Cortland Menu Manager

Appendix A
Menu Calls

INITIALIZATION AND TERMINATION ROUTINES

MenuBootInit (not completed)

inputt None.
output: None.

Called when SetTSPtr is called.

MenuStartup

input: userID:WORD - user ID that the Menu Manager can use, mainly to allocate memory.
zeropg:WORD - zero page Menu Manager can use, must be on page boundary.

output: None.
Initializes system menu bar with no menus, and makes it the current menu bar.

Calls Desktop in the Window Manager to reserve space for the bar.

Menu Manager opens a grafPort.
Calls DrawMenuBar to draw an empty system menu bar.

MenuShutDown

input: None.
output: None.

Closes the Menu Manager's port and frees any allocated menus.

MenuVersion
inputt None.
output: version:WORD - Menu

Manager's version number.

MenuReset (not completed)

inputt None.
output: None.

Does nothing.

, [File View)
August 13, 1986 Appendix A 2 |

NewMenuBar
inputs: theWindow:LONG - pointer to window's port, owner of menu bar, zero for system.
output: BarHandle:LONG - handle of menu bar.

NewMenuBar will create a default menu bar with no menus. MenuStartup calls
NewMenuBar to create a default system menu bar. If you are only going to use one
system menu bar, NewMenuBar will not have to be called. The default size of the menu
bar is, upper left corner matches the port, and the width is the width is the width of the
screen. The height of the bar is 13. The menu bar is visible and has default colors of black
text on a white background.

NewMenu
input: MenuString:LONG - pointer to a menu/item line list.
output: MenuHandle:LONG - handle of menu, zero if error.
NewMenu allocates space for a menu and its items. You pass a pointer to a menu/item line
list which is a text string that describes the menu title and its items. See MENU LINES AND
ITEM LINES for the format needed. The MenuHandle returned can then be inserted in a
menu bar via an InsertMenu call.

Call DisposeMenu to deallocate the menu when finished.

((FileView [EER)

August 13, 1986 Appendix A | 3 |

DisposeMenu

input: MenuHandle:LONG - previously allocated via NewMenu.

output: None.

Frees the memory used by MenuHandle. The menu will no longer be usable.

Warning: The menu is not taken out of the menu list, call DeleteMenu to do
that, To delete a menu from the menu list and free it's memory you

could do something like this:

pha Space for returned handle.
pha

pea MenulD ID of menu to delete.
_GetMHandle Get the handle of the menu.

pea MenulD
_DeleteMenu

_DisposeMenu

FixMenuBar
input: None.

Leave menu handle on stack.

ID of menu to delete from list.
Delete menu from list.

Handle still on stack.
Deallocate menu record.

output: MenuHeight: WORD - height of the menu bar.

This routine will compute standard sizes for your menu bar and menus:

FixMenuBar will search all the menu title fonts and use the tallest one to compute the
height of the menu bar, add it to Bar.top, and store it in Bar.bottom. It will set the
TitleWidth width for every menu TitleWidth that is given as zero. Finally it will call
CalcMenuSize for each menu in the menu bar.

August 13, 1986

((File View JRETEY)
Appendix A | 4 |

CalcMenuSize

input: newWidth:WORD - number of pixels wide the menu should be, or zero.
newHeight: WORD - number of pixels high the menu should be, or zero.
MenuNum:WORD - menu ID number.

output: None.

This call lets you set menu dimensions, or have the Menu Manager do it. The Menu
Manager will calculate the width for you if newWidth is zero and the height if newHeight is
zero.

To compute the width the Menu Manager will find the widthest item in the menu plus room
for a mark and command key. A default width will be used if the menu does not contain any
item text. :

To compute the height, the Menu Manager will add up the font height of each item plus four,
or use the value found in the font index of ItemFlag if bit 14 of ItemFlag is set.

This routine is called for each menu by the Menu Manager when FixMenuBar is called.

(File View 2000)
August 13, 1986 Appendix A | 5 |

Y

USER_INTERACTION ROUTINES

MenuSelect

input: TaskRec:LONG - pointer to Task record which contains point of button down.
BarHandle:LONG - handle of menu bar, zero for system menu bar.

output: None ("TaskData' field of Task record contains return IDs).

Called when the a button goes down on a menu bar (see FindWindow if using the Window
Manager). The routine will take care of drawing highlighted titles, pulling down menus, and
user interaction. This is handled automatically for the system menu bar when using
TaskMaster in Window Manager.

If a selection is made the low order WORD of the “TaskData' element in the Task record will
contain the ID number of the item selected, and the high order WORD will contain the
menu's ID number. If there is a selection, the menu's title will be left highlighted. See
HiliteMenu to redraw the title as normal.

