It releases the memory occupied by all data structures associated with the
window, including the memory taken up by the window record if it was allocated by
NewWindow. Call this procedure when you're done with a window.

Any update events for the window are discarded. If the window was the frontmost
window and there was another window behind it, the latter window is highlighted and an
appropriate activate event is generated.

Warning: Ifyou allocated memory yourself and stored a handle to it in the refCon
fiel~ CloseWindow won't know about it-you must release the
memory before calling CloseWindow.

August 13, 1986 r~ellRppendiH R [JJJ

Window Record and Global Access

GetWMgrPort

input: None.

output: wPort:LONG - pointer to Window Manager's port.

SetWMgrlcons

input: NewFont:LONG - handle of new icon font to use, negative to not replace font

output: OldFontLONG - handle of icon font before replacement, if any.

See WINDOW MANAGER. ICON FONT for more information about the font

SetWRefCon

inputs: refCon:LONG - reserved LONG for application's use
theWmdow:LONG - pointer to window's port

output: None.

SetWRefCon is used to set a LONG value that is inside the window record and is
reservered for the application's use.

GetWRefCon

input: theWmdow:LONG - pointer to window's port

output: refCon:LONG - reserved LONG for application's use

GetWRefCon is used to retrieve a LONG value from a window's record that was passed
to either NewWindow or SetWRefCon by the application sometime before this call.

SetWTitle

inputs: title:LONG - pointer to string for new title.
theWindow:LONG - pointer to window's port

output: None.

August 13, 1986 RppendiH R
~;;;;;;;;;;;r

Updates window's record with new title pointer

August 13, 1986
. y~.~

AppendiH A [J]J

I
\

GetWTitle

inpUt: theW'mdow:LONG - pointer to window's port.

output: title:LONG - pointer to string of window's tide.

SetFrameColor

inputs: newColor:LONG - pointer to 8 word pattern/color table, zero for system.
theW'mdow:LONG - pointer to window's port, zero to set default

output: None.

See WINDOW FRAME COLORS AND PATrERNS for a definition of the color table.
Does not redraw the window. Do a HideW'mdow and ShowWindow before and after this
call to redraw the window in its new colors.

IfnewColor is zero, the pointer to the system. default color table will be used. If
theW'mdow is zero, the default window color table will be set To understand defaults,
system. and all this, it necessary to understand how the W'mdow Manager finds a color
table to use for drawing. FlI"St, a field in the window record is checked for a pointer to a
color table. The field is zero after allocated by NewWindow, and remains zero until a
SetJt~rameColor. If a pointer is found in the window's record, that is the table used. If a
zero is found, the default table is used. Now comes the tricky part., the default table statts
out as the system table, but can be changed by SetFrameColor when theWindow is
zero.

GetFrameColor

inputs: newColor:LONG - pointer to 8 word table that will be set with the color table.
theW'mdow:LONG - pointer to window's port.

output: None.

See WINDOW FRAME COLORS AND PATrERNS for a definition of the' color table.

FrontWindow

input: None.

output: theWindow:LONG - pointer to the active window's port.

FrontWindow returns a pointer to first visible window in the window list (that is, the
active window). If there are no visible windows, it returns zero.

August 13, 1986
yoge~

RppendiH R~

I" I
:.--'

GetNextWindow

input: theWindow:LONG - pointer to window's port.

output: NextWmdow:LONG - pointer to next window's port in list, zero is last.

GetNmWindow returns a pointer the next window after theWindow in the window list,
or zero if theWmdow is the last window in the window list.

GetWKind

input: theWmdow:LONG - pointer to window's port.

output: WmdowKind:WORD - TRUE ifsystem window, FALSE if application window.

GetWKind returns the kind of window theWindow is.

GetWFrame

input: theWmdow:LONG - pointer to window's port.

output: wFlag:WORD - bit vector of window's frame type.

GetWFrame returns the same type of bit vector passed to NewWindow. See
NewWindow for the definition of the bits of wFlag.

SetWFrame

input: wFlag:WORD - bit vector of window's frame type.
theWindow:LONG - pointer to window's port.

output: None.

SetWFrame sets the same type of bit vector passed to NewWindow. See
NewWindow for the definition of the bits of wFlag. The window frame is not redrawn.

August 13, 1986
jP~·lRppendiH R 0]]

.."./
GetStructRgn

input: theWmdow:LONG • pointer to window's port.

output: WSttuetRgn:LONG· handle of window's structure region.

See Wll'IDOW REGIONS for a definition of what the structure region is.

GetContRgn

input: theWmdow:LONG • pointer to window's port.

output: WContRgn:LONG - handle of window's content region.

See WINDOW REGIONS for a definition of what the content region is.

GetUpdateRgn

input: theWindow:LONG • pointer to window's port.

output: WUpdateRgn:LONG· handle'of window's structure region.

See BeginUpdate for an explaination of how the update region is used.

GetDefProc

input: theWmdow:LONG • pointer to window's port.

output: WDefProc:LONG - pointer theWmdow's definition procedure.

GetDefProc returns the address of the routine that is called to drawt bit test, and
otherwise derme, a window's frame and behavior.

,j August 13, 1986 y..·tRlPpendiH A [J]]

!

"

..,

i

SetDefProc

input: WDefProc:LONG - pointer theWindow's definition procedure.
theW'mdow:LONG - pointer to window's port.

output: None.

SetDefProc sets the address of the routine that is called to draw, hit test, and otherwise
define, a window's frame and behavior. See DEFINING YOUR OWN WINDOWS for
an explaination of what a definition procedure does.

