

CONTROL MANAGER ROUTINES

CtriBootInit

input: None.
output: None.
Called only by the loader when loaded.

CtriVersion

input: None.

output: Version:WORD Version number of the Control Manager.
N CtriReset
input: None.
output: None.
Called on system reset.
CirlStatus

input: None.
output: status:WORD - TRUE if Control Manager is active, FASLE if not.

August 13, 1986

CtriStartup

input: yourID:WORD Your ID number, used for memory allocation.
zeroPage:WORD Zero page Control Manager can use.
output: None.

InitCtriMgr allows the Control Manager to perform startup initialization. YourlID will be
used by the Control Manager when it allocates memory. ZeroPage is an address of a page
(256 bytes) in bank zero that your application makes available to the Control Manager for its
rfsc. The page does not have to be page aligned, but the Control Manager will operate faster
if itis. .

CtriShutDown
input; None.
output: None.

Deactivates the Control Manager. No controls are disposed of, CloseWindow in the
Window Manager disposes of all controls in a window. Therefore, the Control Manager
should not be shutdown until after the Window Manager has been shutdown.

CtriNewRes
input: None.
output: None.

Call CtriNewRes after you have changed the video mode. This routine will reinitialize
resolution and mode dependencies.

August 13, 1986 |<af 16 b

August 13, 1986 F=]53

NewControl

input: theWindow:LONG Pointer to window owner.

boundsRect:LONG Pointer to enclosing RECT.

title: LONG Pointer to title string (CiriData).

flag:WORD Bit vector of flags.

value:WORD Control's starting value.

param1:WORD Additional parameter (view size for scroll bars).
:WORD Additional parameter (date size for scroll bars).

defProc:LONG Address of definition procedure, or standard.

refCon:LONG Any value you want, application reserved.

colorTable:LONG Pointer to control's color table.

output: ControlHandle:LONG Control's handle, zero if error.

NewControl creates a control, adds it to the beginning of theWindow's control list, and
returns a handle to the new control. The values passed as parameters are stored in the
corresponding fields of the control record, as described below. The field that determines
highlighting is set to 0 (no highlighting).

Note: The control definition function may do additional initialization, including
changing any of the fields of the control record. The only standard
control for which additional initialization is done is the scroll bar; its
control definition procedure computes the thumber and page region from
boundsRect and flag.

TheWindow is the window the new control will belong to. All coordinates pertaining to the
control will be interpreted in this window's local coordinate system.

BoundsRect, given in theWindow's local coordinates, is the rectangle that encloses the
control and thus determines its size and location. Note the following about the enclosing
rectangle for the standard controls:

- Simple buttons are drawn to fit the rectangle exactly. (The control definition
function calls the QuickDraw procedure FrameRoundRect.) To allow for the
tallest characters in the system font, there should be at least a 20-point
difference between the top and bottom coordinates of the rectangle.

- For check boxes and radio buttons, there should be at least a 16-point
difference between the top and bottom coordinates.

- A standard scroll bar should be at least 48 pixels long, to allow room for the
scroll arrows and thumb.

Title is the control's title, if any (if none, you can just pass the empty string as the title). Be
sure the title will fit in the control's enclosing rectangle; if it won't it may not be completely
erase with HideControl, along with other possible side effects.

17 B

Flag is a bit vector that further defines the control. Bit 7 is a visible/invisiable flag for every
kind of controll. Bits 8-15 can be set to $FFxx to make the control inactive, but should be
normally set to zero for an active control. Bits 0-6 are defined by each type of control. The
bit vectors are defined below for standard controls.

Simple button flag: -

1 = bold autline.
0 = visible, 1 = invigible.

Check box flag:

0= visble, 1 = invisible.

Radio button flag:

HOEBEEERL
L)]
s Family number,
0 = visible, 1 = invisible.

b 1 a up arrow on scrall bar.

e | = down arrow on scroll bar.
b 1 @ |Gt arrow on scroli bar,

1 = right arrow on scroll bar.
bmrm— 0 @ V@tical scroll bm. 1 = horizontal.
0 = visible, 1 = invisible.

