Cortland Workshop C

Language Reference

Alpha Draft: May 26, 1986

" Writer: Don Reed
Technical Publicadons, MS 22-K

Engineering Part Number: 030-3133

. Marketing Part Number: A2L.6003
Finance Number: PAP002-21

Alpha Draft . Page Conzents- i 26 May 1986

Cortland Workshop C

58 58888388 7 853355E888RESE

Cortland Workshop C

Language Reference

Contents

About this manual
The Cortand road map
The Technical Introducton
The machine reference manuals
The Toolbox manuals
The Cortland Programming Lanugages
The Programmer’s Workshop Manual
What about ProDOS?
All-Apple manuals
How to use this book
What this manual contains
Visual cues
Other materials you'll need
[anguage notation .

Programmer’s guide

Chapter 1: Getting started

About Cortland Workshop C

System requirements

Writing and running a sample program
Entering the sample program
Compiling and linking the sample program
Running the sample program
A longer sample program

Chapter 2: Using the Cortland Workshop C Compiler
About the Cortland Workshop C Compiler

Alpha Draft Page Conzents- ii

Contents

26 May 1986

Contents) Cortland Workshop C

Cornmand descriptions
Compiler commands
C
COMPILE
CMPL
CMPLG
Compiler optons
Source files, object files and listing files
Include-file search rules
Library Files for Compiling and Linking
About ProDOS/16
New ProDOS/16 features
Compatibilides
. Using ProDOS/16 from C
About Cortland tools
About libraries

8888888888888888

Part II: Language Reference '

Chapter 3: The Cortland Workshop C Language
Language Definition
Data types
Type void
Type enumn
Register variables
Structures
Rewrn, newline, and vertical tab
Predefined symbols
Standard Apple Numeric Environment extensions
Constants
Expressions .
Comparison Involving a NaN
Functions
Nurneric input/output
Numeric environment
About the SANE Library
Programming with IEEE arithmetic
Pascal-compatible functons
Pascal-compatibie function declarations
Pascal-compatible function definitions
Parameter and result data types
Implementaton notes
Byte ordering
Memory-allocation characterisdcs
Types unsigned char and unsigned short
Bit fields
Evaluation order
Case statements
Language anachronisms
Assignment operators
Initalization
Structures and unions
Compiler limitations

8888888888888888858858888888888888

Alpha Draft Page Contents- lii 26 May 1986

Cortland Workshop C

Chapter 4: The Standard C Library

Introduction to the Standard C Library

Standard C Library routines
Error numbers
abs
atof
atoi
close
conv
creat
ctype
dup
ecvt
exit
exp
faccess
fclose
fend
ferror
floor
fopen
fread
frexp
fseek
getc
gets
hypot
iocd
Iseek
malloc
memory
onexit
open
prind
putc
puts
rand
read
scanf
setbuf
sinh
stdio
string
strtol
trig-
ungetc
unlink
write

Chapter 5: The Cortland Interface Libraries
Introduction to the Cortland Interface Libraries
Cortland Interface Library Routines

Control Manager

Desk Manager

88888 283888835583888888888585888888858888858888888888¢8

Alpha Draft Page Contents- iv

Contents

26 May 1986

88888388388888838858858858888885888888 3388888588855558 g

>
BS)
5
S
§

Dialog Manager
Event Manager
File Operatons
Integer Math

Line Edit
Memory Manager
Menu Manager
Miscellaneous Tools
Print Manager
QuickDraw I
SANE Tools
Scrap Manager
Sound Manager
Text Tools

Tool Locator
Window Manager

Chapter 6: SANE and the C SANE Library
The SANE data types
A note on terminology
Descriptions of the types
Choosing a data type
Values represented
Range and precision of SANE types
Example
The float type
The double type
The comp type
The extended type
Extended arithmedc
Number Classes
Infinides
NaNs
Denormalized numbers
Exceptional conditons
Invalid operation
Underflow
Overflow
Divide-by-zero
Inexact
The Environment
C SANE Library constants and types
Excepdon condition constants
The DECSTROUTLEN constant
The. SIGDIGLEN constant
The FLOATDECIMAL and FIXEDDECIMAL constants
The decform structure type
The decimal structure type
The relop type
The numclass type
The exception type
The haltvector pointer type
The rounddir type
The roundpre type

Page Contents- v

Cortland Workshop C

26 Mav 1986

Cortland Workshop C Contents

000 The environment type
000 C SANE Library funcdons
000

Appendixes

g 8 8

58888888 388888 S888888ES

Appendix A: Calling Conventions
C calling conventions

Parameters

Functon results

Register conventions
Pascal-compatible calling conventions

Parameters

Function results

Register conventions

Appendix B: Files supplied with Cortland Workshop C
C Compiler files '

Standard C Library include files

Cortland Interface Library include files

Standard C Library object files

Cortland Interface Library object files

Appendix C: Comparison with Macintosh Workshop C
Data types

Register variables

Structured variables

Pascal-compatible function declaradons

% Issues for further investgation

'Appendix D: Library Index

(Contains an index entry for every define, rype, enuerarion literal, global variable,
and funcrion defined in the Standard C Library and Cortland Interface Library.)

Index
Glossary

Bibliography

Alpha Draft Page Contents- vi 26 May 1986

About This Manual

This manual contains the information about Cortland Workshop™ C that you need when
writing C programs for the Cortland™. It assumnes that most readers already know the C
programming language, as defined in Kemnighan and Ritchie’s The C Programming
Language. For this reason, it does not repeat their definition of the C language, but defines
the differences between Cortland C and “K and R” C. However, this manual can also be
used by those learning C for the first ime. The ingroductory chapters tell how to write,

compile, link, and run a simple C program From there, one can follow K and R or any
standard textbook on C.

- The Cortland road map

The Cortland has many advanced features, making it more complex than earlier models of
the Apple 0. To describe it fully, Apple has produced a whole suite of technical manuals.
The manuals are listed in Table A-1. Figure A-1 is a diagram showing the relatdonships
among the different manuals. Depending on the way you intend to use the Cortland, you
may need to refer to a select few of the manuals, or you may need to refer to most of them.

Table A-1. The Cortland Technical Manuals

Title - Subject

Technical Introduction to the Cortland what the Cortland is

Cortland Hardware Reference machine internals—hardware
Cortland Firmware Reference machine internals—firmware
Programmer’s Introduction to the Cortland sample program using the toolbox
Cortland Tools Reference: Part I toolbox specificadons

Cortand Tools Reference: Part I more toolbox specifications
Cortland Function Summary toolbox pocket guide

Cortland Programmer’s Workshop the development environment
Cortland Workshop Assembly Language Reference* using assembly language
Cortland Workshop C Reference* _ using C on the Cortland
Cordand Workshop Pascal Reference* using Pascal on the Cortland
ProDOS/8 Technical Reference ProDOS for Apple II programs
Contland Operating System Reference ProDOS and loader for Cortland
Human Interface Guidelines for all Apple computers
Apple Numerics Manual ~ numerics for all Apple computers

#There is a Pocket Reference for each of these.

Alpha Draft Page Preface- 7 26 May 1986

Cortland Workshop C Preface

Figure A-1. Roadmap to the technical manuals

To start finding
out about .
Technical _
the Cortland... Introduction To start learning
to the to program the
Cortland Cortland...
To learn how ortlan
the Cortland
WOrkS... Programmer's
§ . Y Introduction
§ COrﬂand to the
N Hardware Cortland
§ Reference
Q
To use the

development
environment... To use the
Toolbox...
To operate on :
files... - Cortland Cortland
: Programmer's : Tools
Workshop Reference:
Cortland Reference
Operating : Part |
System
Reference PS 8 s n Part Il
2nce i 3 i, :
To use
Touse asserpbly
TouseC... Pascal... language...
Cortland Cortland vC/Dor;la:d
Workshop |..." Workshop | - Aor S bc:p
c Pascal L ssemoly
Reference Reference anguage
Reference
Pocket Pocket Pocket
Reference " Reference Reference

Alpha Draft ' Page Preface- 8 26 May 1986

Preface Cortland Workshop C

The Technical Introduction

The Technical Introduction to the Cortland is an overview: it tells a little about a lot of
things, but it doesn’t tell everything about anything. To find out all about any one aspect of
the Cortland, you should read a specific technical manual. To find out which one, read on.

The Machine Reference Manuals

The Cortland Hardware Reference and the Cortland Firmware Reference contain
information about the machine itself. You don’t need to read these manuals to be able to
develop applications for the Cortland, but they will give you a better understanding of the
machine’s features. They will also provide the reasons why some of those features work
the way they do.

The Toolbox Manuals

Like the Macintosh, the Cortland has a built-in toolbox that can be called by applicadons.
The toolbox serves two purposes: it makes developing new applications easier, and it
supports the desktop user interface.

When you first start using the toolbox, the /ntroduction for Programemers provides the
recommendations and guidelines you need. It is not a complete course in programming for
the Cortland; rather, it is a starting point. It explains the Cortland tools and describes an
event-driven program. It includes a simple example of such a program that uses the
Cortland tools, and demonstrates the way you use the Cortland Programmer’s Workshop
to develop the program.

For detailed specifications of the tool calls, you’ll need the two volumes making up the
Cortland Tools Reference. The Cortland Function Summary is a pocket guide to the to0ls.
including the name and parameters for each tool call.

The Cortland Programming Languages

The Cortland does not restrict developers to a single programming language. Apple is
currently providing an assembler and compilers for C and Pascal. Other compilers can be
used with the workshop, provided that they observe the standards Apple has set up.

There is a separate reference manual for each programming language on the Cortland. The
manuals for the languages Apple provides are the Cortland Assembler Reference, the
Cortland C Compiler Reference, and the Cortland Pascal Compiler Reference.

The Programmer’s Workshop Manual

The core of the development environment on the Cortland is the Cortland Programmer’s
Workshop, also called CPW. CPW is a set of programs that enable developers to create
and debug applicatdon programs on the Cortiand. The manual that describes CPW is the
Cortland Programmer's Workshop manual. It includes information about the parts of the

Alpha Draft Page Preface- 9 26 May 1986

Cortland Workshop C Preface

workshop that all developers will use, regardless which programming language they use:
the shell, the editor, the linker, the debugger, and the udlides.

What About ProDOS?

ProDOS on the Cortland comes in two flavors: one for compatibility with the models of
Apple II that use 8-bit CPUs, called ProDOS/8, and one that utilizes the full power of the
Cortland, ProDOS/16. Those two versions of ProDOS are described in their own
manuals, ProDOS/8 Technical Reference and ProDOS/16 Technical Reference

All-Apple Manuals

In addition to the Cortland manuals mentioned above, there are two manuals that apply to
all Apple computers. Those are Hwmnan Interface Guidelines and Apple Numerics Manual.

How to use this book

If you are an experienced C programmer, Chapters | and 2 will give you enough
information to get standard C programs running. (If you have used other Cortland
programs, Chapter 1 will be redundant.) The remaining chapters tell you what you need to
write C programs that use the capabilities of Cortland.

If you are new to C, Chapter 1 will tell you what you need to go through a C textbook like

Kernighan and Ritchie. After that, you can learn about the capabilities of the compiler and
this partcular implementation.

What this manual contains

This manual contains the following chapters:
¢ About this Manual tells you about the manual.

* Chapter 1, Getting Started, describes Cortland Programmers Workshop C and takes
you through the steps of writing, compiling, linking, and running a sample program.

¢ Chapter 2, Using the C Compiler, describes the compiler, lists the compiler options,
and tells you which library files to compile and link with.

o Chapter 3, The Cortland Workshop C Language, describes Apple extensions to C
" and clarifies aspects of the language definition as they apply to this implementation.

e Chapter 4, The Standard C Library, documents functions for standard [/O, sﬁ'ing
manipulation, math routines, and other useful features not built into the language.

¢ Chapter 5, The Cortland Interface Libraries, lists the C interfaces to the Cortland
ROM and other Cortland tool routines.

« Appendix A, Calling Conventons, tells how to write calls between C and Pascal.

« Appendix B, Files Supplied with Cortland Workshop C, contains a list of all the files
that are supplied with this product.

®

- Alpha Draft Page Preface- 10 26 May 1956

Preface Cortland Workshop C

» Appendix C, Library Index, is a combined index of 1dcnt1ﬁers in the Standard C
Library and Cortland Interface Libraries.

Visual Cues

% Boilerplate on warnings, gray boxes, etc., to be added when available. This has not
yet been written for the Grand Design. ***

Other reference material you'll need

You'll néed to be familiar with these additional reference materials:

o Cortland Programmer’s Workshop, Apple Computer Inc. This book describes the
CPW environment in which the C compiler operates, including the editor, linker,
debugger, and other important tools.

o The C Programming Language, Kemighan and Ritchie, Prentice-Hall, 1978, This is
a standard reference book for the C language. C is formally defined in Appendix A.

o Cortland Tools, Apple Computer Inc. This book contains everything you need to
program using the Cortland ROM and associated RAM routines; it covers windows,
alert boxes, menus, graphics, and much more.

» Apple Numerics Manual.- Apple Computer, Inc. This book describes in detail the
floating-point implementation used in the Cortland.

Language Notation

This manual uses certain conventions in common with other Cortland language manuals.
The main purpose is to make sure you know which of three languages you’re looking at:

+ English is in Times Roman:

C is a very nice language with a very short name
e Cisin Courier:

int ndigitc([10]

+ Metalanguage expressions, used in syntax diagrams to indicate things that are
replaced by C, are in Times Italic: -

else if (condition)
statermnent

Here condirion and statermnen: are expressions that are replaced by actual C
expressions. The else if and the parentheses are C code.

Alpha Draft Page Preface- 11 | 26 May 1986

Chapter 1

Getting started

About Cortland Workshop C

Cortland Workshop C is a complete implementation of the C programming language. It
consists of a C compiler developed by MegaMax, Inc.; the Standard C Library; and the
Cortland Interface Libraries.

The C Programming Language by Kernighan and Ritchie is currently the most authoritatve
written definidon of C. However, the language has changed in several ways since the
book was written. In addition, numerous details of the language definidon are open to
interpretadon. Therefore, the de facro standard definition of C differs in several ways from
the language originally defined by Kemighan and Ritchie. This de facro standard is loosely
defined by the most widely used implementation of C, the Portable C Compiler (PCC).

Standard C is our narmne for the de facto standard definition of C as defined and
implemented by the Berkeley 4.2 BSD VAX implementadon of PCC, including the
docurnented Western Electic extensions. Cortland Workshop C is based on this de facto
standard (not on the proposed ANSI standard currently under development).

Apple has extended Standard C to facilitate writing programs for the Cortland. Cortland
Workshop C includes type void, enumeration data types, structure function pararneters and
results, enumeration data types, and a function modifier that allows calls to and from Pascal
programs and the Cortland Interface Libraries.

Cortland Workshop C supports the Standard Apple Numeric Environment (SANE). It
supports all SANE data types and operations, and gives the C programrmer full control of
the numeric environment. Cortland Workshop C together with the SANE library compose
a conforming implementation of extended-precision binary floating-point arithmedc as
specified by IEEE Standard 754. Furthermore, source programs written using only
float and double types and standard C operations compile and run without
modification.