If no selection is made by the user the low order WORD of the TaskData' element in the

Task record will be zero.
BarHandle becomes the current menu bar.
The structure of TaskRec is:
what WORD Event record portion, unchanged from GetNextEvent.
message LONG
when LONG
where LONG
modifiers WORD
TaskData LONG Extended portion for TaskMaster.

(_File View Ji=5t]

August 13, 1986 Appendix A | 6 |

MenuKey

input: TaskRec:LONG - pointer to Task record which contains the character to check.
BarHandle:LONG - handle of menu bar, zero for system menu bar.

output: None (TaskData' field of Task record contains return IDs).

Maps the given character to the associated menu and item for that character. When you get a
key-down event with the Command key held down--or auto-key event, if the command
being invoked is repeatable—call MenuKey with a pointer to a Task record that contains the
character and the state of the modifier keys (the format is the same as an Event record, see
Event Manager). The match will only occur if it is indicated in the Task record that the
command key was down. MenuKey highlights the appropriate menu title if the key
matches, and returns Selection.

The items are searched starting with the first menu in the menu list and all the items in the
menu starting with the first. Then the second menu, and so on. The given key is compare
with every item's primary keyboard equivalent of every item. If no match is found, the cycle
is repeated, this time comparing to each item's alternate keyboard equivalent.

There generally there should never be more than one item in the menu list with the same
keyboard equivalent, but if there is, MenuKey returns the first one it encounters.

MenuKey will not convert lower case characters to upper case. If you want to match on

either upper or lower case, set the primary character to the upper case character and the
alternate to the lower case character.

If a selection is made the low order WORD of the "TaskData' element in the Task record will
contain the ID number of the item selected, and the high order WORD will contain the
menu's ID number. If there is a selection, the menu's title will be left highlighted. See
HiliteMenu to redraw the title as normal.

If no selection is made by the user the low order WORD of the "TaskData' element in the
Task record will be zero.

BarHandle becomes the current menu bar.
See MenuSelect for a description of TaskRec.

{File View)

August 13, 1986 Appendix A | 7 |

P

MenuRefresh

input: RedrawRoutine:LONG - address of routine in your application.
output: None.

Note: This is called only when using the Menu Manager without the
Window Manager.

RedrawRoutine is called when the Menu Manager can not restore the screen under a menu.
First the Menu Manager will try to allocate a buffer large enough to save the screen part
before it draws the menu. If the buffer is allocated the screen will be restored from it and
then deallocate the memory buffer. If the buffer can not be allocated the Menu Manager will
try to call the Window Manager (via the call the Window Manager made to MenuRefresh
during initialization) to refresh the screen when the menu goes away. If no buffer can be
allocated and the Window Manager isn't installed, the Menu Manager will call
RedrawRoutine to refresh the screen under the menu.

The RedrawRoutine should look something like this:

Refresh START

rect_addr equ 6 Offset down stack to RECT pointer.

14

.
’

Needed opcraiions to redraw the
screen inside the given RECT.

; Remove the given pointer from the stack:

12

August 13, 1986 Appendix A | 8 |

lda 0,s Move the return
address down

sta 4,5 the stack.

1da 2,8

sta 6,s

pla Move the stack back to
the return

pla address.

rl Return to the Menu
Manager.

((File View IbT)

DRAWING

DrawMenuBar
input: None.

output: None.

Draws the current menu bar, along with any menu titles on the bar.

HiliteMenu

input Hilite: WORD - FALSE to draw normal, TRUE to highlight the title.
MenuNum:WORD - menu's ID.

output: None.

MenuNum is the the menu's ID. Its title is drawn using the menu bar's normal color if Hilite

is FALSE, or hilite color if TRUE. HiliteMenu should be called with Hilite FALSE, and
the menu ID of the selected menu, after the application has finished acting on a menu
selection.

FlashMenuBar
input: None.

output: None.

This will redraw the entire current menu bar using the bar's hilite color and then again using
its normal color.

(File V1e\vm)
August 13, 1986 Appendix A | |

MENU AND ITEM SHUFFLING

InsertMenu

input AddMenuw:LONG - handle of menu to insext.
InsertAfter:WORD - menu ID, zero to insext at front.

output: None.
Inserts AddMenu into the current menu bar after InsertAfter, or at the front of the list if

InsertAfter is zero. DrawMenuBar should be called to redraw the new menu bar after
InsertMenu.

DeleteMenu
inpu: MenuNum:WORD - menu ID of menu to delete.
output: None.