GetWControls

input: theW'mdow:LONG - pointer to window's port.

output: ControlList:LONG - address of first control in window's control list, zero == none.

GetWControl returns the address of the first control in the window's control list. The
window's control list is the list of controls created by the application with calls to
NewControi in the Control Manager. The window's control list is separate from the
window frame's control list, explained in GetFControl•

GetFControls

input: theW'mdow:LONG - pointer to window's port.

output: FControlList:LONG - address of first control in window's frame, zero == none.

GetFControls returns the address of the first control in the window frame's control list.
The window frame's control list is the list of controls created by the window definition
procedure for standard window controls like scroll bars.

GetInfoTm

input: theW'mdow:LONG - pointer to window's port.

output: InfoTexcLONG - value that will be passed to the information bar draw routine.

See INFORMAnON BAR DRAW ROUTINE.

August 13, 1986 £~~tAppendiH A [TI]

",'"

SetlnfoText

input: InfoText:LONG - value that will be passed to the information bar draw routine.
theWindow:LONG - pointer to window's port

output: None.

See INFORMATION BAR DRAW ROUTINE.

GetFuIIRect

input: theWmdow:LONG - pointer to window's port

output: wFullSize:LONG - pointer to REef to be used as content's zoomed size.

If the zoom flag is set in the frame flag, see GetWFrame; then wFullSize will equal
theWindow's last size and position. Otherwise, wFullSize will equal the size and position
oftheWmdow's content region (port) the next t:ime the window is zoomed via a call to
ZoomWindow.

SetFuIlRect

input: wFullSize:LONG - pointer to RECI' to be used a.~ content's zoomed size.
theWmdow:LONG - pointer to window's port.

output: None.

If the zoom flag is set in the frame flag, see GetWFrame, then wFullSize will equal
theWmdow's last size and position. Otherwise, wFullSize will equal the size and position
of theWindow's content region (pan) the next t:ime the window is zoomed via a call to
ZoomWindow.

August 13, 1986
rege~

AppendiH A [J]]

(
\ GetCOrgin

inputs: theWmdow:LONG - pointer to window's port.

output: LONG - low WORD == Yorigin, high WORD == x origin.

These values are used by TaskMaster for setting the origin of the window's port when
handling an update event. The values ate also used to compute scroll bars in the window
frame.

SetCOrigin

inputs: xOrigin:WORD - content region's horizontal offset into the data area.
yOrigin:WORD - content region's vertical offset into the data area..
theWmdow:LONG - pointer to window's port.

output: None.

Sec GetCOrigin for a description of origins. Setting these values will not generate any
update event, although the entire C<?Dtent will probably needed to be redrawn.

SetOrgnMask

inputs: originMaskWORD - mask used to put horizontal origin on a grid.
theWmdow:LONG • pointer to window's port.

output: None.

SetOrgnMask is useful when you are using a scrollable window in 640 mode with
dithered colors. The video hardware of the Cortland is such that different pixel position
get their color from different.color tables. By using the effect it is possible to produce
many more colors than the two bits per pixels might suggest However, the pixels are then
horizontally position dependent to keep the same color. Scrolling windows can change the
color by putting the pixels in the wrong horizontal position. That's where SetOrgnMask
comes in. OriginMask will be ANDed. by TaskMaster with any new horizontal origin that
is created to force the origin to certain boundaries. The default is $FFFF, single pixel.

August 13, 1986 l~1Rppendht R~

/
\

(

StartDrawing

input: theWmdow:LONG - pointer to window's port.

output: None.

StartDrawing can be used for drawing in a window's content region outside of update
events. StartDrawing will make the window the current port, and set its origin. After
the call, any drawing. outside of update events, will occur inside theWindow's content and
in the proper coordinate system.

Note: StartDrawing is only of use with standard document window's with
frame scroll bars. Otherwise, only a SetPort would be needed to make the
proper port current.

GetDataSize

inputs: theWmdow:LONG - pointer to window's port.

output: dlataSize:LONG - low WORD is the height, high WORD is the width.

The height and width of the data area. is returned. The data area is the total amount of data
that can be viewed in a window, either through resizing or: scrolling.

SetDataSize

inputs: dataWidth:WORD - width of data area.
dataHeightWORD - height of data area..
theWmdow:LONG - pointer to window's port.

output: None.

See GetDataSize. Setting these values-will not change the scroll bars or generate update
events.

August 13, 1986 r~e~RppendiH R UQ]

GetMaxGrow

inputs: theWmdow:LONG - pointer to window's port.

output: maxGrow:LONG - low WORD is the max height, high WORD is the max width.

These values are pasted to GrowWindow by TaskMaster. The content region will not
be allowed to be sized to exceed these values.

SetMaxGrow

inputs: maxWldth:WORD - maximum content width allowed when resizing.
maxHeight:WORD -~ content height allowed when resizing.
theWindow:LONG - pointer to window's port.

output: None.

See GetMaxGrow.

GetScroll

inputs: theWindow:LONG - pointer to window's port.

output: scroll:LONG - low WORD is the vertical amount, high WORD the horizontal

Returns the number of pixels that TaskMaster will scroll the content region when the
user selects the arrows on window frame scroll bars.

SetScroU

inputs: hScroll:WORD - number of pixels to scroll horizontally.
vScroll:WORD - number of pixels to scroll vertically.
theWindow:LONG - pointer to window's port.

output: None.

See GetScroll.