Grow box flag:

Quw visiblo, 1 = invisible,

August 13, 1986 <&k 18 |

The min and max parameters define the control's range of possible settings; the value
parameter gives the initial setting. For controls that don't retain a setting, such as buttons,
the values you supply for these parameters will be passed to the definition procedure, and it
‘may or may not store them in the control's record. So it doesn't matter what values you give
for those controls—0 for all three parameters will do. For dials, you can specify whatever
values are appropriate for min, max, and value. For standard scroll bars the min is the size
of the view, and max is the total data size. The standard scroll bar definition procedure will
store the value of min in the CtrlData field, and max in CtxlData+2 field.

DefProc is the address of the control's definition procedure. DefProcs for custom control
types are discussed later under "Defining Your Own Controls”. The values for the standard
control types are:

$00000000 - Simple button.
$02000000 - Check box.
$04000000 - Radio button.
$06000000 - Scroll bar.

RefCon is the control's reference value, set and used only by your application.

DisposeControl
input: theControl:LONG Handle of control.
output: None.

DisposeControl removes theControl from the screen, deletes it from its window's control

list, and releases the memory occupied by the control record and any data structures
associated with the control.

KillControls
input: theWindow:LONG Pointer to window.
output: None,

KillControls disposes of all controls associated with theWindow by calling
DisposeControl (above) for each control in theWindow's control list.

" Note: Remember that the Window Manager procedures CloseWindow
automatically dispose of all controls associated with the given window.

August 13, 1986 19 B

These procedures affect the appearance of a control but not its size or location.
SetCTitle

input: title:LONG Address of new title.
theControl:LONG Handle of control.
output: None.

SetCTitle sets theControl's title to the given string and redraws the control.

GetCTitle
input: theControl:LONG Handle of control.
output title:LONG Pointer to control's title.

GetCTitle returns the value in theControl's CtriData field, which, for controls with titles, is
the pointer to the control's title string.

HideControl
input: theControl:LONG Handle of control.
output: None.
HideControl makes theControl invisible. It fills the region the control occupies within its
window with the background pattern of the window's grafPort. It also adds the control's -

enclosing rectangle to the window's update region, so that anything else that was previously
obscured by the control will reappear on the screen. If the control is already invisible,

HideControl has no effect.

ShowControl
input: theControl: LONG Handle of control.
output None.

ShowControl makes theControl visible. The control is drawn in its window but may be

completely or partially obscured by overlapping windows or other objects. If the control is
already visible, ShowControl has no effect.

August 13, 1986 [afzi 20 FIO|

DrawControls

input: theWindow:LONG Pointer to window, of which the control list is drawn.
output: None.

DrawControls draws all controls currently visible in theWindow. The controls are drawn
in reverse order of creation; thus in case of overlap the earliest-created controls appear
frontmost in the window.

Note: Window Manager routines such as SelectWindow, ShowWindow,
and BringToFront do not automatically call DrawControls to
display the window's controls. They just add the appropriate regions to
the window's update region, generating an update event. Your program
should always call DrawControls explicitly upon receiving an update
event for a window that contains controls,

HiliteControl
input: hiliteState: WORD Operation to perform.
theControlLONG Handle of control.
output: None.

HiliteControl changes the way theControl is highlighted. HiliteState has one of the
following values:

- The value O means no highlighting and the control is active. Any highlighted
part of the control is unhighlighted. If the control is inactive, it's changed to
active and redrawn. '

- A value between 1 and 253 is interpreted as a part code designating the part of
the (active) control to be highlighted.

- The value 255 means that the control is to be made inactive and redrawn
accordingly.

Note: The value 254 should not be used; this value is reserved for future use.

HiliteControl calls the control definition function to redraw the control with its new
highlighting,

August 13, 1986 [k

21 pHCD|

———

MOUSE LOCATION

FindControl
input: FoundCirl:LONG Address of where to store control handle.
xPoint: WORD X coordinate, in global coordinates, to check.
yPoint: WORD Y coordinate, in global coordinates, to check.
theWindow:LONG Pointer of window to check.
output: FoundPart: WORD Part code of found part on control.