System Requirements

You need a Cortland with at least one megabyte of RAM, two 800K disk dnves or one
800K drive and a hard disk, and CPW.

Alpha Draft Pagel-1 | 26 May 1986

Cortland Workshop C Chaprer |
Writing and running a sample program
Here is how to write, compile, link, and run a trivial sample program.

Entering the sample program

First choose Current Language from the Options menu, then select C from the list of
languages and click the Change button. Next open a command file by choosing New
Command from the File Menu. It’s named untitledin, where n is some unique number.
Now create a new file by choosing New from the File menu; name it mice

Then type a program:. for example:

main ()

{

printf (She sells C shells by the C shore.\n");
)

Now save the program by choosing Save from the File menu.

Compiling and linking the sample program
"To compile your program, enter the compile command from the command window.

For cxamplé. to compile and link mice, creating an object file she.root, enter the
following from the command window, then press RETURN:

compl she.keep = she

Running the sample program

Since you. are running under the shell, if you type
she

you will get
She sells C shells by the C shore.

immediately below it in the window.

A longer sample program

A more interesting sample program is in the file xxx.c on your CPW disk. It is reprinted in
Appendix N.

Alpha Draft : Page 1-2 26 May 1986

Chapter 2

Using the Cortland Workshop C

Compiler

About the Cortland Workshop C compiler

You can invoke the compiler with any of three commands:

COMP
COMPL
COMPLG

compile
compile and link
compile, link, and go

The last two commands also invoke the linker. The third also executes the program.

In its simplest form, the comp command compiles the source file, but saves no object file:
it simply verifies its correctness. To create an object file, use the keep option, described

below.

Command descriptions

The following notation is used to describe commands:

UPPERCASE
izalics
prefix

filename

Alpha Draft

Uppercase letters indicate a command or option name
Italics indicate a variable, such as a filename or address

This parameter the pathname of a directory. It does not include a file
name. The pathname must begin with a slash (/). For example, if

you are copying a file to the subdirectory subdirectory on the
volume volume, then the prefix parameter would be:
/volume/subdirectory/.

A filename may be preceded by any valid prefix. For example, if a
file is named £1ile in the subdirectory directory on the volume
volume, the filename parameter would be '

/volume/directory/£file .The unit names .CONSOLE,
PRINTER, .PRINTERI, .PRINTER2, and .PRINTER3 can be
used as filenames.

Page 2-2 26 May 1986

Chapter 2 " Cortland Workshop C

I A vertcal bar separates alternative choices. For example,
LIST ONIOFF indicates that the command can be entered as either
LIST ON or LIST OFF.

AlB An underlined choice is the default value.

[] Parameters enclosed in square brackets are optional.
You can type commands into the command file whenever the cursor appears in the left
margin. You must separate the command from its parameters by one or more spaces. You
can use the right-arrow key to expand command names; you can use the up- and down-
arrow keys to scroll through commands. Command names cannot be abbreviated, and are

case-insensitive. If you omit a required parameter, you are prompted for it. Any of these
commands can be placed in an EXEC command file for automnatic execution.

Compiler commands

The Workshop C compiler recognizes the following commands:

C

This language command sets the Shell default language to Cortland Workshop C.

COMPILE

COMPILE [+LI-L] (+S!-S)sourcefile [KEEP=outfile] INAMES=(seg![seg2[,...]1)]
[languagel=(opton ...) [language2=(option ...) ...]]

This internal command compiles (or assembles) a source file. Its functon is identical to
that of the ASML command, except that it does not call the Linker to link edit the object
modules it creates; therefore, no load module is generated. See the ASML command for a

description of the parameters. See your compiler manual for the default values of the
parameters.

CMPL

CMPL [+LI-L] {+SI-S)sourcefile [KEEP=outfile] [NAMES=(seg![.seg2(,...]])]
{languagel=(option ...) [language2=(oprion ...) ...]]

This internal command compiles (or assembles) and links a source file. Its function and

parameters are idendcal to those of the ASML command. See your compiler manual for the
default values of the parameters and the language-specific options available.

Alpha Draft Page2-3 26 May 1986

Cortland Workshop C

CMPLG

Chapter 2

CMPLG [+LI-L] [+SI-S)sourcefile [KEEP=outfile] [NAMES=(seg!l[seg2l,...]1))]
[languagel=(option ...) [language2=(option ...) ...]]

‘This internal command compiles (or assembles), links, and runs a source file. Its function
is identical to that of the ASMLG command. See the ASML command for a descripton of
the parameters. See your compiler manual for the default values of the parameters and the
language-specific options available.

Compiler options

The Workshop C compiler recognizes the following optons:

Table 1-1. Compiler Options

Option
+LJL

+SI-S

sourcefile
KEEP=outfile

Alpha Draft

Description

If you specify +L, the compiler generates a source listing; if
you specify -L, the listing is not produced. +L is the default
unless you specify the LIST OFF directive in the source
file. The L parameter overrides the LIST directive in the
source file. *** [s this oue? ***

If you specify +S, the compiler produces a symbol table; the
linker (if it has been invoked) also produces an alphabetical
listing of all global references in the object module. The
CPW Assembler, for example, produces an alphabetcal
listing of all local symbols following each END direcdve. If
you specify -5, these symbol tables are not produced. Each
language has its own default for this parameter; the CPW
Assembler defaults to +S unless you specify the SYMBOL
OFF directive in the source file. The S parameter in this
comrmand overrides the SYMBOL directve in the source
file. *** 77 Is that true?? *** *** What are CPW defaults
for other languages??? ***

The full pathname and filename of the source file.

This parameter specifies the filename of the output file. For
a one-segment program, the output module is named
outfile.root. If the program contains more than one
segment, the first segment is placed in outfile.root and the
other segments are placed in outfile.a, outfile.b, and so
forth. If this is a partial compilation, other filename
extensions may be used; see the section “Parual
Compilation” in this chapter. If the assembly is followed by
a successful link edit, then the load file is named outfile.

Page2-4 26 May 1986

Chaprer 2

NAMES=(seg! seg2,...)

Alpha Draft

Cortland Workshop C

This parameter has the same effect as placing a KEEP
directive in your source file. If you have a KEEP directive
in the source file and you also use the KEEP parameter, then
the filename in the KEEP directive takes precedence. In this
case, two object modules are produced with the extension
.ROQT; one corresponding to the parameter and one to the
direcdve. However, other files with .A or other extensions
are created only with the filename used in the directve, and
the Link Editor uses only the filename given in the KEEP
directve.

Important: Keep the following points in mind regarding
the KEEP parameter:

o If you use neither the KEEP parameter nor the’KEEP
directive, then the object modules are not saved at all. In
this case, the link edit cannot be performed, because
there is no object module to link.

e The filename you specify as ouzfile must not be over 10
characters long. This is because the extension .ROOT is
appended to the name, and ProDOS does not allow
filenames longer than 15 characters.

o If a file named outfile already exists, it is overwritten
without a warning when this command is executed.

This parameter causes the compiler to perform a pardal
compilation; the operands seg/, seg2, ... specify the names
of the segments to becomnpiled. The CPW Linker
automatcally selects the latest version of each segment when .
the program is link edited.

You assign names to segments with START or DATA
directives. The object file created when you use the NAMES
parameter contains only the specified segments. When you
link a program, the Linker scans all the files whose
filenames are identical except for their extensions, and takes
the latest version of each segment. Therefore, you must use
the same output filename for every pardal compilaton of a
program. For example, if you specify the output filename as
OUTFILE for the original compilation of a program, then the
compiler creates object modules named OUTFILE.ROOT
and OUTFILE.A. In this case you must also specify the
output filename as OUTFILE for the pardal compilation .
The new output file is named OUTFILE.B, and contains
only the segments listed with the NAMES parameter.

Note: No blanks are permitted immediately before or after
the equal sign in this parameter.

See the section “Partdal Assemblies or Compiles” in Chapter
2 of the CPW Manua! for a complete discussion of pardal
assemblies.

Page2-5 ‘ 26 May 1986

Cortland Workshop C ' Chaprer 2

languagel=(option ...) This parameter allows you to pass parameters directly to
specific CPW compilers or assemblers. For each compiler
or assembler for which you want to specify opdons, type the
name of the language (exactly as defined in the Command
Table), an equal sign (=), and the string of options enclosed
in parentheses. The contents and syntax of the options
string is specified in the compiler or assembler reference
manual; the CPW Shell does no error checking on this
string, but passes it through to nthe cormpiler or assembler.
You can include option strings in the command line for as
many languages as you wish; if that language compiler is not
called, then the string is ignored.

Note: No blanks are permitted immediately before or after
the equal sign in this parameter.

Listings and error messages are sent to the command window unless you include a’
PRINTER ON directive (or equivalent) in the source file; or redirect output to another
window, disk file, or the printer in the command line. Output redirection is described in
the section “Redirecting Input and Output” in this chapter.

Important: If you are using a LinkEd file to take advantage of the advanced link-

edit capabilities it provides, do nor use the ASML command. Instead, use either

the ASSEMBLE or COMPILE command to assemble or compile your program.

You can process the LinkEd file automatically by appending it to the end of your

program with an APPEND directive (or the equivalent), or you can process it

ié}clicpcndsendy with the ALINK command. The Linker is described in detail in
apter 8.

Source Files, Object Files, and Listing Files

The compiler writes error and warning messages to the standard error file. The message
contains source file name, line number, and error or warning text. If no errors or warnings
are detected, the comnpiler runs silently.

If you specify the ~p option, the compiler writes progress information and summary
informaton to the standard error file.

C source-file names end with the suffix “.c” by conventon. C object-file names consist of
the source file name followed by *.0” by default.

Include-file search rules

If the include-file name is a full pathname, the compiler uses that name. A full pathnamne
does not begin with a colon (:) and contains at least one embedded colon. A partal
pathname either begins with a colon or does not contain a colon. (For more information
about pathname syntax, refer to Cortland Programmer’s Workshop.)

If the include-file name is a partial pathname, the compiler searches for include files using

the rules shown in Table 1-2. The first file successfully opened using these rules is
included.

Alpha Drajt Page2-6 - 26 May 1986

Chapter 2 . Cortland Workshop C

Table 1-2. Include-file search rules
Include-File Name Example Search for Partial Pathname
In double quotes. ":Constants.h" Look in the following directories:

(1 The directory of the source file that
contains the include statement.

(2) Directories specified by the =i option.
in the order given.

(3) Directories specified by the
environment variable C/ncludes.

In angle brackets. <CType.h> Look in the directories described under (2)
and (3) above.

Library files for compiling and linking

Appendix B, “Files Supplied with Cortland Workshop C,” contains a list of include files
and object files to be used with C. Specify the include files when compiling and the object
files when linking. For more informadon on linking C programs, refer to the Linker
chapter of Cortland Programmer's Workshop.
In general, you will want to specify

+ all of the Standard C Library files listed in Appendix B

* only the particular Cortland Interface Libraries files you refer to in your program.

About ProDOS/16

ProDOS/16 is a new operating system for the Cortland. It is a superset of the ProDOS
used on earlier Apple Il computers. It supports all features of ProDOS but is more
powerful, both in additional features and in improved performance

ProDOS/16 has a new system call structure that takes advantage of the 65SC816 processor.

New ProDQS/16 features

ProDOS/16 is designed to take advantage of certain Cortland capabilities and to provide
‘additional programming convenience over ProDOS. For example:

* You can make ProDOS/16 system calls from anywhere in memory, using paramneter
lists located anywhere in memory. By comparison, ProDOS calls and lists must be
in the lowest 64K of memory.

« You can make [/O data transfers under ProDOS/12 to or from anywhere in
memory. ProDOS can perform [/O only with the lowest 64K bytes of memory.

Alpha Draft " Page2-7 26 May 1986

Cortland Workshop C

Chapter 2

¢ ProDQS/16 provides extensive support for named devices, which can be block or
character devices. ProDOS supports only block devices and requires you to refer to
a device by its volume name or its slot and drive numbers.

* ProDOS/16 supports up to four system prefixes; ProDOS supports only one.
o ProDOS allows any number of online devices; ProDOS allows only two devices

per slot.

» ProDOS/16 supports at least three block device protocols, allowing an application

to transparently use so-called “guest file systems”, such as the Macintosh

hierarchical file system [or MS/D0OS?77]

¢ ProDQS/16 supports up to 16interrupt handlers; ProDOS supports only four.
Furthermore, ProDOS/16 allows for more than one method of handling unclaimed

interrupts.

¢ ProDQS/16 assigns each caller a unique identificaton number. ProDOS does not.

¢ ProDOS has a volume mount function, which prompts the user to mount a needed
volume; ProDOS does not.

ProDQS/16 has the following system calls that are not in ProDOS:

CLEAR_BACKUP BIT Clears a file access bit

CHANGE_PATH

Moves a file’s directory within a volume

SET_LEVEL Sets the system file level

GET_LEVEL Retumns the system file level

GET_DEV_NUM Returns the reference number for a named device
START_PRODOS Returns a caller idendfication number
END_PRODOS Releases a caller identification number

GET_PATHNAME
GET_BOOT_VOL
GET_VERSION

Returns pathname of current system program
Returns name of volume that contains ProDQS/16
Returns the current ProDOS/16 version

GET_ENTRY Returns ASCII string with directory informaton

WRITE_PROTECT Determines the write-protect status of a volume

GET_DIB Returns a device information block

SAVE_STATE Saves system state when leaving an application

RESTORE_STATE Restores systemn state when an application returns

SET_INT_MODE Sets method of handling unclaimed interrupts
Compatibilities

ProDQS/16 is functionally upward-compatble with ProDOS. While a program requires
modification to run under ProDOS/16, ProDOS/16 supports all of ProDOS’s capabilides:

« The set of ProDOS/16 system calls is a superset of the ProDOS system calls. For
nearly every ProDOS system call, there is a functionally equivalent ProDOS/16 call,
usually with the same name.

Alpha Draft Page2-8 26 May 1986

Chapier 2 Cortland Workshop C

o The calls are made in nearly identical ways in both systems, and the parameter lists
are laid out simalarly.

¢ ProDQOS/16 uses exactly the same file system as ProDOS. It can read from and
write to any disk volume produced by ProDOS, and vice versa. Both physical and
logical file and volume formats are the same,

e The ProDOS/16 interrupt-handling procedures and QUIT protocol are funcdonally
compatble with ProDOS.