August 13, 1986 yag'llRppendiH R [II]

/
j
\

GetPage

inputs: theWindow:LONG - pointer to window's port.

output: page:LONG - low WORD is the vertical amount, high WORD the horizontal.

Returns the number ofpixels that TaskMaster will scroll the content :region when the
user selects the page :regions on window frame scroll bars.

SetPage

inputs: hPage:WORD - number ofpixels to page vertically.
vPage:WORD - number ofpixels to page horizontally.
theWindow:LONG - pointer to window's port.

output: None.

See GetPage.

GetCDraw

inputs: theWmdow:LONG - pointer to window's port.

output: contDraw:LONG - address of routine that is called to draw the content :region.

TaskMaster will call this routine when it gets an update event for that window. See
CONTENT DRAW ROUTINE for more infomation about the draw routine.

SetCDraw

inputs: contDraw:LONG - address of routine to draw content :region.
theWindow:LONG.- pointer to window's port.

output: None.

See GetCDraw.

August 13, 1986
yag~l

AppendiK R~

,/

GetlnfoDraw

inputs: theWmdow:LONG - pointer to window's port.

output: InfoDraw:LONG - address of routine that will draw on the infomation bar.

The standard window definition procedure will call this routine whenever the window's
frame needs to be draw, if the window has an infomation bar. See INFORMATION BAR
DRAW ROUTINE for more infomation about the draw routine.

SetlnfoDraw

inputs: InfoDraw:LONG· address of routine that will draw on the information bar.
theWmdow:LONG - pointer to window's port.

output: None.

See GetlnfoDraw.

August 13, 1986 lttlAppendiH A~

Window ShllffJing

SelectWmdow

input: theW'mdow:LONG - pointer to window's port.

output: None.

SelectWindow makes theWindow the active window as follows: It unhighlights the
previously active window, brings theWindow in front of all other windows, highlights
theWindow, and generates the appropriate activate events. Call this procedure ifyou are
not using TaskMaster and there's a mouse-down event in the content region of an
inactive window.

HideWindow

input: theW'mdow:LONG - pointer to window's port.

ouput: None.

ffideWindow makes theW'mdow invisible. If theWmdow is the frontmost window and
there's a window behind it, HideWindow also unhighlights theWmdow, brings the
window behind it to the front, highlights that window, and generates appropriate activate
events. If theWindow is already invisible, HideWindow bas no no effect.

ShowWindow

inputs: theWindow:LONG - pointer to window's port.

output: None.

Makes theW'mdow visible and draws it if it was invisible. It does not change the
front-to-back ordering of the windows. Remember~ if you previously hid the
frontmost window with HideWindow, HideWindow will have brought the window
behind it to the front; so ifyou then do a ShowWindow of the window you hid, it will
no longer be frontmost If theWmdow is already visible, ShowWindow has no effect

August 13, 1986 AppendiH A~~

ShowHide

input: showFlag:WORD - TRUE to show, FALSE to hide.
theW'mdow:LONG - pointer to the window's port.

ouput: None.

If showFlag is TRUE, ShowHide makes theW'mdow visible if it's not already visible
and has no efect if it is already visible. If showFlag is FALSE, ShowHide makes
theWmdow invisible if it's not already invisible and has no effect if it is already invisible.
Unlike HideWindow and ShowWindow, ShowHide never changes the highlighting
or front-to-bac.k ordering of windows or generates activate events.

Warning: Use this procedure carefully, and only in special circumstances where
you need more control than allowed by ShowWindow and
HideWindow. You could end up with an active window that isn't
highlighted.

BringToFront

input: theWmdow:LONG - pointer to window's port.

output: None.

BringToFront brings theWmdow to the front of all other windows and redraws the
windows as necessary, but does not do any highlighting or unhighlighting. Normally you
won't have to call this procedure, since you should call SelectWindow to make a
window.active, and SelectWindow takes care of bringing the window to the front. If
you do call BringToFront, however, remember to call HiliteWindow to make the
necessary highlighting changes.

SendBehind

inputs: behindW'mdow:LONG - pointer to window record or -2 to send to bottom.
theWmdow:LONG - pointer to window's port.

. output: None.

SendBehind sends theWindow behind behindWindow, redrawing any exposed
windows. IfbehindW'mdow is -2 ($FFFFFFFE), it sends theWindow behind all other
windows. If theWindow is the active window, it unhighlights theWindow, highlights the
new active window, and generates the appropriate activate events.

August 13, 1986 tg~AppendiH A I 2t2J

Window DrawinK

HlliteWmdow

input: fHi'lite:WORD - TRUE to highlight window frame, FALSE to unbigblight.
theWmdow:LONG - pointer to window's port.

output: None.

IffHilite is TRUE, this procedure highlights theWmdow. IffHilite is FALSE,
HiliteWindow unhighlights theWindow. TIle exact way a window is highlighted and
unhighlighted depends on its window definition procedure.

Normally you won't have to call this procedure, since you should call SelectWindow to
make a window active. and SelectWmdow takes care of the necessary highlighting
changes. Highlighting a window that isn't the active window should never be done.

Refresh

input: None.

output: None.

Redraws the entire desktop and all the windows. Uscful when the entire screen was
clobblered by some application specific, non-Wmdow Manager, operation.