When the Window Manager function FindWindow reports that the mouse button was

in the content region of a window, and the window contains controls, the application
should call FindControl with theWindow equal to the window pointer and thePoint equal
to the point where the mouse button was pressed (in the window's global coordinates).
FindControl tells which of the window's controls, if any, the mouse button was pressed
ine

- If it was pressed in a visible, active control, FindControl sets the
whichControl parameter to the control handle and returns a part code
identifying the part of the control that it was pressed in.

- If it was pressed in an invisible or inactive control, or not in any control,
FindControl sets whichControl to NIL and returns O as its resuit.

Note: FindControl also returns zero for whichControl and zero as its result if
the window is invisible or doesn't contain the given point. In these
cases, however, FindWindow wouldn't have returned this window in
the first place, so the situation should never arise.

August 13, 1986

TN

TestControl

input: xPoint: WORD X coordinate, in local coordinates, to check.
yPoint: WORD Y coordinate, in local coordinates, to check.
theControl:LONG Handle of control.

output: PartCode:WORD Part thePoint is over.

If theControl is visible and active, TestControl tests which part of the control contains
thePoint (in the local coordinates of the control's window); it returns the corresponding part
code, or zero if the point is outside the control. If the control is invisible or inactive,
TestControl returns zero. TestControl is called by FindControl and TrackControl;
normally you won't need to call it yourself.

TrackControl
input: startX:WORD X coordinate, in global coordinates, of starting point.
startY:WORD Y coordinate, in global coordinates, of starting point.
actionProc:LONG Address of routine, zero, or a negative number.
theControl:LONG Handle of control.
output PartCode:WORD Selected part when button was released.

When the mouse button is pressed in a visible, active control, the application should call
TrackControl with theControl equal to the control handle and startY and startX are equal to
the point where the mouse button was pressed (in the global coordinates). TrackControl
follows the movements of the mouse and responds in whatever way is appropriate until the
mouse button is released; the exact response depends on the type of control and the part of
the control in which the mouse button was pressed. If highlighting is appropriate,
TrackControl does the highlighting, and undoes it before returning. When the mouse
button is released, TrackControl returns with the part code if the mouse is in the same part
of the control that it was originally in, or with zero if not (in which case the application
shouid do nothing).

If the mouse button was pressed in an indicator, TrackControl drags a dotted outline of it
to follow the mouse. When the mouse button is released, TrackControl calls the control
definition procedure to reposition the control's indicator. The control definition function for
scroll bars responds by redrawing the thumb, calculating the control's current setting based -
on the new relative position of the thumb, and storing the current setting in the control

record. The application must then scroll to the corresponding relative position in the
document.

August 13, 1986 (<

——

P

August 13, 1986

TrackControl may take additional actions beyond highlighting the control or dragging the
indicator, depending on the value passed in the actionProc parameter, as described below.
The following tells you what to pass for the standard control types; for a custom control,
what you pass will depend on how the control is defined. ‘

- If actionProc is zero, TrackControl performs no additional actions. This is
appropriate for simple buttons, check boxes, radio buttons, and the thumb of
a scroll bar.

- ActionProc may be a pointer to an action procedure that defines some action to
be performed repeatedly for as long as the user holds down the mouse button.
(See below for details.)

- If actionProc is a negative number, TrackControl will check the CirlAction
field of the control's record. No additional actions will be performed if
CuxlAction is zero. If CtrlAction is negative, the control's definition procedure
will be called with an autoTrack message. If CirlAction is neither zero or
tcx:ngzg-ve, it will be considered a valid address of an action routine and be

The action procedure in the control definition edure is described in the section "Defining
Your Own Controls”. The action procedure should be of the form:

Myhetion

inputs: partCode:WORD Selected part.
theControl:LONG Handle of control.

outputs: None.

In this case, TrackControl passes the control handle and the part code to the action
procedure. (It passes zero in the partCode parameter if the mouse has moved outside the
original control part.) As an example of this type of action procedure, consider what should
happen when the mouse button is pressed in a scroll arrow or paging region in a scroll bar. .
For these cases, your action procedure should examine the part code to determine exactly
where the mouse button was pressed, scroll up or down a line or page as appropriate, and
call SetCtlValue to change the control's setting and redraw the thumb.