Using ProDOS/16 from C -

ProDOS/16 is fully accessible from C. All ProDOS/16 calls are available through the
Cortland Interface Library for C, which provides interface (“glue’™) code to handle
parameter passing and routne calling. The interface code is listed in Chapter 5; the calls are
described in more detail in the Corrland Tool Reference and the ProDOS/16 Reference

For example, if your program’s caller ID is 1 and you wished to change a file’s pathname
from /carmakers/ford/iaccocca to /carmakers/chrysler/iaccocca, you would use the call

change_path(/carmakers/ford/iaccocca, /carmakers/chrysler/iaccocca)

About Cortland tools

The Cortland User Interface Toolbox is designed so that you don’t have to reinvent the
menu. All the routines you need to handle mice and menus, windows and files, and other
aspects of the human-machine interface, are in the Cortand Interface Toolbox. It consists
of of nearly 600 routines, grouped into the following tools:

» Tool Locater

* Memory Manager
» Event Manager

¢ QuickDraw I

+ SANE

e Desk Manager

* Sound Manager

» Control Manager
* Dialog Manager

¢ Menu Manager

° Window Manager
» File Operadons

« Scrap Manager

¢ Print Manager

e Line Edit

¢ Miscellaneous Tools |

Assembly-language programs call toolbox routines by means of call names. This is the
sequence:

1. Push space for the result (if any) onto the stack.

2. Push the input parameters onto the stack.

Alpha Draft Page 2-9 26 May 1986

Cortland Workshop C : | Chapter 2

3. Invoke the call macro.
4. Pull the result (if any) from the stack.

C programs call toolbox routines by calling functions in the Cortland Interface Library for
C. These functons take care of the parameter passing. The interface library is listed in
Chapter 5; the calls are described in more detail in the Cortland Tool Reference.

Appendix N is an exemplary event-driven application in C showing the use of the Cortland

tools. It is akin to the application in the Cortiand Tool Reference. This can be used as a
model or plundered for useful code.

About libraries

The following libraries are provided with Cortland Workshop C:

o The Standard C Library (Chapter 4) is a collection of basic routines, not part of the
C language, that let you read and write files, examine and manipulate strings,

perform data conversion, acquire and release memory, and perform some
mathematcal procedures.

o The Cortand Interface Libraries (Chapter 5) are a set of interfaces from C to the

Cortland Toolbox. They enable you to write C programs that access the routines
described in Cortland Tool Reference.

¢ The SANE Library (Chapter 5) in the Cortland Interface Libraries provides
mathematical functions and supports floating-point arithmetic. Its routines are
documented in the Apple Nwnerics Manual.

#** Should the SANE Library be a separate chapter, or part of Chapter 57 ***

Within Chapters 4 and 5, the material is alphabetical by function or library name. All of the
identfiers defined in the libraries are listed in a combined index in Appendix C. The files

associated with these libraries are discussed under *“Library Files for Compiling and
Linking” in Chapter 2.

Alpha Draft ' Page 2- 10 26 May 1986

C.hapter 3

" The Cortland Workshop C Language

‘Language Definition

The inforrnation provided in this chapter supplements The C Programmir;g Language by
Kernighan and Ritchie. Where their language definition leaves choices to the
implementers, this chapter describes how these aspects of C have been implemented on the

Cortland. Where Apple has modified or extended their language definition, this chapter
documents the changes.

Data Types

Table 3-1 lists the arithmetic and pointer types available in Cortland Workshop C and
shows the number of bits allocated for variables of these types. Types short and long
represent 16-bit and 32-bit integers, respectively. The machine type int is a 16-bit integer
on Cortland: it is the type the 65SC816 uses most efficiently. Pointers require 32 bits.
Enumeradon types are allocated either 8,16, or 32 bits, depending on the range of the

enumeraton literal values. Types char, short, int, and long use two’s-complement
representation.

Alpha Draft Page 3- 1 26 May 1986

Cortland Workshop C Chapter 3

Table 3-1. Size and Range of Data Types

Data Type Bits Description
char § - range-128to0 127
unsigned char 8 range 0 to 255
short ' 16 range -32,768 to 32,767
unsigned short 16 range 0 to 65,535 °

int 16 range -32,768 to 32,767
unsigned int 16 range 0 to 65,535
long 32 range -2,147,483,648 to0 2,147,483,647
unsigned long 32 range 0 to 4,294,967,295
enum 8, 16, or 32 depends on the range of the enumeration literals
* 32 pointer types
float 32 I[EEE single-precision floating point
double 64 IEEE double-precision floating point
comp 64 SANE signed integral values
extended 80 IEEE extended-precision floating point
Type void

Type void has no values and no operators. Type void may be used as a type specifier in
functon declaratons to indicate that the function has no meaningful renurn value.
Specifying type void in Pascal-compatible function declaratons reduces the number of

instructions generated in calling the functdon. (See “Pascal-Compatible Functions” later in
this chapter.)

Type enum

Type enum is a type analogous to the enumeradon types of Pascal. Its syntax is sirnilar to
that of the struct and union declarations:

enwam-specifier:
enum { enum-list }
enum identifier (enum-list)
enum identifier

erumn-list:
enumerarion-declaration
enumeration-declaration , enumn-list

enumeration-declaration:
idennifier

Alpha Draft Page 3-2 26 May 1986

Chapter 3 Cortland Workshop C

idenrifier = constant-expression

The first identifier in enum-specifier, like the sructure tag in a struct-specifier, names a
particular enumeranon. For example,

enum color (chartreuse, burgundy, claret, winedark}:;

enum color *cp, col:

This enumeration makes color the enumeration tag of a type describing various colors
and then declares cp as a pointer to an object of that type and col as an object of that type.

The identifiers in eruun-list are declared as constants and may appear wherever constants
are required. If no enumerators with a consrant-expression appear, the values of the
constants begin at 0 and increase by 1 as the declaration is read from left to right. An
enumerator with a constant-expression gives the associated idendfier the value indicated;
subsequent identifiers continue the progression by 1 from the assigned value.

Enumeration tags and constants must be unique. They are drawn from the set of ordinary
identifiers, unlike structure tags and members. Objects of a given enumeration type have a
type distinct from objects of all other types.

Enumeration types are allocated the amount of space required by the smallest predefined
type that allows representation of all of the literal values specified by the enumeraton. The

predefined types considered are char and unsigned char (8 bits), short and
unsigned short (16 bits), and int and unsigned int (32 bits).

Register Variables

Most versions of C suppor register variables. Their functon is undefined in Cortland as a
result of the small number of registers available on the 65SC816 microprocessor. Use of
the register declaration causes the compiler to generate code at least as efficient as that
generated by the same program without register declarations.

Structures

Structures may be assigned, passed as parameters, and returned as function results. The
left and right sides of a structure assignment must have identical types. Similiarly, actual
and formal parameters must have identical types. Equality comparison for szuctures has
been implemented, provided the structures have the same type. :

Warning: -In functions that return structures, if an interrupt occurs during the
return sequence and the same functon is called reentrantly during the interrupt, the
value returned from the first call may be corrupted. The problem can occur only in
the presence of interrupts. Recursive calls are quite safe.

Alpha Draft Page 3-3 26 May 1986

Cortland Workshop C ' Chapter 3

Return, Newline, and Vertical Tab

Return i$ the usual line-termination character on the Cortland and is represented by \r (a

backslash character followed by a lowercase r). The newline character is represented by \n.

Vertical tab is represented by .

Predefined Symbols

_LINE_is a predefined preprocessor symbol whose value is the current line number
within the current source file. _FILE_ is a predefined preprocessor symbol whose value

is a character string consisting of the current file name. Each symbol begins and ends with
an underscore character.

The symbol Cortland is predefined for use in conditional compilation. *** Any others?

**¥ The symbol has the value 1, as if a statement of this form had appeared at the
beginning of the source code:

$define Cortland 1

Standard Apple Numeric Environment Extensions

Cortland Workshop C has built-in support for the Standard Apple Numeric Environment
(SANE). The language together with the SANE library support compose a scrupulously
conforming extended-precision implementation of the IEEE Standard for Binary Floating-
Point Arithmetc (754). SANE provides an extra data type and basic funcdons for
applicadon development. Qur C recognizes the SANE data types, uses SANE for all C
floadng-point operations and conversions, and correctly handles NaNs (Not-a-Number)
and infinities in comparisons and in ASCII-binary conversions. Furthermore, source
programs from other C implementations, if they were written using only float and

double types and standard C operations, will compile and run in Cortland Workshop C
without modification.

Much of SANE is provided through the run-time library sanelib and its include file

sane.h. However, to use extended-precision arithmetic efficientdy and effectvely, and to
handle [EEE NaNs (Not-a-Number) and infinities, some extensions to standard C are
required including use of the extended data type.

A change from double to extended as the basic floating-point type is the most salient
change to standard C. Since C was originally developed on the DEC PDP-11, the PDP-11
architecrure is reflected in standard C in the use of £1cat and double as floadng-point
types, with double as the basic type: floating-point expressions are evaluated to
double, anonyrnous variables are double, and floating-point parameters and function
results are passed as doubles. However, the low-level SANE arithmetic (as well as the
floadng-point chips Inte! 8087, Motorola 68881, and Zilog Z8070) evaluates arithmetic

operations to the range and precision of an 80-bit extended type. Thus, extended
naturally replaces PDP-11 double as the basic arithmetic type for computing purposes.
The types £1loat (IEEE single), double, and comp serve as space-saving storage types,
just as float does in standard C.

Alpha Drdft Page 3-4 26 May 1986

Chapter 3 Cortland Workshop C

The IEEE Standard specifies two kinds of special representations for its floating-point
formats: NaNs (Not-a-Number) and infinities. Cortland Workshop C expands the syntax
for I/O to accommodate NaNs and infinities, and includes the rreatment of NaNs in
relatonals as required by the [EEE Standard.

‘The SANE extensions to standard C are backward compatible: programs written using

only float and double floating-point types and standard C operadons compile and run
without modificadon. SANE does not affect integer arithmetic.

*** Does the term long double, used in the proposed ANSI C Standard, have any

meaning here? It might be useful to make long double mean extended, and vice
versa. ***

The Apple Numerics Manual contains detailed documentation of the Standard Apple
Numeric Environment.

Constants

Numeric constants that include floating-point syntax—a point (.) or an exponent field—or

that lie outside the range of long are of type extended. Decimal-to-binary conversion
for numeric constants is done at compile dme (and hence is governed by the default
numeric environment; see “Numeric Environment” in this chapter).

Expressions

The SANE types—float, double, comp, and ext ended—can be mixed in
expressions with each other and with integer types in the same manner that float and
double can in standard C. An expression consisting solely of a SANE-type variable,
constant, or funcdon is of type extended. An expression formed by subexpressions and
an arithmetic operation is of type extended if either of its subexpressions is.
Expressions of type extended are evaluated using extended-precision SANE arithmetic,
with conversions to type extended generated autornatically as needed. Parentheses in

extended-type expressions are honored: the compiler will not rearrange terms in
violation of parentheses. Inidalization of external and static variables, which may include

expression evaluation, is done at compile time; all other evaluation of extended-type
expressions is done at run time.

Comparison Involving a NaN

The result of a comparison involving a NaN operand is unordered. The usual trichotomy
of comparisons is expanded to less (<), greater (>), equal (==), and unordered. For
example, the negation of “a less than b” is not *‘a greater than or equal to b” but “(a greater

than or equal to b) OR (a and b unordered)”. The sanelib function relation tests all
four alternatives.

Alpha Draft Page 3-5 26 May 1986

Cortland Workshop C Chaprer 3

Functions

A numeric actual parameter passed by value is an expression and hence is of extended or
integer type. All extended-type arguments are passed as extendeds. Similarly,

all results of functions declared £1oat, double, comp, or ext ended are returned as
extendeds.

Numeric Input/Output

In addition to the usual syntax accepted for numeric input, the Standard C Library function

scanf recognizes "INF" as infinity and "NAN" as a NaN. NAN may be followed by
parentheses, which may contain an integer (a code indicating the NaN’s origin). INF and

NAN are optionally preceded by a sign and are case insensitive. The scanf specifiers for
SANE types extend standard C as follows: conversion characters £, e, and g indicate type
float; 1f, le, and 1g indicate type double; m£, me, and mg indicate type comp; and
ne, nf, and ng indicate type extended.

The Standard C Library functon print £ writes infinities as (-] INF and NaNs as
(=]NAN (ddd) , where (-] is the optional minus sign and ddd is the NaN code.

Numeric Environment

The numneric environment refers to rounding direction, rounding precision, halt enables,
and exception flags. IEEE Standard defaults—rounding to nearest, rounding to extended
precision, and all halts disabled—are in effect for compile-time arithmetic (including
decimal-to-binary conversion). Each program begins with these defaults and with all
excepdon flags clear. Functions for managing the environment are included in the library

sanelib. The compiler, in optimizing, will not change any part of the numeric

environment, including the excepdon-flag setting, which is a side effect of arithmetic
operations.

About the SANE Library

The SANE library rounds out the [EEE Standard implementation and provides the basic

tools for developing a wide range of applications. The SANE library includes the
following:

¢ logarithmic, cxponcnua.l. and wrigonometric functions

¢ financial functons

+ random number, generation

 binary-decimal conversion

 numeric scanning and formatting

* environment control

» other functons required or recommended by‘ the [EEE Standard

Alpha Draft Page 3-6 26 May 1986

Chapter 3 Cortland Workshop C

Addidonal information can be found under the SANE entry in Chapter 4, “Cortland
Interface Libraries.”

Programming with IEEE Arithmetic

Cortland Workshop C’s automatic use of the ext ended type produces results that are
generally better than those of other C systems. Extended precision yields more accuracy
and extended range avoids unnecessary underflow and overflow of intermediate results.

The programmer can further exploit the extended type by declaring all floating-point

temporary variables to be type extended. This is both ime- and space-efficient, since it
reduces the number of automatic conversions between types. External data should be

stored in one of the three smaller SANE types (float, double, or comp), not only for
economy but also because the extended format may vary between SANE
implementations. As a general rule, use £1oat, double, or comp data as program
input, extended arithmetic for computations; and £loat, double, or comp data as
program output.

In many instances, [EEE arithmedc allows simpler algorithms than were possible without
IEEE arithmetic. The handling of infinites enlarges the domain of some formulas. For

example, 1+1/x2 computes correcty even if x2 overflows. Running with halts disabled (the
default), a program will never crash due to a floating-point exception. Hence by
monitoring excepton flags a program can test for exceptonal cases after the fact. The
alternatve of screening out bad input is often infeasible, sometimes impossible.

Pascal-Compatible Functions

The funcdon-calling conventions used by Cortland Workshop C and Pascal differ radically
in the order of parameters on the stack, the type coercions applied to parameters, the
location of the return result, and the number of scratch registers. C has been extended to

allow functon calls between these languages. The specifier pascal in a function
declaraton or definition indicates a Pascal-compatible function.

Pascal-Compatible Function Declarations

A functon or procedure written in Pascal (or written in assembly language following
Pascal calling conventions) can be called from Cortland Workshop C. For example, the
DrawText procedure is defined in Pascal as:

PROCEDURE DrawText (textBuf: Ptr;
firstByte, byteCount: INTEGER);

The CPW syntax for declaring this procedure as a C function is:
extern pascal void DrawText ();
To make the code more readable, we can list the parameters in a comment:

extern pascal void DrawText():.
/* Ptr textBuf;

Alpha Draft Page 3-7 26 May 1986

Cortland Workshop C Chapter 3

short firstByte, byteCount;
extern; */

Pascal-Compatible Function Definitions

A funcdon definition (the actual functon), like a function declaratdon, can also be preceded

by the pascal specifier. The functdon then adheres to Pascal-compatible calling

conventions and can be called from Pascal. For example, the following C function can be
called from Pascal:

pascal void MyText (byteCount, textAddr, numer, denom)
short byteCount;
Ptr textAddr:
Point numer, demon:

{
}

The corresponding Pascal functdon declaraton is

PROCEDURE MyText (bytecount: INTEGER; textAddr: Ptr;
numer, denom: Point);

For compatibility with Pascal and assembly language, the compiler converts the names of
Pascal-compatible functions to uppercase before writing them to the object file. When they
are called in C programs, these routines should be capitalized exactly as they were declared
in C. Pascal-compatible functions whose names differ only in their capitalization will
become duplicate declaratons when their names are converted to uppercase by the
compiler; therefore such names should be avoided.