MenuNum is take out of current menu bar. DrawMenuBar should be called to redraw the
new menu bar after DeleteMenu. The menu is not deallocated, call DisposeMenu to do
that.

InsertItem

input Addltem:LONG - address of item line to insert.
InsertAfter:-WORD - item ID, zero to add to front, $FFFF 10 append to end of menu.
MenuNum:WORD - menu ID number to add item to, zero for first menu.

output: None.

Inserts an item into the ItemList after InsertAfter. If InsertAfter is zero, the item will be
inserted at the front of MenuNum. If InsertAfter is $FFFF, the item will be appended at the
end of MenuNum. If MenuNum is zero, the menu will be considered the first menu. Call
CalcMenuSize to resize the menu if needed afterward. See MENU LINES AND ITEM
LINES for the definition of an item line.

[File View)
August 13, 1986 Appendix A ‘ 10 |

TN

Deleteltemn
input ItemNum:WORD - item ID of item to delete.

output: None.

ItemNum is taken out of ItemL.ist of its menu in the current menu bar. Call CalcMenuSize
to resize the menu if needed afterward.

((File View o5)
August 13, 1986 Appendix A | 11 |

MENU BAR ACCES

SetSysBar
input BarHandle:LONG - handle of new system menu bar.
output: None.

Handle of new system menu bar is given. The system menu bar becomes the current menu
bar.

GetSysBar
input: None.
output: BarHandle:LONG - handle of the system menu bar.
Returns the handle of the system menu bar.

SetMenuBar
input: BarHandle:LONG - handle of current menu bar.

output: None.

Handle of menu bar to make current is given. If you want the system menu bar to be the
current menu bar, pass zero for BarHandle.

GetMenuBar
' input None.
output: BarHandle:LONG - handle of current menu bar.

Returns the handle of the current menu bar.,

(Fiie_View)
August 13, 1986 Rppendix A 12|

CountMItems

input: MenuNum:WORD - menu's ID.

output: NumOfItems:WORD - number of items in menu.

Returns the number of items, including any dividing lines, in the menu.

SetBarColors

inputt NewBarColor:WORD - normal bar color.
NewlInvertColor: WORD - selected bar color.
NewOutColor; WORD - Qutline color in bits 7-4,

output: None.
Normal Color:

Hilite Color:

Qutline Color:

bits 0-3 = text color when not selected.

bits 4-7 = background color when not selecwd.
bits 8-15 = zero.

Negative to not change normal color.

bits 0-3 = text color when selected.

bits 4-7 = background color when selected.
bits 8-15 = zero.

Negative to not change hilite color.

bits 0-3 = zero.

bits 4-7 = color of menu bar outline, menu outline, underlines, and
dividing lines

bits 8-15 = zero.

Negative to not change outline color.

Color of current menu bar is set to given values that are not negative. Call DrawMenuBar
to draw menu bar in new colors.

August 13, 1986

(File View)
Appendix A 13

GetBarColors
inpnt: None.
output: Colors:LONG - colors of menu bar.
Returned menu bar colors are returned in one LONG of which:

bits 31-24 = zero.
bits 23-18 = color of menu bar outline, menu outline, underlines, and dividing lines
bits 19-16 = zero. ,

bits 15-12 = background color when selected.
bits 11-8 = text color when selected.

bits 7-4 = background color when not selected.
bits 3-0 = text color when not selected.

SetTitleStart
inputt XStart: WORD - menu bar title starting position.

output: ‘None.

XStart is the number of pixels from the left side of the menu bar that the titles should start.
Xstart should be at least 1. Zero will over write the left side outline of the menu bar. 127 is
the maximum value allowed.

GetTitleStart
input: None.
output: XStart:WORD - menu bar title starting position.
XStart is the number of pixels from the left side of the menu bar that the titles start from.

(e View [Z2r0)
August 13, 1986 Appendix A | 14 |

MENU RECORD ACCESS ROUTINES

GetMHandle
input: MenuNum:WORD - menu ID.
output: MenuHandle:LONG - handle of menu, zero if error.

Handle of menu with an ID number that matches menuNum is returned, or zero if the menu
is not found.

SetTitleWidth

inputt NewWidth:WORD - new width of title.
MenuNum:WORD - menu ID.

output None.

Sets the width of a title. This is the area where the user can select a menu and the area that is
inverted when the title is highlighted.

GetTitleWidth
inpuz: MenuNum:WORD - menu ID.
output: TheWidth: WORD - width of title, zero if error.

Returns the width of a title. This is the area where the user can select a menu and the area
that is inverted when the title is highlighted.