24 b

CONTROL MOVING AND SIZING

MoveControl
input: NewX:WORD New X origin of control.
NewY:WORD New Y origin of control.
theControl:LONG Handle of control.
output: None.

MoveControl moves theControl to a new location within its window. The top left corner
of the control's enclosing rectangle is moved to the horizontal and vertical coordinates h and
v (given in the local coordinates of the control's window); the bottom right comer is adjusted
accordingly, to keep the size of the rectangle the same as before. If the control is currently
visible, it's hidden and then redrawn at its new location.

DragControl
input: start’{:WORD X coordinate, in local coordinates, of starting point.
startY:WORD Y coordinate, in local coordinates, of starting point.
limitRect: LONG Pointer to bounds rectangle. -
slopRect LONG Pointer to slop rectangle.
axissWORD Movement constraint.
theControl: LONG Handle of control.

output None.

Called with the mouse button down inside theControl, DragControl pulls a dotted outline
of the control around the screen, following the movements of the mouse until the button is

released. When the mouse button is released, DragControl calls MoveControl to move
the control to the location to which it was dragged.

Note: Before beginning to follow the mouse, DragControl calls the control
definition function to allow it to do its own "custom dragging" if it
chooses. If the definition function doesn't choose to do any custom
gragging, DragControl uses the default method of dragging described

ere.

August 13, 1986 25 EoD

The startX,, startY, limitRect, slopRect, and axis parameters have the same meaning as for
the procedure DragRect., see DragRect.

SizeControl (not completed)

input: NewWidth:WORD New width of control.
NewHeight WORD New height of control.
theControl:LONG Handle of control.

output: None.

- SizeControl changes the size of theControl's enclosing rectangle. The bottom right comer
of the rectangle is adjusted to set the rectangle's width and height to the number of pixels
specified by w and h; the position of the top left corner is not changed. If the control is
currently visible, it's hidden and then redrawn in its new size.

August 13, 1986 < 26 Fo]

AN

CONTROL _RECORD ACCESS
SetCtlValue
input: CurValue:WORD Current value of control.
theControl: LONG Handie of control.
output: None.

SetCtlValue sets theControl's current setting to theValue and redraws the control to reflect
the new setting. For check boxes and radio buttons, the value 1 fills the control with the
appropriate mark, and zero clears it. For scroll bars, SetCtlValue redraws the thumb
where appropriate.

If the specified value is out of range, it's forced to the nearest endpoint of the current range.

GetCtlValue
input: theControl: LONG Handle of control.

e output: CurValue:WORD Control's current value.

GetCtlValue returns theControl's current setting.

August 13, 1986 27 B

SetCtlParams
input: param2:WORD Additional control parameter, defined by control.
param1:WORD Additional control parameter, defined by control.
theControl:LONG Handle of conixol.
output: None.

SetCtlParams is a way of setting new parameters to the control's definition procedure,
which will set the values and redraw the control if necessary. Simple buttons, check boxes,
and radio buttons, do not use param1 or param2, and no action is performed.

Of the predefined controls, only scroll bars use the parameters. Paraml is used as the scroll
bar's view, and param?2 the data size. If, for either parami or param?2, a -1 is passed, that
parameter will not be changed (this only applicable to predefined scroll bars, custom controls
may not support this feature). Example: .

You want to show am editable text document, with a single vertical scroll bar to the
right of the text. The text document has 300 lines, of which 30 can be displayed at
one time. To set the scroll bar you would pass 30 for param1 and 300 for param2.