Parameter and Result Data Types

C and Pascal support different data types. Therefore when writing a Pascal-compatible
function declaration in C, a translation of the parameter types and function-result type (from
Pascal to C) is required. Often this ranslaton is trivial, but other cases are surprising.

Table 3-2 below summarizes this translation. Find. the Pascal parameter or result type in

the first column. Use the equivalent C type found in the second column when declaring the '

function in C. Comments in the table point out unusual cases which may require special
attention.

Table 3-2. Parameter and Result Data Types

Pascal Data Type C Equivalent Comments

boclean Boolean Boolean is defined in file Types.h
asenum {false,true}.

var boolean Boolean * InC, falseis zero and true is
often considered nonzero.

boolean result Boolean In Pascal, false is zero and true
is one.

enumeration enum Use identical ordering of the

Alpha Drafs Page 3-8 26 May 1986

Chaprer 3

(<128 or >255 literals)

enumeration
(128 to 255 literals)

var enumeration

(<128 or >2535 literals) .

var enumeration

(128 to 255 literals)

enumeration result
(<128 or >255 literals)

enumeration result
(128 to 255 literals)

char
var char
char result

integer
var integer
short result

longint
var longint
longint result

real

var real
real result

double

var double
double result

comp

var comp
comp result

extended

var extended
extended result

pcinter

Alpha Drafi

short
enum *
short *

enum

short
short
char *
short

short
short *
short

int or long
int * or long
int or long

extended *

float *
fleoat

extended *

double *
double

extended *

comp *
comp

extended *

extended *
extended

pointer

Page 3- 9

Cortland Workshop C

enumeration literals.

Pascal passes enumerations
with 128 or more literals as words.

Surprise! Pascal passes chars as 16-
bit values.

16-bit signed values.

32-bit signed values.
* WA [ong oply?? P Kwk
*% long only??? **x

Pascal passes real parameters as
extended by address.

Pascal returns real results by value.

Pascal passes double parameters as
extended by address.

The caller supplies the address of the
double result.

Pascal passes comp parameters as
extended by address.

The caller supplies the address of the
comp result.

Pascal passes extended parameters
by address.

The caller supplies the address of the
extended result.

32-bit addresses.

26 May 1986

Cortland Workshop C

var pointer
pointer result

array (1 or 2 bytes)
array (3 or 4 bytes)
array (5 or more bytes)

var array
array result

record (1 to 4 bytes)
record (5 or more bytes)

var record (any size)
record result (1 or 2 bytes)

record result (3 or 4 bytes)
record result (1 or 2 bytes)

set (1 to 7 elements)
set (8 to 16 elements)
set (217 elements)

var set (1 to7 elements)
var set (8 to 16 elements)
var set (217 elements)
set result (1 to 7 elements)
set result (8 to 16 elements)
set result (217 elements)

pointer *
pointer

short
int or long
array

array

@uwo

struct
struct *

struct *
short

int or long
struct

char
short
struct

char *
short *
struct *
char
short
struct

Implementation Notes

Chapter 3

Pascal passes small arrays by value.
skt okt long 0,,1),9?? PR

Pascal passes larger arrays by
address.

C does not allow array results.

Pascal passes small records by
value.

Pascal passes larger records by
address.

Pascal returns small records by
value.

w% long only??? wx*
The caller supplies the address of the
record result.

Pascal passes sets with 1 to 7
elements as bytes.

Pascal passes sets with 8 to 16
elements as words.

Pascal also passes larger sets by
value,

Pascal returns small sets by value.

The caller supplies the address of the
set result.

A number of details in any language definiton are left to the discretion of its individual
implementations. Most programs do not rely on these details and therefore yield the same
results on the various implementations. However, knowledge of the major differences
berween implementations can help you avoid reliance on language semantics that vary from
implementation to implementation. This section explains several areas of the language
definition that are specific to Workshop C.

Byte Ordering

On the 65SC816, the microprocessor used in the Cortland, the least significant byte of a
short or long integer has the lowest memory address. This byte ordering is also used on

Alpha Draft

Page 3- 10

26 May 1986

Chapter 3 Cortland Workshop C

IBM/370 and Z8Q00 processors. The PDP-11 family, VAX, 8086, and NS16000 use a
different ordering. Programs that rely on the order of the bytes within words and longs
will not work correctly on both classes of machines.

Memory-Allocation Characteristics

The Workshop C compiler optimizes memory allocadon in various ways. Static and global
variables are not necessarily allocated in the order in which they are specified. (However,
the order of fields within records is preserved.) Static variables may be allocated as if thev
were automatic if their values are always set before being referenced. Automatic and static

variables that are never used may not be allocated at all. Prograrmns should not rely on the
compiler's allocation algorithms.

Types unsigned char and unsigned short

Types unsigned char and unsigned short are supported by the Cortland C
compiler and by many implementations of PCC, although they are not required by the basic
C language definidon. The VAX implementaton of PCC and the Cortland C compiler
differ in the way they evaluate expressions involving these types. For example, the
negation operator subtracts an unsigned short from 216 under PCC (this seems like a
bug), and from 232 under Cortland Workshop C.

Bit Fields

Workshop C provides bit fields that are unsigned, as do all MC68000 versions of PCC of
which we are aware. However, VAX implementatdons of C may support signed bit fields.
In the following example, implementatons using unsigned bit fields will setito 3;
implementations using signed bit fields will seti to —1:

struct {int field:2;} x:
x.field = 3;
i = x.field;

Evaluation Order

Cortland Workshop C does not define the evaluation order of certain expressions.
Expressions with side effects, such as function calls and the “++" and “~ -" operators, may
yield different results on different machines or with different compilers. Specifically, when
a variable is modified as a side effect of an expression's evaluation and the variable is also

used at another point in the same expression, the value used may be either the value before
" modification or the value after modification.

Programs that rely on the order of evaluation in these situations are in error. The function
call

£{i,i++)

is an example of an expression whose value is undefined.

Alpha Draft ' Page 3- 11 26 May 1986

Cortland Workshop C Chaprer 3

Case Statements

Some implementations of C, including PCC, allow cases of a switch statement to be
nested within compound statements. Cortland Workshop C considers this an error. The
following switch statement compiles using PCC but generates an error message using
the Cortland Workshop C compiler. The error is that “case 2:” is within the i f statement.

switech (i) |
case 1:
if (9 |
case 2:
i = 3;

Language Anachronisms

Several constructs formerly considered part of the C language are now considered
anachronisms. When you specify the —z84 compiler option, anachronistic constructs are
compiled and flagged with a warning message. Otherwise they are considered invalid.
The anachronisms are described below.

Assignment Operators: The =op form of assignment operators is not supported.
Alternate interpretations are accepted without warning, In particular,

x == 5; is interpreted as X = (=5);
x =* 5; is interpreted as x = (*5);
X =& p; is interpreted as x = (&p);

Initialization: The equal sign that introduces an inidalizer must be present. The
anachronism

int i 1;
is considered an error.

Structures and Unions: References to members of structures and unions must be to
the appropriate structure or union. For example, the reference a.b is illegal if b is not a
member of a. References to components of nested structures and unions must be fully
qualified (i.e. all intermediate levels of the reference must be specified).

The names of structure and union members do not conflict with the names of ordinary
variables in the same scope. Furthermore, a partdcular member name may be used in
several structures and unions in the same scope.

Compiler Limitations ,

On the Cortland, the total size of all declared global variables, static variables, and string

constants cannot exceed 32K bytes. Allocate large global arrays on the heap
###% correct? *** in order to avoid exceeding this limit.

Alpha Draft Page 3- 12 26 May 1986

Chapter 3 » : Cortland Workshop C

Automatic variables are limited to 32K bytes,

It is impossible to compile very large functons on the Cortland because the compiler's
internal data structures cannot fit in memory. As functons approach this limit, compilaton
time increases noticeably. This problem can be alleviated by eliminating unnecessary
include files, reducing the number of global declarations, compiling large functons
separately, and rewriting large functions as two or more smaller functdons.

Alpha Draft ' Page 3- 13 26 May 1986

Chaprer 4 - Cortland Workshop C

Chapter 4

The Standard C Library

Introduction to the Standard C Library

This chapter describes the Standard C Library provided with Cortland Workshop C. After
an introductory discussion of error-number conventions, the chapter is arranged
alphabetically by library header. Several library routines——functdons and macros—may be
grouped under a single header. For example, a number of trigonometric functons are
documented under the header “trig.” -

All of the idendfiers in the Standard C Library are listed in the Library Index, Appendix C.

Note: Remember that identifiers in C are case sensitive and should be spelled
exactly as shown in the synopsis.

The library routines under each header are documented as follows:

L]

NAME. Lists the names of the library routnes, followed by a descriptive phrase.

SYNOPSIS. Shows the code you need to add to your program when using these
library routines. Indicates libraries you need to include at compile time.

DESCRIPTION. Discusses the library routines and their input and ourput.
DIAGNOSTICS. Describes error conditions. .

RETURN VALUE. Describes the values returned by the routines.

NOTE. Contains remarks.

WARNING. Gives cautions.

SEE ALSO. Provides the names of other library routines related to the ones
described in the current document.

Alpha Draft Page 4- 1 26 May 1986

NAME
Introduction to error numbers similar to those in UNIX™ operating systems.

SYNOPSIS

#include <errno.h>

extern int errno;

DESCRIPTION

Many of the Standard C Library functions have one or more error retums. An error
condition is indicated by an otherwise impossible returned value. This is almost
always -1; see descriptons of individual functions for details. An error number is
also made available in the external variable errno. The variable errmo is not cleared
on successful calls, so it should be tested only after an error has been indicated.

The error name appears in brackets following the text in a library functon
descripton; for example,

“The next attempt to write a nonzero number of bytes will signal an error.
(ENOSPC]”

Not all possible error numbers are listed for each library function because many
errors are possible for most of the calls. Some UNIX operating system error
numbers do not apply to Cortland and are not documented in this manual.

Here is a list of the error numbers and their namnes as defined in the <errno.h> file:

1 [EPERM] Not owner,

Typically this error indicates an attempt to modify a file in a
way that is not permitted.

2 [ENOENT] No such file or directory
This error occurs when a file whose filename is specified
does not exist or when one of the directories in a pathname
does not exist.

5 [EIO] /O error
Some physical [/O error has occurred. This error may in
somne cases be signaled on a call following the one to which
it actually applies.

6 [ENXIO] No such device or address
I/O on a special file refers to a subdevice that does not exist,
or the [/O is beyond the limits of the device. This error may
also occur when, for example, no disk is present in a drive.

Alpha Draft Page 4-2 26 May 1986

Standard C Library Error Numbers Cortland Workshop C

9 [EBADF] Bad file number
Either a file descriptor does not refer to an open file, or a
read (or write) request is made to a file that is open only for
writing (or reading).

12 [ENOMEM] Notenough space
The system ran out of memory while the library call was
executing.

13 [EACCES] Permission denied
An attempt was made to access a file in a way forbidden by
the protection system.

17 [EEXIST) File exists
An existing file was mentioned in an inappropriate context—
e.g., open(file, O_CREAT+0O_EXCL).

19 [ENODEYV] No such device
An attempt was made to apply an inappropriate systemn call to
a device—e.g., read a write-only device.

20 [ENOTDIR] Not a directory
An object that is not a directory was specified where a
directory is required—e.g., in a path prefix.

21 [EISDIR] Is a directory v
An atternpt was made to write on-a directory.

22 [EINVAL]] Invalid argument
Some invalid argument was provided to a library functon.

23 (ENFILE] File table overflow
The system's table of open files is full, so temporarily a call
to open cannot be accepted.

24 [EMFILE] Too many open files
No program may have more than 20 file descriptors open at
a time.

28 [ENOSPC]) No space left on device
During a write 10 an ordinary file, there is no free space left
on the device.

29 [ESPIPE] Dlegal seek
- An Iseek was issued incorrectly.

30 [EROFS] Read-only file system
An attempt to modify a file or directory was made on a
device mounted for read-only access.

NOTE
Calls that interface to the Cortland /O system—e.g., open, close, read, write. ioctl,

and others—set the external variable MacOSErr as well as errno. This manual

Alpha Draft Page 4- 3 26 May 1986

Cortland Workshop C : Error Numbers Standard C Library

documents only errno values. The equivalent Cortland ROM error-return values set
in *** yarigble name? *** are documented in Cortland Tools. The appropriate
include file for most values of *** variable name? *** is <files.h>.

Alpha Draft Page 4-4 26 May 1986

Standard C Library abs Cortland Workshop C

NAME
abs—return integer absolute value
SYNOPSIS

int abs (i)
int i:

DESCRIPTION

Function abs returns the absolute value of its intéger operand.
< NOTE

The absolute value of the negative integer with largest magnitude is undefined.
SEE ALSO

floor.

Alpha Draft : Page4-5 26 May 1986

Cortland Workshop C aof Standard C Library

NAME

atof—convert ASCII string to floating-point number

SYNOPSIS

extended atof (nptr)
char *nptr;

DESCRIPTION

Function arof converts a character string pointed to by nper to an extended-precision
floatdng-point number. The first unrecognized character ends the conversion.
Function arof recognizes an optional string of white-space characters (blanks or
tabs), then an optonal sign, then a string of digits optonally containing a decimal
point, then an optional “e” or “E” followed by an optionally signed integer. If the
string begins with an unrecognized character, arof returns a NaN.

DIAGNOSTICS

Function arof honors the floating-point exception flags—invalid operation,
underflow, overflow, divide by zero, and inexact—as prescribed by the Standard
Apple Numeric Environment (SANE).

SEE ALSO

scanf, str2dec, dec2num.
Apple Numerics Manual.

Alpha Draft Page4-6 26 May 1986

Standard C Library awi Cortland Workshop C

NAME
atoi, atol—convert string to integer
SYNOPSIS -

int atoi (str)
char *str:

long atol (str)
char *str;

DESCRIPTION
The Character string ser is scanned up to the first nondigit character other than an
optional leading minus sign (-). Leading white-space characters (blanks and tabs)
are ignored.
Functon aroi returns as an integer the decimal value represented by sr.
Functon atol returns as a long integer the decimal value represented by sir.
NOTE
Overflow conditions are ignored.

SEE ALSO

atof, scanf, striol.