((FileView o0)
August 13, 1986 Appendix A | 15 |

' SetMenuFlag

\.. input: NewValue:WORD - new bit value to set or clear.
MenuNum:WORD - menu ID.

output: None.
Possible NewValues:

EnableMenu $FF7F Menu will not be dimmed and will be selectable.
DisableMenu $0080 Menu will be dimmed and not selectable,

UnhiliteMenu ~ $FFBF Menu will appear in its highlighted state.

HiliteMenu $0040 Menu will appear in its normal (unhighlighted) state.
ColorReplace = SFFDF The menu's title and background will be redrawn to hilite.
XORhilite $0020 The menu's title area will be XORed to hilite.
StandardMenu $FFE7 The menu will be considered a standard menu.
CustomMenu $0010 The menu will be considered a custom menu.

If you change a flag that affects the appearance of a menu title you should also call
DrawMenuBar after SetMenuFlag to redraw the titles in their new state.

GetMenuFlag

P

inputt MenuNum:WORD - menu ID.
output: MenuState:WORD - desired bits from MenuFlag.
Retums MenuNum.MenuFlag (see MENU RECORDS for definition).

SetMenuTitle

input NewSorg:LLONG - Address of string to replace ItemName.
MenuNum:WORD - menu ID.

output: None.

The value in NewStrg is moved into the menu's TitleName.

[File View |35)
August 13, 1986 fippendix A | 16 |

GetMenuTitle
input: MenuNum:WORD - menu ID.
output: TheTitle:LONG - pointer to TitleName.
Returns a pointer to the title of 2 menu.

SetMenulD

input: NewID:WORD - new ID to be assigned.
MenuNum:WORD - current menu ID.

output: None.

The menu is assigned the given ID number.

(File Vie

August 13, 1986 Rppendix A

W
17 |

ITEM RECORD ACCESS ROUTINES

Setltem

input NewStrg:LONG - Address of string to replace ItemNarme.
ItemNum:WORD - item ID.

output: None.

The itern's IternName pointer is replaced with NewStrg,

Getltem
input: ItemNum:WORD - item ID.
output: ItemStrg:LONG - pointer to ItemName.

Returns a pointer to an item's text string.

Enableltem
input: IternNum:WORD - item ID.
output: None.

Item will appear as normal and selectable.

| File View [[gbl)

August 13, 1986 Appendix A | 18

.\
N

Disableltem
input: ItemNum:WORD - item ID.
output: None.
Item will appear dimmed and will not be selectable.

CheckItem

input: Checked:WORD - TRUE to check item, FALSE to uncheck item.
ItemNum:WORD - item ID.

output: None.

Item will appear with a check mark to the left of the item's text, or nothing will appear if
Checked is zero.

SetItemMark

input Mark:WORD - character to mark item with, zero for no mark.
IternNum:WORD - itern 1.

output: None.

Item will appear with the character given to the left of the item's text, or the mark will not
appear if Mark is zero.

GetltemMark
input: ItemNum:WORD - item ID.
output: Mark:WORD - character that marks item, zero = no mark.

[File View J[;]
August 13, 1986 Appendix ﬂ{iw_lg__

SetltemStyle

input: ChStyle:WORD - text style to use on item's text.
ItemNum:WORD - item ID.

output: None.

Bits in ChStyle are set to enable special text drawing. Bits affected are:

$0001 - Bold.
$0002 - Italic.
$0004 - Underscore.
Bits 0-2 of chStyle are all used to set the item's text style. For example:
" chStyle = $0007 The item is printed as bold italic and underscored.
chStyle = $0005 The item is printed as bold and underscored.
chStyle = $0000 The item is printed as plain (no bold italic or underscore).
GetltemStyle

input ItemNum:WORD - item ID.
output: ChStyle:WORD - text style to use on item's text.

Bits in ChStyle are set to enable special text drawing. Bits affected are:

$0001 - Bold.
$0002 - Italic.
$0004 - LInderscore.

SetltemFlag

inputt NewValue:WORD - new bits to set.
ItemNum:WORD - item ID.

output: None.

This call is used to set desire states of an item. Input flags are:

Function NewValue
Underline item. $0040
Not underline an item. SFFBF
Use XOR highlighting, $0020

[(File View IEpea)
August 13, 1986 Appendix A | 20 |

-

Use redraw highlighting,

August 13, 1986

$FFDF

[File” View

fippendix A | 21

GetltemFlag
\ input: IteraNum:WORD - item ID.

" output: Divide:WORD - current underline value.
XOR:WORD - current highlighting method.