If the user enters a line you would want to update the scroll bar. So, you pass -1 for
param! because there was no change in the view (although for predefined scroll bar
there is no advantage to passing the view size again rather than -1), and 301 for
param?2 to show the increased data size,

For this same document there is another approach you could take. You could pass
the view and data sizes as pixels. If every line is 10 pixels high, counting leading,
and there were 300 lines, of which 30 can be displayed, you would pass 300 for
param] and 3000 for param2. After the line was entered, you'd pass -1 for paraml
(or 300 again), and 3010 for param2. Because passing the number of pixels, rather
than the number of lines, is proportionally equivalent, the scroll bar will be identical
for either method. -

GetCtlParams
input: theControl:LONG Handle of control.
output: params:LONG paraml in high WORD,
: param2 in low WORD.

GetCtlParams returns theControl's additional parameter settings. See SetCtlParams for
a description of paraml and param?2.

August 13, 1986 (<l

Miscell Roui

DragRect

input:

output:

actionProc:LONG Address of routine, zero, or a negative number.
dragPattern:LONG Address of pattern to use for drag outline,
startX:WORD X coordinate, in local coordinates, of starting point.
startY:WORD Y coordinate, in local coordinates, of starting point.
dragRect:LONG Pointer to rectangle to be dragged.

limitRect:LONG Pointer to bounds rectangle.

slopRect:LONG Pointer to slop rectangle.

axissWORD Movement constraint.

MoveDelta:LONG Low WORD is the amount Y changed,

High WORD is the amount X changed.

DragRect pulls a dotted outline of dragRect around the screen, following the movements of
the mouse until the button is released.

GetCtrizpage
input:
output:

- StartY and startX are assumed to be the point where the mouse button was
originally pressed, in the local coordinates of the current port.

- LimitRect limits the travel of the control's outline, and should normally
coincide with or be contained within the current port.

- SlopRect allows the user some "slop” in moving the mouse; it should
completely enclose limitRect. SlopRect is the limit of mouse movement
before the drag outline is snapped back to its starting position. While the
cursor is outside of slopRect the drag outline will be at its starting position.

- The axis parameter allows you to constrain the control's motion to only one
axis. It has one of the following values:

CONST noConstraint = 0 No constraint.
hAxisOnly =] Horizontal axis only.
vAxisOnly = 2 Vertical axis only.

None.

CulZPage:WORD - Control Manger's direct (zero) page.

This call will normally only be made by the Dialog Manager. The Dialog Manager makes
this call because the Control and Dialog Managers share a single direct page.

August 13, 1986 (<

29 fHO|

SetCMgricons
input: newFont:LONG - handle of new icon font, negative to not set new font.
output oldFont:LONG - handle of current icon font (before newFont is set).
See CONTROL MANAGER ICON FONT for more information about the icon font.

August 13, 1986 (&G 30 K]

DEFINING YOUR OWN CONTROLS

In addition to predefined controls, you can also define "custom” controls of your own. Maybe you
need a three-way selector switch, a memory-space indicator that looks like a thermometer, or a
thruster control for a spacecraft simulator—whatever your application needs. Controls and their
indicators may occupy regions of any shape.

To define your own type of control, you write a control definition procedure in your application.
The Control Manager stores this address in the CtrlProc field of the control record. Later, when it
needs to perform a type-dependent action on the control, it calls the control definition procedure.

The Control Definition Procedure
The inputs and output of the definition procedure are:

input: message:WORD Desired operation.
param:LONG Depends on operation.
theControl: LONG Handle of control.

output: RetValue:LONG Depends on operation.

The message parameter identifies the desired operation. It has one of the following values:

0 Draw the control (or control part).

1 Compute the rectangle to drag.

2 Test where mouse button was pressed.

3 Do any additional control initialization.

4 Take any additional disposal actions.

5 Move the control's indicator.

6 Compute the parameters for dragging an indicator.

7 Drag either a control's indicator, or the whole control.
8 Called while dragging if -1 passed to TrackControl.
9 Called when control gets new value.

10 Called when control gets new additional parameters.
11 Called control moves, compute new position for parts.
12 Return record size of control (in bytes).

drawCntl
calcCRect
testCntl
initCntl
dispCntl
posCntl
thnmbCénl
autoTrack
newValue
setParams
moveCntl

recSize

As described below in the discussions of the routines that perform these operations, the value
passed for param, depends on the operation. Similarly, the control definition procedure is expected
to return a function result only where indicated; in other cases, the function should return zero.