Alpha Draft Page4-7 26 May 1986

Cortland Workshop C close » Standard C Library

NAME
close—<lose a file descriptor

SYNOPSIS

int close (fildes)
int fildes:

DESCRIPTION

Variable fildes is a file descriptor obtained from a creat or open call. Functon close
closes the file descriptor indicated by fildes.

Function close fails if fildes is not a valid open file descriptor. [EBADF]
RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

NOTE

This routine provides facilides used in the Integrated Environment; for more
information, refer to Cortland Programmer’s Workshop.

SEE ALSO

creat, open.

Alpha Draft Page 4- 8 26 May 1986

Standard C Library conv) Cortland Workshop C

NAME
toupper, tolower, _toupper, _tolower, toascii—translate characters

SYNOPSIS

#include <ctype.h>

int toupper (c)
int ¢:

int tolower (c)
int ¢

int _toupper (c)
int c:

int _tolower (c¢)
int ¢;

int toascii (c)
int ¢

DESCRIPTION

Functions roupper and tolower have as domain the range of gerc: the integers from
-1 through 255. If the argument of roupper represents a lowercase letter, the result
is the corresponding uppercase letter. If the argument of tolower represents an
uppercase letter, the result is the corresponding lowercase letter. All other
arguments in the domain are returned unchanged.

Macros _toupper and _tolower produce the same results as functions roupper and
tolower but have restricted domains and are faster. Macro _toupper requires a
lowercase letter as its argument; its result is the corresponding uppercase letter.
Macro _tolower requires an uppercase letter as its argument; its result is the
corresponding lowercase letter. Arguments outside the domain cause undefined
results.

Function roascii yields its argument by turning off all bits that are not part of a
standard ASCII character; it is intended for compatibility with other systems.

SEE ALSO
ctype, getc. -

Alpha Draft Page4-9 26 May 1986

Cortland Workshop C crext ‘ Standard C Library

NAME

creat—create a new file or rewrite an existng file

SYNOPSIS

int creat (path)
char *path;

DESCRIPTION

Function crear creates a new file or prepares to rewrite an existing file named by the

pathname pointed to by parh. If the file exists, the length of its data fork is
truncated to 0.

Funcdon creat(path) is equivalent to
open (path,O_WRONLY|O_TRUNC) .

Upon successful completion, a nonnegatve integer (the file descriptor) is returned
and the file is open for writing. The file pointer is set to the beginning of the file.
A maximum of about 30 files may be open at a given time; the actual maximum
depends upon the current system environment.

RETURN VALUE

Upon successful completion, a nonnegative integer (the file descriptor) is returned.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

NOTE

This routine provides facilides used in the Integrated Environment; for more
information, refer to Cortland Programmer's Workshop.

SEE ALSO

close, lseek, open, read, write.

®©

Alpha Draft . Page4-10 26 May 1986

Standard C Library ctype Cortland Workshop C

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint,
isgraph, iscnul, isascii
—classify characters

SYNOPSIS
#include <ctype.h>

int isalpha (c)
int ¢

DESCRIPTION

These macros classify character-coded integer values by table lookup, returning
-nonzero for true, zero for false. Macro isascii is defined on all integer values; the
rest are defined only where isascii is true and on the single non-ASCII value EOF

=D.

Macro Returns TRUE if...

isalpha ¢ is a letter.

isupper ¢ is an uppercase leter.

islower ¢ is a lowercase letter.

isdigit ¢ is a digit [0-9].

isxdigit ¢ i1s a hexadecimal digit (0-9], [A-F], or [a-f].

isalnum ¢ is alphanumeric (letter or digit).

isspace ¢ is a space, tab, return, new line, vertical tab, or form feed.

ispunct ¢ is a punctuation character (neither control nor
alphanumeric).

ispring ¢ is a printing character, code 040 (space) through 0176
(tilde).

isgraph ¢ is a printing character, similar to isprinr except false for
space.

iscnur! ¢ is a delete character (0177) or an ordinary control character
(less than 040). -

isascu c is an ASCII character, code less than 0200.

DIAGNOSTICS

If the argument to any of these macros is not in the dornain of the function, the
result is undefined.

NOTE

These macros do not support the Cortland extended character set.

Alpha Draft Page4-11 | 26 May 1986

Cortland Workshop C dup Standard C Library

NAME

dup—duplicate an open file descriptor
SYNOPSIS

int dup (fildes)
int fildes:

DESCRIPTION

Variable fildes is a file descriptor that has been obtained from a crear, dup, or fcnul

call. The new file descriptor returned by dup is the lowest one available. It has the
following in common with fildes:

* Same open file.
* Same file pointer.

» Same access mode: read, write, or read/write.

Because the new file descriptor and fildes share the same file pointer, a seek on
fildes affects a subsequent read or write on the new file descriptor, and vice versa.

The functon call dup(fildes) is equivalent to
fentl (fildes, F_DUPFD, 0)

Functon dup fails if one or more of the following are true:
* Variable fi/des is not a valid open file descriptor. [EBADF]
» Too many file descriptors are currently open. [EMFILE]
RETURN VALUE
Upon successful completion a nonnegative integer, the file descriptor, is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.
SEE ALSO

creat, close, fentl, open.

Alpha Draft Paged- 12 26 May 1986

Standard C Library dp Cortland Workshop C

NAME

ecwvt, fevi—convert floating-point number to string

SYNOPSIS T

- char *ecvt(value, ndigit, decpt, sign)
extended value;
int ndigit, *decpt, *sign:

char *fcvt(value, ndigit, decpt, sign)
extended value;
int ndigit, *decpt, *sign:;

DESCRIPTION

Function ecvtconverts value to a null-terrninated string of ndigir digits and returns a
pointer to this string as the function result. The low-order digit is rounded.

The decimal point is not included in the returned string. The positon of the decimal
point is indicated by decpr, which indirectly stores the position of the decimal point
relative to the returned sting. If the int pointed to by decpr is negative, the decimal
point lies to the left of the returned string. For example, if the string is "12345" and
decpt points to an int of 3, the value of the string is 123.45; if decpr points to =3,
the value of the string is .00012345 .

If the sign of the converted value is negative, the word pointed to by sign is
nonzero; otherwise it is zero.

Funcdons fcvr and ecvt provide fixed-point output in the style of Fortran F-format
output, with the following difference in the interpretation of ndigir:

« In fewt, ndigit specifies the number of digits to the right of the decimal point.
¢ In ecvt, ndigit specifies the number of digits in the string.

NOTE

The string pointed to by the function result is static data whose content is
overwritten by each call.

SEE ALSO

printf, num2dec, dec2str.
Apple Numerics Manual .

Alpha Draf Page 4- 13 26 May 1986

Cortland Workshop C ext Standard C Library

NAME

exit, _exit—terminate the current application

SYNOPSIS

void exit (status)
int status;

void _exit (status)
int status;

DESCRIPTION

Functon exir terminates the current application, closing all of the open file
descriptors. It also causes stdio cleanup actions before the application terrninates.

Function _exir circumvents all cleanup.

RETURN VALUE

Variable srarus is returned to the Cortland Workshop Shell: zero for normal
executon and nonzero for errors.

SEE ALSO

onexit,

Alpha Draft Page 4- 14 26 May 19&_5

Standard C Library ep Cortland Workshop C

NAME

exp, log, logl0, .pow, sqrt—exponential, logarithm, power, square-root functions
SYNOPSIS

#include <math.h>

extended exp(x)
extended x:

extended logi(x)
extended x;

extended logl0 (x)
extended x:

extended pow(x, y)
extended x, y;

extended sqgrt(x)
extended x;

DESCRIPTION
Function exp returns eX, where e is the natural logarithm base.

Function log returns the natural logarithm (base e) of x.

Functon logl0 returns the logarithm base ten of x.

Function pow returns x¥.
Function sqrt returns the square root of x.
For special cases, these functions return a NaN or signed infinity as appropriate.
DIAGNOSTICS
These functdons honor the floating-point exception flags—invalid operaton,
underflow, overflow, divide by zero, and inexact—as prescribed by the Standard
Apple Numeric Environment (SANE).
SEE ALSO B

hypot, sinh.
Apple Numerics Manual.

Alpha Draft Page4- 15 26 May 1986

Cortland Workshop C

NAME
faccess—*¥% 9 %ok

SYNOPSIS

int faccess (char *fileName, usigned int cmd, ..):

DESCRIPTION

F_DELETE, F_RENAME, F_OPEN (internal use only)

Sfaccess

Standard C Library

Extended CPW file information: FGTABINFO, F_STABINFO, F_GFONTINFO,

F_SFONTINFO

Alpha Draft

Page4-16

26 May 1986

Standard C Library fclose Cortland Workshop C

NAME

fclose, fflush—close or flush a stream
SYNOPSIS

#include <stdio.h>

int fclose (stream)
FILE *stream;

int ££flush (stream)
FILE *stream;

DESCRIPTION

Function fclose causes any buffered data for stream to be written out; szream is then
closed.

Function fclose is performed automatically for all open files upon calling exi.

Functon fflush causes any buffered data for stream to be written out; stream
remains open.

DIAGNOSTICS

These funcdons return O for success or EOF if an error was detected (such as ying
to write to a file that has not been openéd for writing).

SEE ALSO

close, exit, fopen, setbuf.

Alpha Draft Page4- 17 26 May 1986

Cortland Workshop C Jentl Standard C Library
NAME
" fentl—file control

SYNOPSIS

#include <fentl.h>

int fcntl (fildes, cmd, arg)
int fildes;

unsigned int cmd:

int arg:

DESCRIPTION

Functon fcnel provides control over open files. Variable fildes is an open file

descriptor obtained from a crear, open, or fcnel call. Variable ¢md is one of the
following values:

F_DUPFD (return a new file descriptor):

Lowest numbered available file descriptor greater than or equal to arg.
Same open file as the original file.

Same file pointer as the original file (i.e., both file descriptors share one file
pointer).

Same access mode (read, write, or read/write).
F_GETFD, F_SETFD, F_GETFL, F_SETFL
These commands are not supported on Cortland.

Function fcne! fails if one or more of the following are true:

Variable fildes is not a valid open file descriptor. (EBADF]

More than about 30 file descriptors are currently open; the exact number
permissible depends upon the current system environment. [EMFILE]

Variable arg is negative or greater than the highest allowable file descriptor.
(EINVAL]

RETURN VALUE

Upon successful completion, the value returned is a new file descriptor.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

SEE ALSO

close, dup, open.

Alpha Draft . Page 4- 18 26 May 1986

Standard C Library ferror Cortland Workshop C

NAME

ferror, feof, clearerr, fileno—stream status inquiries

SYNOPSIS

#include <stdio.h>

int feof (stream)
FILE =*stream;

int ferror (stream)
FILE *stream:;

void clearerr (stream)
FILE *stream;

int fileno (stream)
FILE *stream;

DESCRIPTION

Functon feof returns nonzero when end-of-file has previously been detected
reading the named input stream; otherwise, it returns zero.

Function ferror returns nonzero when an I/O error has previously occurred reading
from or writing to the named stream; otherwise, it returns zero.

Function clearerr resets the error indicator and end-of-file indicator to zero on the
named stream.

Functon fileno returns the integer file descriptor associated with the named sweam;
see open. ,

'NOTE

All these functions are implemented as macros; they cannot be declared or
redeclared.

SEE ALSO

open, fopen.

Alpha Draft Page4- 19 ‘ 26 May 1986

Cortland Workshop C Jloor Standard C Library

NAME

floor, ceil, fmod, fabs—floor, ceiling, mod, absolute value functions
SYNOPSIS
#include <math.h>

extended floor (x)
extended x:

extended ceil (x)
extended x:

extended fmod(x, y)
extended x, y: {

extended fabs(x)
extended x;

DESCRIPTION

Functon £1loor returns the largest integer (as an extended-precision number) not
greater than x.

Functdon ceil returns the smallest integer not less than x.
Whenever possible, £fmod returns the number f with the same sign as x, such that
x =iy + f for some integer {, and |1 < lyl. If y is zero, fmod returns a NaN.

Function fabs returns Ul

SEE ALSO

abs, rint, setround.
Apple Numerics Manial.

Alpha Draft Page4-20 26 May 1986

Standard C Library ' fopen Cortland Workshop C

NAME

fopen, freopen, fdopen—open a stream
SYNOPSIS

#include <stdio.h>

FILE *fopen (filename, type)
char *filename, *type:;

FILE *freopen (filename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen (fildes, type)
int fildes;
char *type;

DESCRIPTION

Function fopen opens the file named by filename and associates a stream with it.
Functon fopen returns a pointer to the FILE structure associated with the stream. -

Variable filename points to a character string that contains the name of the file to be
opened.

Character string fype is has one of the following values:

r open for reading.
w truncate or create for writng.
a append: open for writing at end-of-file, or create for writing.

r+ open for update (reading and writng).
w+ truncate or create for update.
a+ append: open or create for update at end-of-file.

Function freopen substitutes the named file for the open stream. The original
streamn is closed, regardless of whether the open ultimately succeeds. Funcron
freopen returns a pointer to the FILE structure associated with stream.

Funcdon freopen is typically used to attach the previously opened streams
associated with stdin, stdout, and stderr to other files.

Functon fdopen associates a streamn with a file descriptor by formattng a file
structure from the file descriptor. Thus, fdopen can be used to access the file
descriptors returned by open or crear. (These calls open files but do not return
pointers to a FILE structure.) The type of stream must agree with the mode of the
open file.

When a file is opened for update, both input and output may be done on the

resulting sweam. However, output may not be directly followed by input without
an intervening fseek or rewind, and input may not be directly followed by output

Alpha Draft ' Page 4-21 . 26 May 1986

Cortland Workshop C Jopen Standard C Library

without an intervening fseek, rewind, or an input operation that encounters end-of-
file.

When a file is opened for append (i.e., when rype is "a" or "a+"), it is impossible to
overwrite informaton already in the file. Function fseek may be used to reposidon
the file pointer to any posidon in the file, but when output is written to the file the
current file pointer is disregarded. All output is written at the end of the file and
causes the file pointer to be repositoned at the end of the output.

DIAGNOSTICS

Functions fopen and freopen return a null pointer on failure.

SEE ALSO

open, fclose.

Alpha Draft Page 4- 22 26 May 1986

Standard C Library fread . ' Cortland Workshop C
NAME

| fread, fwrite—binary input/output
SYNOPSIS

#include <stdio.h>

int fread(ptr, size, nitems, stream)
char *ptr;

int size, nitems;

FILE *stream:;

int fwrite(ptr, size, nitems, stream)
char *ptr:

int size, nitems;

FILE =*stream;

DESCRIPTION

Funcdon fread copies nitems itemns of data from the named input stream into an
array beginning at prr. An item of data is a sequence of bytes (not necessarily
terminated by a null byte) of length size. Function fread stops appending bytcs if
an end-of-file or error condition is encountered while reading szream or if nitems
items have been read. Functon fread leaves the file pointer in stream, if defined,
pointing to the byte following the last byte read if there is one. Function fread does
not change the contents of stream.

Function fwrire appends at most niterns items of data to the named output soeam
from the array pointed to by prr. Functdon fwrite stops appending when it has.
appended nitrems items of data or if an error condition is encountered on stream.
Funcdon fwrite does not change the contents of the array pointed to by per.