August 13, 1986 rag'llRppendiH R cg§]

pser Interaction

F'mdWmdow

inputs: whichWmdow:LONG - address of where to store pointer of window.
pointX - x coordinate to check (global).
pointy - Ycoordinate to check (global).

outputs: Location:WORD:

When a mouse-down event occurs, the application should, if not using TaskMaster, call
FindWmdow with pointY,pointX equal to the point where the mouse button was pressed
(in global coordinates, as stored in the where field of the event record). FindWindow
tells which part of which window, if any, the mouse button was pressed in. If it was
pressed in a window, theWmdow parameter is set to the window port pointer; otherwise,
it's set to zero. The WORD returned by FindWindow is one of the following predefined
constants:

wNomt
wInDesk
wInMenuBar
wInContent
wInDrag
wInGrow
wInGoAway
wlnZoom
wInInfo
wInFrame
wInSysWindow

August 13, 1986

=$0000
=$0010
=$0011
-$0013
=$0014
-$0015
-$0016
= $0017
=$0018
=$OOIB
=$8xxx

Not on the window at all.
On the desktop area.
On the system menu bar.
In window's content region.
In window's drag (title bar) region.
In window's grow (m.e box) region.
In window's go-away (close box) region.
In window's zoom (zoom bmc) region.
In window's information bar.
In window, but not any of the above areas.
In a system window, lower part is one of the above.

y~et
AppendiH A UZJ

DragWindow

inputs: grid:WORD - drag resolution, zero for default.
startX - starting x coordinate of cursor (global).
startY - starting y coordinat:e of cursor (global).
grace:WORD - grace buffer around Bounds.
BoundsRect:LONG - pointer to RECI' to use as cursor boundary. zero for default.
theWmdow:LONG - pointer to window's port.

output: None.

When there is a mouse-down event in the drag region of theWmdow. and TaskMaster is
not being used, the application should call DragWindow with startY.startX equal to the
point where the mouse button was pressed (in global coordinates, as stored in the where
field of the event record). DragWindow pulls a dotted outline of theWindow around.
following the movements of the mouse until the button is released. When the mouse
button is released, DragWindow call MoveWindow to move theWindow to the
location to which it was dragged. The window will be dragged and moved in its current
plane..

grid Allowed horizontal resolution movement. Ifgrid is one. the window can
be positioned at any horizontal position. If grid is two. the window can
only be moved a multiple of 2 pixels horizontally. If grid is four. the
window can only be moved a multiple of 4 pixels horizontally. The only
allowed values are; 1.2, 4.8.16.32, 64. 128... The grid parameter is
provided to speed up window moves by eliminating the need for bit
shifting. if the grid value is the correct value. If grid is passed as zero, a
default value will be used. The defaults are; 4 for 320 mode and 8 for
640 mode.

startY.startX The point where the mouse button was pressed., in global coordinates, as
stored in the where field of the event record. This point is used with the
tracked. cursor position to compute the movement delta.

grace Grace is the distance.' in pixels, that you will allow the cursor to move .
away from. BoundsRc:et before the dragged outline should be snapped
back to its starting position. TaskMaster uses 8 for this value. The
BoundsRect is expanded by the value of grace to compute the slopRect
passed to DragRect. See DragRect for more information.

BoundsRect Pointer to a RECT. in global coordinates. that is passed to DragRect as
the limitRect parameter. See DragRect for more information. If zero is
passed for the pointer. the bounds of the desktop. less 4 all around. will
be used.

August 13, 1986 ee~RppendiH R c:::g:§J

inputs:

(
GrowWindow

minWuith:WORD - minimum width of content region to allow.
minHcight:WORD - minimum height of content :region to allow.
startX - starting x coordinate of cursor (global).
swtY - starting y coordinate ofcursor (global).
theWmdow:LONG - pointer to window's port.

output: newSize:LONG - high WORD == new height., low WORD == new width.

When there's a mouse-down event in the grow region of theWmdow, the application
should call GrowWindow with startY,star'tX equal to the point where the mouse button
was pressed (in global coordinates, as stored in the where field of the event record).
GrowWindow pulls a grow image of the window around, following the movements of
the mouse until the button is released. The grow image for a document window is a dotted
outline of the entire window and also the lines delimiting the title bar, size box, and scroll
bar areas. The diagram below illustrates this for a document window containing both
scroll bars. In general, the grow image is defined in the window definition function and is
whatever is appropriate to show that the window's size will change.

Title 'I

o

Size retumlIId in Iow-order WORD.

Size returned in
high-order WORD.

The application should subsequently call SizeWindow to change the portReet of the
window's grafPort to the new one outlined by the grow image. The sizeRect parameter
specifies limits, in pixels, on the vertical and horizontal measurements of what will be the
new portRect. SizeRect.top is the minimum vertical measurement, sizeRectleft is the
minimum horizontal measurement, sizeRect.bottom is the maximum vertical measurement,
and sizeRc:ctright is the maximum horizontal measurement.

GrowWindow returns the actual size for the new portReet as outlined by the grow image
when the mouse button is released. The high-orcler WORD of the LONG is the vertical

August 13, 1986
teetAppendiH A~

/

..

measurement in pixels and the low-order WORD is the horizontal measurement. A return
value of zero indicates that the size is the same as that of the current portRect.

TrackGoAway

inputs: startX· starting x coordinate ofcursor (global).
startY • starting Ycoordinate ofcursor (global).
theWmdow:LONG • pointer to window's port.

output: GoAway:WORD - TRUE ifgo away selected when button released, else FALSE.