31 kD]

August 13, 1986 Fe=lEE

/
/

The Draw Routine
message = drawCntl.
param = part code - draw part.
= zero - draw entire control,

(Only the low WORD is used, high WORD is undefined.)
RetValue = undefined.

The message drawCntl asks the control definition function to draw all or part of the control within
its enclosing rectangle. The low-order WORD of param is a part code specifying which part of the
control to draw, or zero for the entire control. If the control is invisible, there's nothing to do; if
it's visible, the definition procedure should draw it (or the requested part), taking into account the
current highlighting and value. :

If param is the part code of the control's indicator, the draw routine can assume that the indicator
hasn't moved; it might be called, for example, to highlight the indicator.

The Test Routine

message = testCntl.
param = low-order WORD =y point to check, in window's local coordinates.

= high-order WORD = x point to check, in window's local coordinates.
RetValue = undefined.

The Control Manager function TestControl sends the message testCntl to the control definition
function when the mouse button is pressed in a visible control. This message asks in which part of
the control, if any, a given point lies. The point is passed as the value of param, in the local
coordinates of the control's window; the vertical coordinate is in the low-order word of the long
integer and the horizontal coordinate is in the high-order word. The control definition function
should return the part code for the part of the control that contains the point; it should return zero if
the point is outside the control or if the control is inactive.

August 13, 1986 =g

The Routine to Calculate Indicator Rectangl

message = calcCRect.
param = address of RECT.
RetValue = zero for defauit RECT, nonzero if RECT is set.

Just before the Control Manager starts to drag a control, or its indicator, it will call the control's
definition procedure to determine the coordinates of the control, or its indicator. The highest bit of
param will be clear if the whole control is to be dragged, or set if its indicator is to be dragged.

If the definition procedure returns zero, and the whole control is to be dragged, the RECT is set to .
the control's enclosing rectangle. If the definition procedure returns zero, and the control's
indicator is to be dragged, the RECT is set to the thumb rectangle (see Scroll Bar Control Record) .

8,0 o [

message = initCatl.

param = low-order WORD is the paraml value passed to NewControl.
= high-order WORD is the param? value passed to NewControl.

RetValue = undefined.

After allocating and initializing the control record as appropriate when creating a new control, the
Control Manager sends the message initCntl to the control definition procedure. This gives the
definition procedure a chance to perform any type-specific initialization it may require. For
example, the control definition procedure for scroll bars initializes the thumb and page RECTs, and
also stores paraml and param2 in the CtriData field. The initialize routine for standard buttons,
check boxes, and radio buttons does nothing.

The Di Routi

message = dispCatl.
param = undefined.
RetValue = zero to continue disposal, nonzero to abort disposal.

The Control Manager's DisposeControl procedure sends the message dispCatl to the control
definition function, telling it to carry out any additional actions required when disposing of the
control. The predefined controls always return zero. If the definition procedure returns zero for
RetValue, the control will be erased, taken out of the control list, and its record deallocated.

By returning a nonzero number for RetValue, the definition procedure has a chance to abort the

disposal. This feature is provided even though I am unable to provide an example of when this
feature might be useful.

August 13, 1986 33 F2)]

n 2 3 I [B I (]
message = posCntl.
- low-order WORD is the vertical offset (delta y).

high-order WORD is the horizontal offset (delta x)
RetValue = zero for default reposition, nonzero if reposition completed.

When dragging a control's indicator to completed, TrackControl calls the control definition
procedure with the message posCntl to reposition the indicator and update the control's setting
accordingly. The value of param is a point giving the vertical and horizontal offset, in pixels, by
which the indicator is to be moved relative to its current position. (Typically, this is the offset
between the points where the user pressed and released the mouse button while dragging the
indicator.) The vertical offset is given in the low-order word of param and the horizontal offset in
the high-order word. The definition procedure should calculate the control's new setting based on

the given offset, update the CtrlValue field, and redraw the control within its window to reflect the
new setting.

Note: The Control Manager procedures SetCtlValue and SetCtIParams do not
call the control definition procedure with this message; instead, they pass the
newValue and setParams message (see below).