Outputs are:

OldDivide 0 = no underline 1 = underline
OIIXOR 0 =redraw to highlight 1 =XOR to highlight

SetItemID

inputt NewID:WORD - new ID to be assigned.
ItemNum: WORD - current item ID.

output: None.
The item is assigned the given ID number.

SetIternBlink
inputt Count:WORD - number of times itern should blink when selected.

output: None.

This call affects all menu bars, system and window. When an enabled item is selected by the
user the item blinks briefly to conform the chioce. Normally, your application shouldn't be
concerned with this blinking; the user sets it with the Control Panel desk accessory. If
you're writing a desk accessory like the Control Panel. though, SetItemBlink allows you -
to control the duration of the blinking. The Count parameter is the number of times menu
itemns will blink.

) (File View IEM)
N August 13, 1986 Appendix A | 22 |

MISCELLANEQUS ROUTINES

GetMenuMgrPort '
input: None.
output: MenuMgr:LONG - pointer to Menu Manager’s port.
Getting the Menu Manager's port might be useful if you would like to change its font.

MNewRes
input: None.
output: None.

Called when the screen resolution changes. Menu Manager makes needed adjustments for
the new resolution and redraws the current system menu bar,

InitPalette

input: None.
output: None.

Call when you've changed the color palattes. This will reinitize the palettes needed
for the color Apple logo in the system menu bar,

{ File View B
August 13, 1986 Appendix A 23

Constants

Masks for MenuFlag:
M_INVIS $04 FASLE if menu is visible (not complered).
M_STANDARD $10 FALSE if menu is a standard (not custom) menu.
M_NO_XOR $20 TRUE if menu title is highlighted using XOR.
M NORMAL $40 TRUE if menu title is highlighted.
M_ENABLED $80 FALSE if menu is disabled.
mDrawMsg 0 Draw menu command.
mChooseMsg 1 Hit test item command.
mSizeMsg 2 Compute menu size command.
mDrawTile 3 Draw menu's title command.

Posiible inputs to SetMenuFlag:

EnableMenu SFFIF Menu will not be dimmed and will be selectable.
DisableMenu $0080 Menu will be dimnmed and not selectable.
UnhiliteMenu SFFBF Menu will appear in its highlighted state,

HiliteMenu $0040 Menu will appear in its normal (unhighlighted) state.
ColorReplace SFFDF The menu's title and background will be redrawn to hilite.
XORhilite $0020 The menu's title area will be XORed to hilite.
StandardMenu SFFE7 The menu will be considered a standard menu.
CustomMenu $0010 The menu will be considered a custom menu.

Possible New Value input to SetItemFlag:

UnderlItem $0040 Undezline item.
NoUnderItem SFFBF Do not underline item.
XORHilite $0020 Use XOR highlighting on item,
NoXORHilite $FFDF Use redraw highlighting on item.
(File View)

August 13, 1986 Appendix A 24

——

Data Tvpes

TaskRec (TaskMaster record):
what ° 0
message 2
when 6
where 10
modifiers 14
TaskData 16
TaskMask 20

TASKREC_SIZE 22

MENUBAR (Menu Bar Record):
CtrlNext 0
CtrlOwner 4
CtrlRect 8
CtrlFlag 16
CtrlHilite 17
Ctrlvalue 18
CtrlProc 20
CtrlAction 24
Ctrlbhata 28
CtrlRefCon 32
CtrliColor 36
MenuList 40

MENU (Menu record):
MenulD 0

. MenuWidth 2
MenuHeight 4
MenuProc 6
MenuFlag 10
TitleWidth 11
TitleName 13

August 13, 1986

Integer
Longlnt
LongInt
Longint
Integer
LongInt
Integer

Handle
Pointer
RECT
Byte
Byte
Integer
Pointer
Pointer
LongInt
LongInt
Pointer
Handle[]

Integer
Integer
Integer
Pointer
Byte

Integer
Pointer

Same as event record.
Same as event record.
Same as event record.
Same as event record.
Same as event record.
Return for ID nurnberts.
Unused.

Size of TaskRec.

Not used.

Pointér to menu bar's window.
Enclosing rectangle.

Bit flags.

Not used.

Not used.

Not used.

Not used.

Reserved for CtelProc’s use.
Reserved for application's use.
Menu bar's color table.

Menu bar's color table.

Menu's IID number.
Width of menu.

Height of menu.

Menu's definition procedure,
Bit flags. '

Width of menu's title.
Menu's title.

(CFite_View JFERRI
Appendix A 25

	v5_05_01
	v5_05_02