When there's a mouse-down event in the go-away region of theWmdow, and the
application is not using TaskMaster, the application should call TrackGoAway with

. theFT equal to the point where the mouse button was pressed (in global coordinates, as
stored in the where field of the event record). TrackGoAway keeps control until the
mouse button is released, highlighting the go-away region as long as the mouse location
remains inside it, and unhighlighting it when the mouse moves outside it. The exact way a
window's go-away region is highlighted depends on its window definition procedure. If
the mouse button is released inside the go-away region, TrackGoAway unhighlights the
go-away region and returns TRUE (the application should then eventually perform a
OoseWindow). If the mouse button is released outside the go-away :region,
TrackGoAway returns FALSE (in which case the application should do nothing). .

TrackZoom

inputs: startX· starting x coordinate of cursor (global).
startY • starting y coordinate of cursor (global).
theWindow:LONG • pointer to window's port.

output: Zoom:WORD· TRUE ifzoom region was selected, else FALSE.

When there's a mouse-down event in the zoom region of theWindow, and the application
is not using TaskMaster, the application should call TrackZoom with theFT equal to
the point where the mouse button was pressed (in global coordinates, as stored in the
where field of the event record). TrackZoom keeps control until the mouse button is
released, highlighting the zoom region as long as the mouse location :remains inside it, and
unhighlighting it when the mouse moves outside it. The exact way a window's zoom
region is highlighted depends on its window definition procedure. If the mouse button is
released inside the zoom region, TrackZoom unhighlights the zoom region and returns
TRUE (the application should then eventually perform a ZoomWindow). If the mouse
button is released outside the zoom region, TrackZoom returns FALSE (in which case
the application should do nothing). .

August 13, 1986 rag'llRppendiH R []]]

f.....

TaskMaster

input: EventMask:WORD D used to call GetNextEvent.
TaskRcc:LONG - pointer to an extended event record to use.

output: TaskCode:WORD D task code, ZC1'O equal no further task to perfmm.

Possible error: 3 == bits 12-15 are not clear in TaskMask field ofTaskRec.

See USING TASKMASTER for more information.

TaskMaster uses TaskRec and EventMask to pass to GetNextEvent. An outline of
TaskMaster follows:

Call SystemTask for possible desk accessories.
Call GetNextEvent with a TaskRec and EventMask.

.If GetNextEvent returns 'no event' TaskMaster will exit and return inNull.
The message field of the TaskRec is duplicated into the TaskData field.

Ifevent code is key down event:
If TaskMask bit #0 == 0:

TaskMaster exits and returns inKey.
Call MenuKey for the system menu bar with the key from TaskRec.
If MenuKey returns 'no selection made' TaskMaster exits and returns inKey.
IfTaskMask bit #4 == 0:

TaskMaster exits and returns·wInMenuBar.
If the item selected. has an ID number greater than 2S5:

TaskMaster exits and returns wInMenuBar.
Else the item belongs to a desk accessory and:

Call OpenNDA to open the desk accessory selected.
Call HiliteMenu to unhighlight the selected menu.
TaskMaster exits and returns inNull.

If event code is update event:
IfTaskMask bit #1 == 0:

TaskMaster exits and returns inUpdate.
If the window with the update has an update draw routine (see NewWindow):

Switch to window's port.
Wmdow's origin is set according to the origin values in its record.
The window's update draw routine is called (routine in application).
Wmdow's origin is returned to ZeIO,ZC1'O.
The previous port is restored.
TaskMaster exits and returns inNull.

Else TaskMaster is unable to process the event:
TaskMaster exits and returns inUpdate.

---' August 13, 1986
y~ei

RppendiH R D3J

(If event code is button down event:
If TaskMask bit #2 == 0:

TaskMaster exits and returns inButtDwn.
Call YmdWmdow which place any found window pointer in the TaskData field.

If F"mdWindow returns wInMenuBar:
IfTaskMask bit #3 == 0:

Low-order WORD ofTaskData field in TaskRec == zero.
TaskMaster exits and returns wInMenuBar.

Call MenuSelect.
If MenuSelect returns 'no selection made':

TaskMaster exits and returns inKey.
Else if the item selected 10 number greater than 255 OR TaskMask bit #4 == 0:

Low-order WORD ofTaskData. field in TaskRec == selected item's rD.
High-order WORD ofTaskData field in TaskRec == selected menu's ro.
TaskMaster exits and returns wInMenuBar.

Else the item belongs to a desk accessory and:
Call OpenNDA to open the desk accessory selected.
Call HiliteMenu to unhighlight the selected menu.
TaskMaster exits and returns inNull.

Else ifFindWindow returns a value that is negative:
If TaskMask bit #5 ::Ill 0:

TaskData == window pointer returned from FindWindow.
TaskMaster exits and returns value returned by FindWindow.

YmdWindow found something in a system window.
Call SystemClick with the window and result from FindWindow.
NOTE: This is as far as system windows can go in TaskMaster.
TaskMaster exits and returns inNull.

Else ifFindWindow returns wInDrag:
If TaskMask bit #6 == 0:

TaskData == window pointer returned from FindWindow.
TaskMaster exits and returns wInDrag.

If the command key is not down and the window is not active:
Call SelectWindow to make the window active.

Call DragWindow.
TaskMaster exits and returns inNull.

Else ifYmdWmdow returns wInContent:
IfTaskMask bit #7 == 0:

TaskData == windQw pointer returned from FindWindow.
TaskMaster exits and returns wInContent.

If the window is not active:
Call SelEctWindow to make the window active.
TaskMaster exits and returns inNull.

Else:
TaskData == window pointer returned from FindWindow.
TaskMaster exits and returns wInContent.

August 13, 1986
y~et

AppendiH A []g]

(
..'., Else ifFindWindow returns wInGoAway:

IfTaskMask bit #8 == 0:
TaskData == window pointer returned from F'mdWindow.
TaskMaster exits and returns wInGoAway.