August 13, 1986 Qs 34 D

ey

¢
——?

The Thumb Routine
message = thumbCntl.

param = pointer to parameter block for dragging an indicator.
RetValue = zero for default reposition, nonzero if reposition completed.

Before the Control Manger begins to drag a control's indicator, it will call the control's definition
procedure with the message thumbCntl. The control definition procedure should respond by
calculating the limiting rectangle, slop rectangle, axis constraint, and outline pattern to use for
dragging the control's indicator. Param is a pointer to the following data structure:

limit_blk
bound_rect:RECT Limit of drag (not a pointer).
slop rect:RECT Limit of cursor (not a pointer).

axis_param:WORD Movement constrain.
drag_patt :LONG Pointer to pattern for drag outline.

Iéthe definition procedure returns zero, default parameters will be used. The defaults are computed
us:

bound_rect PageRegion (see "Scroll Bar Control Record").
slop_rect PageRegion plus 16 all around.
axis_param 2 if bit 12 of CtrlFlag is clear, 1 if set.

"drag_patt Pattern generated from color7 in control's color table.

See DragRect for more information about the parameters in the limit_blk. The parameters in
limit_blk will be passed to DragRect.

August 13, 1986 (< 35 o)

The Drag Routine

message = dragCntl.
param = part code to drag, zero to drag the entire control.
RetValue = zero to use default dragging, nonzero if dragging is completed.

The message dragCntl asks the control definition procedure to drag the control or its indicator
around on the screen to follow the mouse until the user releases the mouse button. Param specifies
whether to drag a part or the whole control: zero means drag the whole control, while a nonzero
value is the part code of the control part to drag.

The control definition procedure need not implement any form of "custom dragging"; if it returns a
result of zero, the Control Manager will use its own default method of dragging (calling
DragControl to drag the control or DragRect to drag its indicator). Conversely, if the control

definition procedure chooses to do its own custom dragging, it should signal the Control Manager
not to use the default method by returning a nonzero result.

If the whole control is being dragged, the definition function should call MoveControl to
reposition the control to its new location after the user releases the mouse button. If just the
‘indicator is being dragged, the definition function should execute its own position routine (see
below) to update the control's setting and redraw it in its window.

The Track Routine
message = autoTrack.
param = part code, zero if not currently in part.

RetValue = undefined.

You can design a control to have its action procedure in the control definition procedure. To do
this, pass -1 for actionProc parameter to TrackControl. TrackControl will respond by calling
the control definition procedure with the message autoTrack. The definition function should
respond like an action procedure, as discussed in detail in the description of TrackControl. It can
tell which part of the control the mouse button was pressed in from param, which contains the part
code The track routine for each of the standard control types does nothing,

August 13, 1986 36 o]

The New Vajue Routine

message = newValue,
param = undefined.
RetValue = number of bytes needed for control's record.

The Control Manager will call the control's definition procedure with the message newValue
anytime a control's value changes. First, the Control Manager will store the new value in the
CulValue field of the control's record. The definition should compute any new parameters affected
by the change, like a new thumb position for scroll bars, and then redraw the control (if visible).
The definition procedure can assume that control is already drawn is the window, so, in the case of
scroll bars, only the thumb has to be erased, and redrawn. Actually, the definition procedure for
standard scroll bars only erases the part of the thumb that uncovered the page region, rather than the
entire thumb.

The New “arameters Routine

message = setParams.
param = new parameters.
RetValue = undefined.

The Control Manager will call the control's definition procedure with the message setParams
anytime a control's additional parameters change. The term 'additional parameters' is defined by
the control. The values could be anything, even a pointer to more parameters. The definition
should the perform necessary actions the new parameters cause, including redrawing the control if
needed. The definition procedure can assume that control is already drawn is the window, unlike
when new parameters are sent with the message initCntl (see "The Initialize Routine").

The only predefined control that uses additional parameters is the scroll bar. The low-order WORD
is the view value, and the high-order WORD is the data size. Simple buttons, check boxes, and
radio button do nothing with addition parameters. The standard scroll bar definiton procedure will
store the values in the CiriData field of the control's record, compute a new thumb, and draw the
new thumb in the scroll bar (if visible).