The variable size is typically

sizeof (*ptr)

where the pseudo-function sizeof specifies the length of an item pointed to by pir.
If prr points to a data type other than char it should be cast into a pointer to char.

DIAGNOSTICS
Funcdons fread and fwrite retarn the number of items read or written. If nitems is
Zero or negative, no characters are read or written and zero is returned by both fread
and fwrite.

SEE ALSO

fopen, getc, gets, printf, putc, puts, read, scanf, stdio, write.

Alpha Draft Page 4- 23 . 26 May 1986

Cortland Workshop C : frep Standard C Library

NAME

frexp, ldexp, modf—manipulate ‘parts of floating-point numbers
SYNOPSIS

extended frexp(value, eptr)
extended value;
int *eptr;

extended ldexp(value, exp)
extended value;
int exp:

extended modf (value, iptr)
extended value, *iptr;

DESCRIPTION

Every nonzero number can be written uniquely as x* 27, where the mantissa
(fraction) x is in the range 0.5 < Ixl < 1.0, and the exponent n is an integer.
Function frexp returns the mantissa of an extended value and stores the exponent
indirectly in the location pointed to by eper. Note that the mantdssa here differs from

the significand described in the Apple Numerics Manual, whose normal values are
in the range 1.0 S Ixl < 2.0.

Function /dexp returns the quantity value* 2€xP,

Function modf retumns the signed fractional part of value and stores the integral part
indirecty in the locadon pointed to by iprr.

DIAGNOSTICS

Function /dexp honors the floating-point exception flags—invalid operation,
underflow, overflow, divide by zero, and inexact—as prescribed by the Standard
Apple Numeric Environment (SANE).

SEE ALSO

logb, scalb.
Apple Numerics Manual.

Alpha Draft Page 4- 24 ‘ 26 May 1986

Standard C Library Sseek ‘ Cortland Workshop C

NAME

fseek, rewind, ftell—reposition a file pointer in a stream
SYNOPSIS

#include <stdio.h>

int fseek (stream, offset, ptrname)

FILE *stream;

long coffset;

int ptrname;

void rewind (stream)
FILE *stream;

long ftell (stream)
FILE *stream;

DESCRIPTION

Functon fseek sets the position of the next input or output operation on the stream.
The new position is at the signed distance offser bytes from the beginning, the
current position, or the end of the file, when the value of prrname is 0, 1, or 2,
respectively.
The call

rewind (stream)
is equivalent to

fseek (stream, 0L, 0)
except that no value is returned.

Functions fseek and rewind undo any effects of unge:c.

After fseek or rewind, the next operation on a file opened for update may be either
input or output.

Functon fre!l returns the offset of the current byte relative to the beginning of the
file associated with the named stream.

DIAGNOSTICS

Function fseek returns nonzero for improper seeks; otherwise it returns 0. An
example of an improper seek is an fseek on a file that has not been opened via
fopen. :

SEE ALSO

Iseek, fopen.

Alpha Draft Page4-25 26 May 1986

Cortland Workshop C - gec Standard C Library

" NAME
getc, getchar, fgetc, getw—get character or word from soeam

SYNOPSIS

#include <stdio.h>

int getc (stream)
FILE *stream;

int getchaz()

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE *stream;

DESCRIPTION

Macro gerc returns the next character (i.e., byte) from the named input soeam. It
_ also moves the file pointer, if defined, ahead one character in sream. Macro gerc

cannot be used if a function is nccessary, for example, you cannot have a function
pointer point to it.

Macro gerchar returns the next character from the standard input soeam, stdin.

Function fgetc produces the same result as macro gerc; fgerc runs more slowly than
gerc but takes less space per invocation.

Function gerw returns the next “word” (i.e., four bytes) from the named input
stream so that the order of bytes in the stream corresponds to the order of byes in
memory. Function gernw returns the constant EOF upon end-of-file or error. Since
EOF is a valid integer value, feof and ferror should be used to check the success of
gerw. Function gerw increments the associated file pointer, if defined, to point to
the next word. Function gerw assumes no special alignment in the file.

DIAGNOSTICS

These calls return the integer constant EOF at end-of-file or upon an error.

NOTE

Because it is implemnented as a macro, gerc treats incorrectly a stream argument with

side effects. In particular, getc(*f++) doesn't work as you would expect. Use
fgetc(*f++) instead.

SEE ALSO

fclose, ferror, fopen, fread, gets, putc, scanf, stdio.

Alpha Draft Page 4- 26 26 May 1986

Standard C Library gers Cortland Workshop C

NAME

gets, fgets—get a string from a stream
SYNOPSIS

#include <stdio.h>

char *gets(s)
char *s;

char *fgets(s, n, stream)
char =*s;

int n;

FILE *stream;

DESCRIPTION

Function gets reads characters from the standard input stream srdin into the array
pointed to by s until a newline character is read or an end-of-file condition is
encountered. The newline character is discarded and the string is terminated with a
null character.

Functon fgers reads characters from stream into the array pointed to by s until n-1
characters are read, or a newline character is read and transferred to s, or an end-of-
file conditon is encountered. The sting is then terminated with a null characrer.

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no characters are
wansferred to s and a null pointer is returned. If a read error occurs, a null pointer
is rerurned. Otherwise s is returned. (A read error will occur, for example, if you
atternpt to use these functions on a file that has not been opened for reading.)

SEE ALSO

ferror, fopen, fread, getc, scanf, stdio.

Alpha Drafe Page 4-27 26 May 1986

NAME

hypot—Euclidean distance functon
SYNOPSIS

#include <math.h>

extended hypot (x, y)
extended x, y:

DESCRIPTION
Function Aypot returns

ST (X * X +y *y)

taking precautions against unwarranted overflows.

DIAGNOSTICS

Functon Aypot honors the floating-point exception flags—invalid operadon,
underflow, overflow, divide by zero, and inexact—as prescribed by the Standard

Apple Numeric Environment (SANE).

SEE ALSO

sqrt.
Apple Numerics Manual.

- Alpha Draft Page4-28

26 May 1956

Standard C Library ioctl Cortland Workshop C

NAME

ioctl—control a device
SYNOPSIS

#include <ioctl.h>

int ioctl (fildes, cmd, arg)
int filedes:

unsigned int cmd:

long *arg;

DESCRIPTION

Function ioc:/ communicates with a file's device handler by sending control
information and/or requesting status inforrnation. Variable cmd indicates which
device-specific operations ioct/ must perform. Here are the control values:

¢ FIOINTERACTIVE returns O if the device is interactve, -1 if not.

+ FIOBUFSIZE returns, in bytes, the optimal buffer size for this device, the
buffer size is in a long integer pointed to by arg.

* TIOFLUSH tells the device handler to throw away terrninal input.
+ FIOLSEEK and FIODUPFD are reserved for operating system use.

Functdon iocr! fails if one or more of the following are true:
o File descriptor fildes is not valid or is not open. [EBADF)

» Variables reques: or arg are not valid for the device handler associated
with fildes. [EINVAL]

RETURN VALUE

If an error has occurred, a value of =1 is returned and errno is set 1o indicate the
erTor. .

Alpha Draf Page 4- 29 26 May 1956

Cortland Workshop C) [seek Standard C Library

NAME

Iseek—move read/write file pointer

SYNOPSIS

long lseek (fildes, offset, whence)
int fildes:;

long offset;

int whence:

DESCRIPTION

A file descriptor, fildes, is returned from a creat or open call. Function [seek sets
the file pointer associated with fildes as follows:

If whence is 0, the pointer is set to offser bytes.
If whence is 1, the pointer is set to its current location plus offsez.
If whence is 2, the pointer is set to the size of the file plus offser.

Upon successful completon, the resulting pointer location as measured in bytes
from the beginning of the file is returned.

The file pointer remains unchanged and /seek fails if one or more of the following
are true:

File descriptorfildes is not open. (EBADF]
Variablewhence is not 0, 1, or 2. [EINVAL]

The resulting file pointer would be negatdve. [EINVAL]

Some devices are incapable of seeking. The value of the file pointer associated with
such a device is undefined.

RETURN VALUE

Upon successful completion, a nonnegative integer indicating the file pointer value

is returned. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

NOTE

In previous versions of the Standard C Library, tell(filedes) was a function that
returned the current file position. It is equivalent to the call

1seek(fildes,OL,1).
SEE ALSO

creat, open.

Alpha Draft Page 4- 30 A 26 May 1986

Standard C Library malloc Cortland Workshop C

NAME

malloc, free, realloc, calloc, cfree—main memory allocator

SYNOPSIS

char *malloc(size)
unsigned size;

void free(ptr)
char *ptz;

char *realloc{ptr, size)
char *ptr;
unsigned size:

char *calloc(nelem, elsize)
unsigned nelem, elsize;

cfree L & & ? * R W®

DESCRIPTION

Functons malloc and free provide a simple general-purpose memory allocation
package. The memory that is allocated for a program's use is known as the
“storage arena.” The storage arena expands as /malloc is called.

Function malloc returns a pointer to a block of at least size bytes suitably aligned for
any use. The argument to free is a pointer to a block previously allocated by
malloc; after free is performed this space is made available for further allocation.

Undefined results occur if the space assigned by malloc is overrun or if some
random value is handed to free.

Function malloc allocates the first sufficiently large contiguous reach of free space it
finds. It calls *** procedure name? *** (see Cortland Tools) to get more memory
from the system when there is no suitable space already free.

Functon realloc changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents are unchanged up to
the lesser of the new and old sizes. If no free block of size bytes is available in the
storage arena, realloc asks malloc to enlarge the storage arena by size bytes and then
moves the data to the new space. If per is null, realloc is equivalent to malloc.

Funcdon calloc allocates space for an array of nelem elements of size elsize. The
space is initalized to zeros.

Function cfree ..., ¥*% 7 %%

DIAGNOSTICS

Functions malloc , realloc, and calloc return a null pointer if there is no available
mermory or if the storage arena has been detectably corrupted by storing outside the

Alpha Draft Page 4-31 26 May 1986

Cortland Workshop C malloc Standard C Library

bounds of a block. When this hai:pens the block pointed to by prr may have been
destroyed. :

Alpha Draft Page 4- 32 26 May 1986

Standard C Library memory Corrland Workshop C

NAME

memccpy, memchr, mememp, memcpy, Memset—mermory Operations

SYNOPSIS

char *memccpy(sl, s2, ¢, n)
char *sl, *s2;
int ¢, n:

char *memchr(s, ¢, n)
char *s;
int ¢, n;

int memcmp(sl, s2, n)
char *sl, *s2:
int n;

char *memcpy(sl, s2, n)
char *sl, *s2;
int n;

char *memset (s, ¢, n)
char *s;
int ¢, n;

DESCRIPTION

These functions operate efficiently on memory areas (arrays of characters bounded
by a count, not terminated by a null character). They do not check for the overflow
of any receivin g memory area.

Function memccpy copies characters from memory area 52 into s/, stopping after
the first occurrence of character ¢ has been copied or after n characters have been
copied, whichever comes first. It returns either a pointer to the character after the
copy of ¢ in 5/ or a null pointer if ¢ was not found in the first » characters of s2.

Functon memchr retumns either a pointer to the first occurrence of character ¢ in the
first n characters of memory area s or a null pointer if ¢ does not occur.

Funcdon memcmp compares its arguments, looking at the first n characters only. It
returns an integer less than, equal to, or greater than 0, depending on whether s/ is
less than, equal to, or greater than 52 in the ASCI collating sequence.

Function memcpy copies n characters from memory area s2 to s/. It returns s/.

Function memset sets the first n characters in memory area s to the value of
character ¢. It returns s.

WARNING

Overlapping moves may yield unexpected results.

Alpha Draft ' Page 4- 33 26 May 1986

Cortland Worksho;p C onexit Standard C Library

NAME

onexit—register a function for program terminadon
SYNOPSIS

#include <stdio.h>

int onexit (func):
void (*func) ()

DESCRIPTION

Function onexir registers the exit function pointed to by func, to be called without
arguments at program termination.

The number of exit functions is linited to *** ? **=*
RETURN VALUES

The function returns a nonzero value if the registradon succeeds.
WARNING

If any function is registered more than once, the behavior is undefined.
SEE ALSO

exit.

Alpha Draft Page 4- 34 26 May 1986

Standard C Library - open " Cortland Workshop C

NAME

open—open for reading or writing

SYNOPSIS
#include‘<fcntl.h>

int open(path, oflag)
char *path:;
int oflag:;

DESCRIPTION

Variable parh points to a pathname naming a file. Function open opens a file
descriptor for the named file and sets the file status flags according to the value of
oflag. The value of oflag is constructed by or-ing flag settings; for example,

open ("MyFile", O_WRONLY|O_CREAT|C_TRUNC) ;

To construct oflag, first select one of the following settings:
O_RDONLY Open for reading only.
O_WRONLY Open for writing only.

O_RDWR Open for reading and writdng.

Then optionally add one or more of these addidonal settings:
O_APPEND The file pointer is set to the end of the file prior to each

write.

O_CREAT If the file does not exist, it is created.

O_TRUNC If the file exists, its length is runcated to O; the mode and
owner are unchanged.

O_RSRC The file's resource fork is opened. (Normally the data fork
is opened.)

O_SELECT I/O is restricted to a subset of the file (currently, the selection
in a window).

The following setting is valid only if O_CREAT is also specified:

O_EXCL Function open fails if the file exists.
Upon successful completion a nonnegative integer, the file descriptor, is returned.
The file-pointer used to mark the current position within the file is set to the
beginning of the file.
The named file is opened unless one or more of the following are true:

« O_CREAT is not set and the named file does not exist. [ENOENT)

More than about 30 file descriptors are currently open. The actual limit
varies according to runtime conditions. [EMFILE]

e O_CREAT and O_EXCL are set and the named file exists. [EEXIST)

AlphaDraft Page 4- 35 26 May 1986

Cortland Workshop C open ' Standard C Library

RETURN VALUE

Upon successful completion, a nonnegatve integer (the file descriptor) is returned:
otherwise, a value of -] is returned and errno is set to indicate the error.

SEE ALSO

close, creat, Iseek, read, write.

Alpha Draft Page 4- 36 26 May 1986

Standard C Library ~ printf ‘ : Cortland Workshop C

NAME

printf, fprintf, sprintf—print formatted output
SYNOPSIS '

#include <stdioc.h>

int printf(format (, arg] ...)
char *format;

int fprintf(stream, format { , arg] ...)
FILE *stream;
char *format;

int sprintf(str, format [, arg] ...)
char *str, format:
DESCRIPTION

Function pringf places formatted output on the standard output stream stdout.
Function fprintf places formatted output on the named output stream. Function
sprintf places formatted output, followed by the null character (\0), into the
character array pointed to by str; it's your responsibility to ensure that enough
storage is available. Each function returns the number of characters ransmitted (not
including the \0 in the case of sprintf), or a negative value if an output error was
encountered.