Call TrackGoAway.
IfTrackGoAway returns TRUE:

TaskData == window pointer returned from FindWindow.
TaskMaster exits and returns wInGoAway.

TaskMaster exits and returns inNull.

Else ifFindWindow returns wInZoom:
IfTaskMask bit #9 == 0:

TaskData == window pointer returned from F'mdWmdow.
TaskMaster exits and returns wInZoom.

Call TrackZoom.
IfTrackZoom returns TRUE:

Call ZoomWindow.
TaskMaster exits and returns inNull.

Else ifFindWindow returns wInGrow:
IfTaskMask bit #10 == 0:

TaskData == window pointer returned from FindWindow.
TaskMaster exits and returns wInGrow.

Call GrowWindow.
Call SizeWindow with results from GrowWmdow.
TaskMaster exits and returns inNull.

Else if FindWindow returns wInFrame:
IfTaskMask bit #11 == 0:

TaskData == window pointer returned from FindWindow.
TaskMaster exits and returns wInFrame.

If the window is not active:
Call SelectWindow to make the window active.
TaskMaster exits and returns inNull.

Else ifbutton down event occurred in a window frame scroll bars:
TaskMaster does some unotthodox window and port manipulation.
Calls TrackControl with an action procedure within TaskMaster.
NOTE: The window owner of frame scroll bar is the Window Manager's.
The action procedure in TrackMaster performs scrolling and updates.
TaskMaster exits and returns inNull.

Else:
TaskMaster exits and returns wInFram.e.

Else:
TaskData == window pointer returned from FindWindow.
TaskMaster exits and returns value returned from FindWindow.

Else:
TaskMaster exits and returns event code.

August 13, 1986
yoget

RppendiH R~

Ewlow Sizing and..fositionjng

MoveWindow

inputs: newX· new x coordinate of content region's upper left comer (global).
newY • new y coordinate of content region's upper left comer (global).
theW'mdow:LONG • pointer to window's port.

output: None.

MoveWilllldow moves theWmdow to another pan of the screen. without affecting its size.
The top left comer of the window's portRect is moved to the screen point newY,newX.
111e local coordinates of the window's top left comer remain the same. If the front
parameter is TRUE and theWindow. MoveWindow makes theWindow the active
window by calling SelectWindow.

SizeWindow

inputs: newWidth:WORD· new width of window.
newHeight:WORD • new height of window.
theWindow:LONG • pointer to window's port.

output: None.

SizeWindow enlarges or shrinks the ponRcct of theWindow's grafPon to the width and
height specified by newWidth and newHeight, or does nothing ifnewWidth and
newHeight are zero. The window's position on the screen does not change. The new
window frame is drawn; if the width of a document window changes. the title is again
centered in the tide bar. or is truncated if it no longer fits.

August 13, 1986 RppendiH R~~

.I-. '-'~

ZoomWindow

input: theWindow:LONG • pointer to window's port.

output: None.

ZoomWmdow' will flip the size and position of theWmdow between its current size and
position, to its maximum size, passed to NewWindow. Ifcalled again, before
theWindow is moved or resized, theWindow will be resize and positioned to the size and
position before the last ZoomWindow was performed. When a SizeWmdow or
MoveWindow is performed, while a window is zoomed, the last size becomes the new
size and position•

August 13, 1986 Y~''lAppendiH R~

\

...

Update Region Maintenance

InvalRect

input: badRect:LONG - pointer to REcr to be added to the update region..

output: None.

Inva.1Rect accumu.J.atcs the given rectangle into the update region of the window whose
gmfPort is, tJ1C CUlTent port. This tells the Wmdow Manager that t11e rectangle has changed
and must be updated. 'l'he l'l:Ctangle is given in local coordinates and is clipped to the
window's content region.

For example, this procedme is useful when you're calling SizeWindow for a document
window that contains a size box or scroll bars that are not inside t11e window's frame.
Suppose you're going to call SizeWindow with fUpdate=TRUE. If the window is
enlarged. you'll want not only the newly created part of t11e content region to be updated,
but also the two rectangular areas containing the (former) size box and scroll bars; before
caUing SizeWindow, you can call InvaJRec:t twice to accumulate t110se areas into the
update region. In case the window is made smaller, you'll want the new size box and
scroll bar areas to be upd.a.t.ed, and so can similarly call InvaJRect for t110se areas after
calling SizeWindow. As another example, suppose your application scrolls up text in a
document window and wants to show new text added at t11e bottom of the window. You
cau cause the added text to be redrawn by accumulating that area into t11e update region
with InvalRed.

InvalRgn

input: badRg:n:LONG • handle of region to be added to the update region.

output: None.

InvaJRgn is the same as InvalRed but for a region that has changed rather than a
rectangle.

August 13, 1986 RppendiH REa

ValidRect

input: goodRect:LONG • pointer to a REel' to be removed from the update :region.

output: None.

ValidRect :removes goodRect from the update region of the window whose grafPort is
the current pm1. This tells the Window Manager that the application has already drawn the
rectangle and to cancel any updates accumulated for that area. The rectangle is clipped. to
the window's content regIon and is given in local coordinates. Using ValidRect results
in better perfm:mance and less redundant redrawing in the window.

For example, suppose you've called SizeWindow with fUpdate=TRUE for a document
window that contains a size box or scroll bars not part of the window frame. Depending
on the dimensions of the newly sized window, the new size box and scroll bar areas may
or may not have been accumulated into the window's update region. Mter calling
SizeWindow, you can redraw the size box or scroll bars immediately and then call
ValidRect for the areas they occupy in case they were in fact accumulated into the update
region; this will avoid redundant drawing.