August 13, 1986

The Move Routine

message = moveCntl.
= low-order WORD is the change in the vertical axis (delta y),
high-order WORD is the change in the horizontal axis (delta x).
RetValue = undefined.

The Control Manager will call the control's definition procedure with the message moveCntl from
MoveControl. The Control Manager will first hide the control, with HideControl, if it was
visible and move the control's enclosing rectangle (CtriRect field). The definition procedure should
compute any other parameters necessary and return. For example, the standard definition
procedure for scroll bars will also move the Thumb and PageRegion fields in the control record.
Upon return, the Control Manager will do a ShowControl if the control was visible on entry, to
draw the control at its new position. The definition procedure should not redraw the control here,
but should do everything necessary to ensure the control will be drawn properly at its new position.

The R i Size R 'I'.

message =recCntl
param = undefined. '
RetValue = number of bytes needed for control's record.

The Control Manager call the control's definition procedure the message recCntl from
NewControl before it allocates memory for the control's record. NewControl will then
allocate how ever many bytes is returned in RetValue for the control's record.

If your control only needs the standard control record, like buttons, check boxes, and radio
buttons, return the size of the standard record. If your control needs additional data fields, like a
scroll bar, return the size of the standard record, plus the additional size. You should never return a
number less than the number of bytes in a standard record.

Note: . TheControl, the handle of the control, passed to the definition procedure is not
valid in this case. Because the control's record has not been allocated, no
access to the record should be performed during this call. After the record has
been allocated and initialized by the Control Manager, the definition procedure
;v:{l be called again with the message initCntl, see "The Initialize Routine"

ow.

August 13, 1986 <2k 38 o]

Constants

NoPart
SimpleButt
CheckBox
RadioButt
UpArrow
DownArrow
PageUp
PageDown
GrowBox
Thumb

SimpleProc
CheckProc
RadioProc
SerollProc

CTRL_VIS
UP_FLAG
DOWN_FLAG
LEFT_FLAG
RIGHT FLAG
DIR_SCROLL
FAMILY
BOLD_BUTT

noConstraint
hAxisOnly
vAxisOnly

drawCtrl
calcCRect
"testCtrl
initCtrl
dispCtrl
posCtrl
thumbCtrl
dragCtrl
autoTrack
newValue
setParams
moveCtrl
recSize

August 13, 1986

o-dJoawtid WO

10
129

$00000000
$02000000
$04000000
$06000000

$0080
$0001
$0002
$0004
$0008
$0010
$007F
$0001

0
1
2

Wo~IaathHt Wi O

No constraint on movement.
Horizontal axis only.
Vertical axis only.

Draw control command.
Compute drag RECT command.
Hit test command.

Initialize command.

Dispose command.

Move indicator command.
Compute drag parameters command.
Drag command.

Action command.

Set new value command.

Set new parameters command.
Move command.

Return record size command.

(<&

39 EicD

Data Tvpes

CtrlNext
CtrlOwner
CtrlRect
CtrlFlag
CtrlHilite
Ctrlvalue
CtrlProc
CtrlAction
CtrlData
CtrlRefCon
CtrlColor

colorl
color2
color3
colord
colors
coloré6
color?

bound_rect
slop_rect
axis_param
drag_patt

August 13, 1986

16
17
18
20
24
28
32
36

oo NO

N O

16
18

Handle
Pointer
RECT
Byte
Byte
Integer
Pointer
Pointer
LongInt
LongInt
Pointer

Integer
Integer
Integer
Integer
Integer
Integer
Integer

RECT
RECT
Integer
Pointer

Handle of next control.

Pointer to control's window.
Enclosing rectangle.

Bit flags.

Highlighted part.

Control's value.

Control's definition procedure.
Control's action procedure.
Reserved for CtriProc's use.
Reserved for application's use.

Control's color table.

Drag bounds.

Cursor bounds.
Movement constrains.
Pattern for drag outline.

<Gk

40 B