Each of these functons converts, formats, and prints its args under control of the
format. The format is a character string that contains two types of objects: plain
characters, which are simply copied to the output stream, and conversion
specifications, each.of which results in fetching zero or more args. The results are
undefined if there are insufficient args for the format. If the format is exhausted
while args remain, the extra args are ignored.

Each conversion specification is introduced by the character %. After %, the
following appear in sequence: :

¢ Zero or more flag characters, which modify the meaning of the conversion
specification.

» An optional decimal dlgn string specifying a minimum field width. If the
converted value has fewer characters than the field width, it will be padded to
the field width on the left (default) or right (if the left-adjustment flag has been
given); see below for flag specification.

» A precision that gives the minimum number of digits to appear for the d, o, u
x, or X conversions, the number of digits to appear after the decimal point for
the e, E, and f conversions, the maximum number of significant digits for the
g and G conversions, or the maximum number of characters to be printed
from a string in s conversion. The format of the precision is a period (.)
followed by a decimal digit string; a null digit string is treated as zero.

Alpha Draft Page 4- 37 26 May 1986

Cortland Workshop C) © pringf” Standard C Library

¢ An optional | specifying that a following d, o, u, x, or X conversion character
applies to a long-integer arg. The | opdon is ignored in this implementaton
since integers and long integers both require 32 bits.

¢ A character that indicates the type of conversion to be applied.
A field width or precision may be indicated by an asterisk (*) instead of a digit
string. In this case, an integer arg supplies the field width or precision.. The arg

that is actually converted is not fetched until the conversion letter is seen; therefore.

the args specifying field width or precision must appear immediately before the arg
(if any) to be converted.

The flag characters and their meanings are:
- The result of the conversion will be left-justdfied within the field.

+ The result of a signed conversion always begins with a sign
(+or-).
blank If the first character of a signed conversion is not a sign, a blank

will be prefixed to the result. This implies that if the blank and +
flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an "alternate
form." For ¢, d, s, and u conversions, the flag has no effect. For
o conversion, it increases the precision to force the first digit of the
result to be a zero. For x (X) conversion, a nonzero result will
have "0x" ("OX") prefixed to it. Fore,E,f, g, and G
conversions, the result will always contain a decimal point, even if
no digits follow the point. (Normally, a decimal point appears in
the result of these conversions only if a digit follows it.) For g
and G conversions, trailing zeros in the fractional part will not be
removed from the result (as they normally are). :

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal (d), unsigned octal
' (o), decimal (u), or hexadecimal notation (x and X), respectively;

the letters "abcdef™ are used for x conversion and the letters
“ABCDEF"” for X conversion. The precision specifies the
minimum number of digits to appear; if the value being converted
can be represented in fewer digits, it will be expanded with leading
zeros. The default precision is 1. The result of converting a zero
value with a precision of zero is a null string.

f The float, double, comp, or extended arg is converted to decimal
. notation in the style “{-]ddd.ddd”, where the number of digits
after the decirnal point is equal to the precision specificadon. If the
precision is missing, it is assumed to be 6; if the precision is
explicidy 0, no decimal point appears. Infinities are printed as
“[=]INF” and NaNs are printed as “[-]NAN(ddd)” where ddd is a
code indicating why the result is not a number.

e,E The float, double, comp, or extended arg is converted in the style
“[-]d.dddetdd™, where there is one digit before the decimal point
and the number of digits after it is equal to the precision; when the
precision is missing, it is assumed to be 6; if the precision is zero,

Alpha Draft Page 4- 38 26 May 1986

Standard C Library) pringf Cortland Workshop C

no decimal point appears. The E format code produces a number
with “E” instead of “e” introducing the exponent. The exponent
always contains at least two digits. Infinities are printed as “INF"
and NaNs are printed as “[-JNAN(ddd)”, where ddd is a code
indicating why the result is not a nurnber.

g,.G The float, double, comp, or extended arg is printed in style fore
(or in style E in the case of a G format code), with the precision
specifying the number of significant digits. The style used depends
on the value converted: style e is used only if the exponent
resulting from the conversion is less than —4 or greater than the
precision. Trailing zeros are removed from the result. A decimal
point appears only if it is followed by a digit.

c The character arg is printed.

] The arg is taken to be a string (character pointer) and characters
from the string are printed undl a NULL character (\0) is
encountered or the number of characters indicated by the precision
specification is reached. If the precision is missing, it is taken to
be infinite, so all characters up to the first null character are
printed. If the string pointer arg has the value zero, the result is
undefined. A null arg yields undefined results.

% Print a %; no argument is converted. In no case does a
nonexistent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is
simply expanded to contain the conversion result. Characters
generated by pringf and fprintf are printed as if puzc had been
called. '

EXAMPLES

To print a date and time in the form “Sunday, July 3, 10:02”, where weekday and
month are pointers to null-terminated strings:

printf("%s, %s %d, %.2d:%.2d", weekday, month, day, hour, min):

To print pi to five decimnal places:

printf("pi = %.5£", pi()):
SEE ALSO

dec2str, ecvt, num2dec, putc, scanf, stdio.

Alpha Draft Page 4- 39 - 26 May 1986

CPW C Language Reference puc . Standard C Library

NAME

putc, putchar, fputc, putw—put character or word on a stream

SYNOPSIS

#include <stdio.h>

int putc(c, stream)
char ¢ .
FILE *stream;

int putchar(c)
char ¢:

int fputc(c, stream)
char c¢;
FILE *stream;

int putw(w, stream)
int w;
FILE *stream;

DESCRIPTION

Macro purc writes the character ¢ to the output stream at the position pointed to by
the file pointer, if one is defined. Macro putchar(c) is equivalent to

putc(c, stdout).

Function fpurc behaves like macro purc. Function fpurc runs more slowly than purc
- but takes less space per invocaton.

Function purw writes the "word" w (i.e., four bytes) to the output stream at the

position pointed to by the file pointer, if one is defined. This function neither

assumes nor causes special alignment in the file.

Output streams, with the exception of the standard error stream stderr, are by
default buffered if the output refers to a file and line-buffered if the output refers to
a window. File stderr is by default unbuffered, but use of freopen causes it to
become buffered or line-buffered. When an output streamn is unbuffered
information, it is queued for wridng on the destinaton file or window as soon as
written; when it is buffered, many characters are saved up and written as a block;
when it-is line-buffered, each line of output is queued for writing on the destination
window as soon as the line is completed (i.e., as soon as a newline character is

written or terminal input is requested). Functon serbuf may be used to change the
soeam's buffering strategy.

DIAGNOSTICS

On success, these functions each return the value they have written. On failure,
they return the constant EOF. This occurs if the file stream is not open for writing

or if the output file cannot be grown. Because EOF is a valid integer, ferror should
be used to detect purw errors.

Alpha Draft Page 4-40 26 May 1986

Standard C Library pue © CPW C Language Reference

NOTE
Because it is implemented as a macro, pwre treats incorrectly a strearn argument with
side effects. In particular, pute(c, *£++):; doesn't work as you would expect.
Function fpuc should be used instead.

SEE A1SO

fclose, ferror, fopen, fread, getc, prind, puts, setbuf, stdio. |

AlphaDrafi Page 4-41 y 26 May 1986

CPW C Language Reference puts

NAME

puts, fputs—write a string to a stream

SYNOPSIS

$#include <stdio.h>

int puts(s)
char *s;

int fputs (s, stream)

char *s;
FILE *stream:;

DESCRIPTION

Function puts writes the null-terminated string pointed to by s, followed by a
newline character, to the standard output stream stdout.

Function fputs writes the null-terminated string pointed to by s to the named output
stream.

Neither function writes the terminating null character.

DIAGNOSTICS

Both routines return EOF on error. This occurs if the routines Ty to write on a file
that has not been opened for writing.

NOTE

Function puts appends a newline character while fpurs does not.

SEE ALSO

ferror, fopen, fread, printf, putc, stdio.

Alpha Draft Page 4- 42 26 May 1986

Standard C Library

Standard C Library gsort CPW C Language Reference

NAME

gsort—quicker sort

SYNOPSIS

void gsort ((char *) base, nel, sizeof (*base), compar)
unsigned int nel;

int (*compar ():

DESCRIPTION

Function gsorr is an implementation of the quicker-sort algorithm. It sorts a table of
data in place.

Variable base points to the element at the base of the table. Variable nel is the

. number of elements in the table. Variable compar is the name of the comparison
function, which is called with two argurnents that point to the elements being
compared. The function returns an integer value as follows:

Function Result Meaning

<0 The first argument is less than the second argument.
0 The first argument is equal to the second argument.
>0 The first argument is greater than the second argument.

NOTE

The pointer to the base «f the table should be of type pointer-to-element, and cast to

type pointer-to-character. The value returned should be cast into type pointer-to-
element.

The comparison funcdon ignores data in the table that is not part of the elements
being compared.

Alpha Draft Page 4-43 ~ 26 May 1986

CPW C Language Reference - rand ' Standard C Library

NAME

rand, srand—simple random-number generator
SYNOPSIS
int rand()

void srand(seed)
unsigned seed;

DESCRIPTION

Function rand uses a multiplicative congruential random-number generator with

period 232 that returns successive pseudorandom numbers in the range from 0 to
2151,

Function srand can be called at any time to reset the random-number generator to a
specific seed. The generator is inidally seeded with a value of 1.

SEE ALSO

randomx.

Alpha Draft Page 4-44 26 May 1986

-Standard C Library read CPW C Language Reference

NAME
read—-read from file
SYNOQPSIS

int read(fildes, buf, nbyte)
int fildes:

char *buf;

unsigned nbyte;

DESCRIPTION
File descriptor fildes is obtained from a crear or open call.

Funcdon read attempts to read nbyre bytes from the file associated with fildes into
the buffer pointed to by buf.

On devices capable of seeking, the read starts at a posidon in the file given by the
file pointer associated with fildes. Upon return from read, the file pointer is
incremented by the number of bytes actually read.

Nonseeking devices always read from the current position. The value of a file
pointer associated with such a file is undefined.

Upon sucéessful completion, read returns the number of bytes actually read and
placed in the buffer; this number may be less than nbyre if the file is associated with
a window or if the number of bytes left in the file is less than nbyre bytes. A value
of 0 is returned when an end-of-file has been reached.
" Functon read fails if fildes is not a valid file descriptor open for reading., [EB ADF']
RETURN VALUE |

Upon successful completion a nonnegatve integer is returned indicating the number
of bytes actually read. Otherwise, -1 is returned and errno is set to indicate the
error.

SEE ALSO

creat, open, stdio.

Alpha Draft Page 4- 45 26 May 1986

CPW C Language Reference

Alpha Draft

Page 4- 46

Standard C Library

26 May 1986

NAME

scanf, fscanf, sscanf-—convert formatted input
SYNOPSIS

#include <stdio.h>

int scanf(format (, pointer) ...)
char *format;

int fscanf(stream, format [, pointer] ...)
FILE *stream;
char *format;

int sscanf(s, format® [, pointer]} ...)
char *s, *format;
DESCRIPTION

Function scanf reads characters from the standard input-stream stdin. Function
fscanf reads characters from the named input stream, srream. Function sscanf reads
characters from the character string s. Each functdon converts the input according to
a control string (formar) and stores the results according to a set of pointer
arguments that indicate where the converted output should be stored.

Function format, the control string, contains specifications that control the
interpretation of input sequences. The control string consists of characters to be
matched in the input sweam and/or conversion specifications that start with %. The
contro] string may contain:

¢ White-space characters (blanks and tabs) that cause input to be read up to the
next non-white-space character, except as described below.

* A character (any except %) that must match the next character of the input
stream. To match a % character in the input stream, use “%%".

+ Conversion specifications beginning with the character % and followed by an
optional assignment suppression character *, an optional numeric maximum
field width, an optional 1, m, n, or h indicating the size of the receiving
variable, and a conversion code.

An input field is defined relative to its conversion specificaton. The input field
ends when the first character inappropriate for conversion is encountered or when
the specified field width is exhausted. After conversion, the i mput pointer points to
the inappropriate character.

A conversion specification directs the conversion of the next input field; the result is
placed in the variable pointed to by the corresponding argument, which is a pointer
to a basic C type such as int or float.

Assignment can be suppressed by preceding a format character with *.
Assignment suppression causes an input field to be skipped; the field is read and

Alpha Drafi | Paged-47 26 May 1986

Cortland Workshop C scanf © Standard C Library

converted but not assigned. Therefore pointer should be omitted when assignment
of the corresponding input field is suppressed.

The format character dictates the interpretation of the input field. The following
format characters are legal in a conversion specificaton, after %:

% A single % is expected in the input at this point; no assignment is done.

The conversion characters d, u, o, and x may be preceded by | or h to
indicate that a pointer to long or short, rather than int, is in the argument

list. Thelis ignored in this implementation because ints and longints
are both 32 bits.

d A decimal integer is expected; the corresponding argument should be an
integer pointer.

u An unsigned decimal integer is expected; the corresponding argument
should be an unsigned integer pointer.

) An octal integer is expected; the corresponding argument should be an
- integer pointer.

X A hexadecimal integer is expected; the corresponding argument should
be an integer pointer.

The conversion characters e, f, and g may be preceded by [, m, or n to

indicate thar a pointer to double, comp, or exxended, rather than float, is
in the argument lis:.

e,f,g A floadng-point number is expected; the next field is converted
accordingly and stored through the corresponding argument, which
should be a pointer to a float, double, comp, or extended, depending on
the size specification. The input format for floating-point numbers is an
optionally signed string of digits, possibly containing a decimal point,
followed by an optonal exponent field consisting of “E” or “e” followed
by an optionally signed integer. In addition, infinity is represented by
the sting “INF”, and NaNs are represented by the sming “NAN",
optionally followed by parentheses which may contain a string of digits
(the NaN code). Case is ignored in the infinity and NaN strings.

s A character string is expected; the corresponding argument should be a
character pointer to an array of characters large enough to accept the
string; a terminating null character (\0) is added automnatcally. The input
field is terminated by a white-space (blank or tab) character.

¢ A character is expected; the corresponding argument should be a
character pointer. The normal skip over white space is suppressed in
this case; to read the next non-white-space character, use “%1s”. If a
field width is given, the corresponding argument should refer to a
character array; the indicated number of characters is read.

[The left bracket introduces a scanset format. The input field is the
maximal sequence of input characters consisting enarely of characters in
the scanset. When reading the input field, string data and the normal
skip over leading white space are suppressed. The corresponding
pointer argument must point to a character array large enough to hold the
input field and the terminating null character (\0), which will be added
automadgcally. The left bracket is followed by a set of characters (the
scanset) and a terminating right bracket.

Alpha Draft Page 4-48 - 26 May 1986

Standard C Library scarf Cortland Workshop C

The circumflex (™), when it appears as the first character in the scanset,
serves as a complement operator and redefines the scanser as the set of
all characrers not contained in the remainder of the scanset string.

The right bracket (]) ends the scanser. To include the right bracker as an
elemens of the scanser, it must appear as the first character (possibly

preceded by a circumflex) of the scanset; otherwise it will be interprered
syntacrically as the closing bracket.