ValidR.gn

input: goodR~:LONG • handle of a region to be subtracted from the update region.

output: None•
.

ValidRgn is the same as VafiidRect but for a region that has been drawn rather than a
rectangle.

BeginUpdate

input: theWindow:LONG • pointer to window's port.

output: None.

Call BeginUpdate when an update event occurs for theWindow. BeginUpdate
replaces the visRgn of the window's grafPort with the intersection of the visRgn and the
update region and then sets the window's update region to an empty region. You would
then usually draw the entire content region, though it suffices to draw only the visRgn; in
either case, only the parts of the window that require updating will actually be drawn on
the screen. Every call to BeginUpdate must be balanced by a call to EndUpdate. (See
"HOW A WINDOW IS ORAWN".) BeginUpdate calls can be nested (that is
BeginUpdate may be called several times, for several different windows, before
EndUpdate is called for each window).

August 13, 1986 rag-ifRppendiH R []l]

EndUpdate

input: theWmdow:LONG - pointer to window's port.

output: None.

Call EndUpdate to :restore the normal visRgn of theWindow's grafPort, which was
changed by BeginUpdate as described above.

August 13, 1986

......."'-

Miscellaneous Routines

PinRect

inputs: theRect:RECf· boundary of given point.
theXPtWORD· the x coordinate of the point to be pinned.
theXPtWORD· the x coordinate of the point to be pinned.

output pinnedPt:LONG 0 point inside theRect nearest to thePt.

PinRect "pins" thePt inside theRec:t: If thePt is inside theRect, thePt is returned;
otherwise. the point associated with the nearest pixel within theRect is returned. (The
high-order WORD of the pinnedPt is the vc:rti.cal coordinate; the low-order WORD is the
horizontal coordinate.) More precisely, for theRect (left,top) (right,bottorn) and thePt
(h,v), PinRect does the following:

• Ifh < left, it returns left.

• Ifv < top, it returns top.

• Ifh > right, it returns right-I.

o Ifv > bottolln. it returns bottom-I.

Note: The 1 is subtt8JCted when theFt is below or to the right of theRect so that
a pixel drawn at that point will lie within theReet.

CheckUpdate

input: theEventLONG 0 pointer to an even record.

output: Flag:WORD· TRUE ifupdate event found, else F.ALSE.

CbeckUpdate is called by the Event Mall.ager. From the top to the bottom in the window
list, it looks for a visible window that needs updating (that is, whose update region is not
empty). If a window with something in its update region is. found, an update event for that
window to; st:oJred in theEevnt and returns TRUE. If it doesn't find such a window, it
returns FALSE.

August 13, 1986 r~e~AppendiH A~

input:

DragRect
(

(

(not completed)

theRgn:LONG - handle ofregion to be dragged.
stm'tX:WORD - starting x coordinate of cursor (global).
startY:WORD - starting y coordinate of cursor (global).
limitRect:LONG - pointer to bounds RECT for dragging.
slopRect:LONG - pointer to RECT which is maximum cursor movement area.
axis:WORD - movement contraint
aetionProc:LONG - address of routine to call while.dragging.

output: de1taDrag:LONG - high WORD is vertical delta, low WORD is horizontal delta.

Called when the mouse button is down inside theRgn, DragGrayRgn drags a dotted
(gray) outline of the region's bounds, which should be in global coordinates. following the
movements of the mouse until the button is released. DragWilldovv calls this function
before actually moving the window. You can call it yOtn'Self to pull around the outline of
any region. and then use the information it returns to detennine whe:re to move the region.
The startY.st.artX parameters are assumed to be the point where the mouse button was
originally pressed. in the global coordinates.

LimitRect and slopRect are also in global coordinates. To explain these parameters. the
COl1cept of "offset point" must be introduoed: This is initially the point whose vertical and
horizontal offsets from the top left comer of the region's enclosing rectangle are the same
as those of startY.startX. The offset point follows the mouse location, except that
DragGrayRgn will never move the offset point outside limitH..ec1; this limits the travel of
the rc~gl.on's outline (but not the movements of the mouse). SlopRect. which should
completely enclose limitRect. allows the user some "slop"illl moving the mouse.
DragGraylRgn's behavior while tracking the mouse depends on the location of the mouse
with respect to these two rectangles:

- When the mouse is inside limitRect. the region's outline follows. it normally. If the
mouse button is released there. the regiml should be moved to the mouse location.

- When the mouse is outside limitRect but inside slopRect, DragGrayRgn "pins" the.
offset point to the edge of limitRect If the mouse bl,ltton is released there, the region
should be moved to this pinned location.

• When the mouse is outside slopRect. the outline disappears from the screen, but
DI'agGrayRgn coilltmues to follow the mouse; if it moves back: into slopRect, the
outline reappears. If the mouse button is released outside slopRect, the region
should not be moved from its original position.

August 13, 1986
petRppendiH R [401

The diagrams below illustrates what happens when the mouse is moved outside limitRect
but inside slopRect, and outside the slopRect.

!'4 slopRElCt

, ,
~ •• ;, • ,,

\
, ,, , ,, • , ,, • • :• •, • , ,, • , •,, , ,,

ABo
, ,• • , ,, , , ,

: , , ,, , ,, , , ,, ,, ,, ,, ,, ,
b...................

Offset Point

L IIil 'ltI ~

".......... P PS< I!,

i
--- IimitReet

Region's Bounds

,1lIlI.. ,, ,,
'," ,, ,, , ,, , ... ,, , , ,, , , ,, , ,, , • :, • • ,, • • ,

! iii:,
, , i,

i ,:1: !
'"~,I:, • :

',: '
',I:,

~, ._._.-e.!

:"'\i,._.__._..._._._._... ~. .J

Outside IimItRec:t,
but inside slopRect.

Outside both thE! IimitReet
and the slopREJd.

The top diagram shows the starting position. As the cursor is moved, an outline of the
window is dragged. with it. The outline will seem to be glued to the cursor at the offset
point. However, if the cursor moves outside of the limitRect, the outline will be left
behind, as shown in the lower left diagram. As the cursor is moved outside of the
limitRect, but within the slopRect, the outline will get as close to the cursor as possible
without letting the offset point leave the limitRec:t. And finally. if the cursor moves outside
the slopRect, the outline will snap back to its starting position. If the cursor moves back
into the slopRect, the outline will snap out to get as close as it can.

If the mouse buttorl is released within slopRect, the high-order won! of the value returned
by DragGrayRgn contains the vertical coordinate of the ending mouse location minus
that of startY,startX and the low-order word contains the difference between the horizontal
coordinates. If the mouse button is released outside slopReet, both words are zero.

/ August 13, 1986
flS]l

AppendiH A~~

\.

do

,.'

The axis parameter allows you to constrain the region's motion to only one axis. It has
one of the following values:

CONST noConstraint - 0
hAxisOnly - 1
vAxisOnly - 2

{no constraint}
{horizontal axis only}
{vertical axis only}

If an axis constraint is in effect, the outline will follow the mouse's movements along the
specified axis only, ignoring motion along the other axis.

The actionProc parameter is apointer to aprocedure that defines some action to be
performed repeatecD.y for as long as the user holds down the mouse button; the procedure
should has no parameters. If aeti.onProc is NIL, DragGrayRgn simply retains control
until the mouse button is released.

August 13, 1986 mAppendiH A O~

"

.,....

Constants

F HILITED
F-ZOOMED
F-ALLOCATED
F-CTRL TIE
F-INFO­
F-VIS
F-MOVE
F-ZOOM
F-GROW
F-BSCROLL
F-RSCROLL
F-CLOSE
F-TITLE

WIND SIZE

wDraw
wHit
wCalcRqns
wNew
wDispose

wNoHit
wInDesk
\t1InMenuBar
wInSysWindow
\t1InContent
wInDraq
wInGrow
wInGoAway
wInZoom
wIn Info
wInFrame

BOTTOM MOST
TOP MOST
TO_BOTTOM

nOConstraint
hAxisOnly
vAxisOnly

August 13, 1986

$0001
$0002
$0004
$0008
$0010
$0020
$0080
$0100
$0400
$0800
$1000
$4000
$8000

325

o
1
2
3
4

o
16
17
18
19
20
21
22
23
24
27

o
-1
-2

o
1
2

Window is highlighted.
Window is zoomed.
Window record was allocated.
Window state tied to controls.
Window has an information bar.
Window is visible.
Window is movable.
Window is zoomable.
Window has grow box.
Window has horizontal scroll bar.
Window has vertical scroll bar.
Window has a close box.
Window has a title bar.

Size of WindRec.

Draw window frame command.
Hit test command.
Compute reqions command.
Initialization command.
Dispose command.

To make window bottom.
To make window top.
To send window to bottom.

No constraint on movement.
Horizontal axis only.
Vertical axis only.

ragaRppendiH A [~

'.,

(

Data Types

what
message
when
where
modifiers
TaskData
TaskMask

wnext
wport
wstrucRgn
wcontRgn
wupdateRqn
wcontrol
wFrameCtrl
wframe

FrameColor
TitleColor
TBarColor
GrowColor
InfoColor

param length
wFrame
wTitle
wRefCon
wZoom
wColor
wYOrigin
wXOrigin
wDataH
.wDataW
wMaxH
wMaxW
wScrollVer
wScrollHor
wPageVer
wPageHor
wlnfoRefCon
wFrameDefProc
wlnfoDefProc
wContDefProc
wPosition
wPlane
wStorage

August 13, 1986

Integer
LongInt
LongInt
LongInt
Integer
Longlnt
Integer

Pointer
Port
Handle
Handle
Handle
Handle
Handle
Integer

Integer
Integer
Integer
Integer
Integer

Integer
Integer
Pointer
LongInt
FlECT
Pointer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Longlnt
Pointer
Pointer
Pointer
FlECT
Longlnt
Pointer

Same as event record.
Same as event record.
Same as event record.
Same as event record.
Same as event record.
TaskMaster return value.
TaskMaster feature mask.

Pointer to next window Record.
Window's port.
Region of frame plus content.
Content region.
Update region.
Window's control list.
Window frame's control list.
Bit flag,s.

Color of window frame.
Color of title and bar.
Color/pattern of title bar.
Color of grow box.
Color of information bar.

jpag~
RplPendiH R c:!1l

\"'--

Error Cod.=

ParamLenErr 1
AllocateErr 2
TaskMask.Err 3

August 13, 1986

NewWindow
NewWmdow
TaskMaster

Fll'St word of parameter list is the wrong size.
Unable to allociue window record.
Bits 12·15 are not clear in TaskMask field ofTaskRec.

~RppendiH R~

	v5_03_01
	v5_03_02
	v5_03_03