A range of characters may be represented by the construct firsz-lasz; thus
* the scanset [0123456789)] may be expressed [0-9]. To use this

convention, first must be less than or equal to /asr in the ASCII collating

sequence; otherwise the minus (~) will stand for itself in the scanset.

The minus will also stand for itself whenever it is the first or the last
character in the scanset.

Function scanf conversion terminates at EOF, at the end of the control string, or
when an input character doesn't match the control string. In the latter case, the
unmatched character is left unread in the input stream.

Functon scanf returns the number of successfully matched and assigned input
items; this number can be zero when an early mismatch between an input character
and the control string occurs. If the input ends before the first mismatch or
conversion, EOF is returned. ' ‘

EXAMPLES
Example 1. The call

int i; float x; char name(50];
scanf ("¥d%¥£f%¥s"™, &i, &x, name);

with input
235 54.32E-1 hartwell

will assign the value 25 to i, and the value 5.432 to x; name will contain
"hartwelND".

Example 2. The call

int i; extended x; char name(50):
scanf ("%$2dsnfi*d %(0-91", &i, &x, name);

with input
56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string "S6\0" in name. The
next call to gerchar will return "a".

Example 3. The call

int i;
scanf ("answerl=%d", &i);

Alpha Draft " Ppaged-49 " 26 May 1986

Cortland Workshop C scarf

with input
answerl=5] answer2=45

will assign the value 51 to i since "answerl" is matched explicitly in the input
stream; the input pointer will be left at the space before "answer2".

DIAGNOSTICS

These functions return EOF on end of input and a short count for missing or illegal
data items.

NOTE
Trailing white space is left unread unless matched in the control saing.

The success of literal matches and suppressed assignments is not directly
determinable.

SEE ALSO

atof, dec2num, getc, printf, stdio, stercc, strtol.
Apple Nwnerics Manual.

Alpha Draft Page 4- 50 26 May 1956

Standard C Library

Standard C Library setbuf Cortland Workshop C

- NAME

setbuf, setvbuf—assign buffering to a soream

SYNOPSIS

#include <stdio.h>

void setbuf (stream, buf)
FILE *stream;
char *buf;

int setvbuf (stream, buf, type, size)
FILE *stream; '
char *buf:

int type:

int size;

DESCRIPTION

Function serbuf is used after a streamn has been opened but before it is read or
written. Function serbuf causes the character array pointed to by buf to be used
instead of an automatically allocated buffer. If bufis a null character pointer,
input/output will be completely unbuffered.

BUFSIZ, a constant defined in the <stdio.h> header file, indicates how big an array
is needed:

char buf[BUFSIZ]):

A buffer is normally obtained from malloc at the time of the first gerc or puzc on the
file, except that the standard error stream stderr is normally not buffered. Ourput
streams directed to windows are either line buffered or unbuffered.

Functon servbuf is used after a streamn has been associated with an open file but
before it is read or written. If buf is not a null pointer, the array it points to is used
instead of an autornatcally allocated buffer. Variable size specifies the size in bytes

of the array to be used; servbuf works most efficiently when size is a multiple of
BUFSIZE.

Variable rype determines how stream is buffered:
+ _IOFBF causes input/output to be file buffered.

« _IOLBEF causes output to be line buffered. The buffer is flushed when a
newline character is written, when the buffer is full, or when input is
requested.

« _IONBEF causes input/output to be completely unbuffered. Variables buf
and size are ignored.

RETURN VALUE

Function servbuf returns nonzero if an invalid value is given for rype or size.

Alpha Draft Page4-51 26 May 1986

Cortland Workshop C setbuyf Standard C Library

NOTE

The buffer must have a lifedme at least as great as the open stream. Be sure to close
the stream before the buffer is deallocated.

If you allocate buffer space as an automatic variable in a code block, be sure to
close the stream in the same block.

If buf is null and the system cannot allocate size bytes, a smaller buffer will be
allocated.

SEE ALSO

fopen, getc, malloc, putc. -

Alpha Draft Page 4- 52 26 May 1986

Standard C Library signal Cortland Workshop C

NAME
sigset, sighold, sigrelease, sigpause-—signal handling

SYNOPSIS

#include <Signal.h>

SignalHandler * sigset (sigMap, newHandler)
SignalMap sigMap:;
SignalHandler *newHandler;

void _sig_dfl (sigNo, sigState, sigEnabled)
SignalMap sigNo:

SignalMap sigState;

SignalMap sigEnabled;

SignalMap sighold (sigMap)
SignalMap sigMap:

void sigrelease (sigMap, prevEnabled)
SignalMap sigMap;
SignalMap prevEnabled;

void sigpause (sigMap)
SignalMap sigMap:

DESCRIPTION

*%% Of all the routines in the Standard C Library, these are the most likely to differ
from their Macintosh counterparts. Please let me know of any differences so thar I
can change this descripion—DR ***

Introduction to Signal Handling: C programs that provide procedures to
handle software interrupts—known as signals—should use these procedures,
which support signal handling under the Cortland Programmer’s Workshop. A
signal is similar to a hardware interrupt in that its invocation can cause program
control to be temporarily diverted from its normal execution sequence; the
difference is that the events that raise a signal reflect a change in program state
rather than hardware state. Examples of signal events are stack overflow, heap
overflow, software floating point errors, and Command-period interrupts.

The <Signal.h> include file defines the constants, types, and procedure definitions
for handling signals.

Signals-can be caught, held and released, and/or ignored. The default action of any
signal raised is to close all open files, execute any exit procedures installed with
onexit, and terminate the program. No signal-handling calls are required to execute
a normal termination on receipt of a signal. If a program requires special handling
of a signal, or chooses to ignore it, sigser lets you replace the default procedure
with a user procedure. You can also temporarily “hold” (that is, suspend) action on
a signal by calling sighold. You may want to do this before entering a critical
secton of code. The signal can then be restored by calling the procedure sigrelease,
whereupon its signal-handling procedure will take effect if the signal was raised

Alpha Draft Page4- 53 * 26 May 1986

Cortland Workshop C signal Standard C Library

since the preceding call to sighold. Your program may also wait untl one or more
signals are raised by calling the sigpause procedure.

A signal is represented by a bit in the integer SigMap. The signal-handling
procedures accept a SigMap which can specify several signals as a group. Refer to
several signals at once by adding or or-ing their bits together. Refer to all signals at
once by using the value SIGALLSIGS.

Currently, the only software interrupt provided by the Cortland Programmer’s
Workshop Integrated Environment is Command-period, which is represented by
the value SIGINT. As additional software interrupts are provided by the Integrated
Environment, new values will be added to this unit to represent them; the signal-
handling procedures will then accept these new signals.

The sigset Function: Functon sigser replaces the current signal handler (the
procedure to be executed upon receipt of the signals specified in sigMap) with a
user-supplied signal handler. The default signal handler may be set or restored by
specifying SIG_DFL to the current signal handler. The signals may be ignored
entirely by specifying SIG_IGN to the current signal handler.

Function sigser returns the previous Signa/Handler pointer. If this pointer must be
restored in another part of the program, save the return value and restore it with
another call to sigser. Multiple signals may be set with one call to sigser by or-ing
signal values together in sigMap, but in this case sigser cannot, of course, return all
previous values and its return value is meaningless. To correctly save multiple
previous signal handlers, call sigser separately for each signal.

The _sig_dfl Function: This is the default proccdurc SIG_DFL,; it is not
intended for use by the program directly. It is documented here as an example of a
user-supplied signal handler that uses standard C calling conventons.

The first parameter, sigNo, is the signal that is being raised. Although it is declared
as a SigMap, its value contains at most one signal bit; it can therefore be compared
for equality against a signal name, for example, SIGINT. The same signal handler
may trap several signals with common code and then inspect sigNo if special
handling of pardcular signals is required.

The parameters sigState and sigEnabled provide runtime information about current
active signals. Bitmap sigState describes all raised signals, including signals held
by calls to sighold. Bitmap sig€nabled describes all signals currently enabled. By
default, all signals are enabled, but they may be disabled by holding them.

Upon entry to a user-supplied signal handler, all signals are temporarily suspended;
therefore the handler is not required to lock out recursive or nested calls to signal
handlers. The signal state is restored upon normal return from the signal handler.

Signals cannot be raised while executing in ROM or in the Cortland Programmer’s
Workshop shell. If a signal event occurs while executng outside the user
applicadon, the signal state is set and the signal handler is executed as soon as
program control returns to the apphcauon code. Since a signal can interrupt the
application program at any point, there is no protection against heap corrupton if a
signal handler executes calls that modify the state of the heap. Since most buffered
I/O potentially modifies the heap, pnmf and similar calls are not recommended in
signal handlers unless they call exir to avoid returning to the application program.

Alpha Draft , Page 4- 54 26 May 1986

Standard C Library signal Cortland Workshop C

Even then, the caller must be careful of interaction between exit and onexir
procedures. :

The sighold Function: The sighold function, along with sigrelease, permits
temporary suspension and restoration of signals. Before a program enters a critical
secton of code, it should call sighold with a signal map of signals to suspend or
with the idendfier SIGALLSIGS, which represents all signals. Function sighold
returns a SignalMap representing the list of signals already being held; this value
should be saved for use as the prevEnabled parameter in the subsequent call to
sigrelease. If the signal event (such as Command-period) occurs after a call 1o
sighold is made, the event is recorded in the signal state but the signal handler is not
executed.

The sigrelease Function: Funcion sigrelease lets you reenable signals that
were held by a previous call to sighold by specifying their corresponding bits in
sigMap. Signals that were already on hold when you called sighold should be
specified to sigrelease in the prevEnabled parameter to permit correct handling of
nested calls to sighold. If any of the signal events occured while they were held,
their signal handling routines will take effect immediately after the return from
sigrelease. Signal events do not stack; multiple occurrences of signal events which
are being held do not yield multiple invocations of the signal handler when the
signal is released.

The sigpause Function: A call to sigpause suspends program activity until a
signal event is recorded for any signal not currently held. It is intended for signal
synchronization, though in the current implementation its application is limited; it is
included here in order to provide a complete signal environment model.

Alpha Draft Page 4-55 26 May 1986

Cortland Workshop C sinh Standard C Library

NAME

sinh, cosh, tanh—hyperbolic functions

SYNOPSIS

#include <math.h>

extended sinh (x)
extended x;

extended cosh (x)
extended x;

extended tanh (x)
extended x;

DESCRIPTION

Functions sinh, cosh, and tanh return, respectively, the hyberbolic sine, cosine,
and tangent of their argument.

DIAGNOSTICS

Functons sinh, cosh, and tanh honor the floating-point exception flags—invalid
operation, underflow, overflow, divide by zero, and inexact—as prescribed by the
Standard Apple Numeric Environment (SANE).

SEE ALSO

Apple Numerics Manual.

" Alpha Draft Page 4- 56 26 May 1986

Standard C Library sdio Cortland Workshop C

NAME

stdio—standard buffered input/output package
SYNOPSIS

$¢include <stdio.h>

FILE *stdin, =*stdout, *stderr;

DESCRIPTION

The standard I/O package constitutes an efficient user-level /O buffering scheme.
The inline macros gerc and putc handle characters quickly. Macros gerchar and
purchar, and the higher-level routines fgerc, fgets, foringf, fourc, fouts, fread,

Sfscanf, fwrite, gets, getw, printf, puts, putw, and scanf all use getc and purc; they
can be freely interrnixed. '

Any program that uses the standard I/O package must include the header file of
pertinent macro definiions. The functions and constants mendoned in the standard

I/O package are declared in the header file and need no further declaratdon. The
header file is included as follows:

#include <stdio.h>

A file with associated buffering is called a szrearn and is declared to be a pointer to a
defined type FILE. Function fopen creates certain descripdve data for a stream and
returns a pointer to designate the stream in all further transactions. Normally, there

are three open streams with constant pointers declared in the <stdio.h> header file
and associated with the standard open files:

stdin (standard input file)
stdowut (standard output file)
siderr (standard error file)

A constant NULL (0) designates a nonexistent pointer.

An integer constant EOF (~1) is returned upon end-of-file or error by most integer

functions that deal with streams. See the descriptions of the individual functions
for details.

The constants and the following functons are implemented as macros: gerc,

getchar, putc, purchar, feof, ferror, clearerr, and fileno. Redeclaradon of these
names should be avoided.

NOTE

File <stdio.h> includes definitons other than those described above, but their use is
not recommended.

DIAGNOSTICS

Invalid stream pointers cause serious errors, possibly including program
termination. Individual function descriptions describe the possible error conditions.

AlphaDraft Page 4-57 26 May 1986

Cortland Workshop C stdio Standard C Library

SEE ALSO

open, close, lseek, read, write, fclose, ferror, fopen, fread, fseek, getc, gets,
printf, putc, puts, scanf, setbuf, ungetc.

Alpha Draft ' Page 4- 58 26 May 1986

Standard C Library sring Cortland Workshop C

NAME

strcat, strncat, soemp, suncmp, Strepy, suncpy, strlen,strehr, sarchr, strpbrk,
strspn, sacspn, strtok
—string operations

SYNOPSIS

char *strcat (sl, s2)
char *sl, *s2;

char *strncat (sl, s2, n)
char *sl, *s2;
int n;

int stremp (sl, s82)
. Char =*sl, *s2:;

int strncmp (sl, s2, n)
char *sl, =*s2;
int n;

char *strcpy (sl, s2)
char *sl, *s2;

char *strncpy (sl, s2, n)
char *sl, =»s2: :
int n:

int strlen (s)
char *s;

char *strchr (s, c¢)
char *s, ¢:

char *strrchr (s, ¢)
char *3g, ¢;

char *strpbrk (sl, s2)
char =*sl, *s2;

int strspn (sl, s2)
char *sl, *s2; ’

int strcspn (sl, s2)
char *sl, *s2;

char *strtok (sl, s2)
char *sl, =*s82;:

DESCRIPTION

The arguments s/, s2, and s point to strings (arrays of characters terminated by a
null character). The functions streat, strncat, strepy, and strncpy all alter s/. These
functions do not check for overflow of the array pointed to by s/.

Alpha Draft Page 4- 59 26 May 1986

Cortland Workshop C sring Standard C Library

Function strecat appends a copy of string s2 to the end of string s/. Function stracar
appends at most n characters. Each function returns a pointer to the null-terminated
result. -

Function szremp performs a comparison of its arguments according to the ASCII
collating sequence and returns an integer less than, equal to, or greater than O when
s/ is less than, equal to, or greater than s2, respectvely. Function strnemp makes
the same comparison but looks at a maximum of n characters.

Functon strcpy copies string 52 to string s/, stopping after the null character has
been copied. Functon strncpy copies exactly n characters, truncatng s2 or adding

null characters to s/ if necessary. The result is not null-terminated if the length of
s2 is n or more. Each function returns s/.

Function sirlen returns the number of characters in s, not including the terminating
null character.

Function strchr (strrchr) retumns a pointer to the first (last) occurrence of character ¢
in string s; it returns a null pointer if ¢ does not occur in the string. The null
character terminating a string is considered to be part of the string. In previous

versions of the Standard C Library, strchr was known as index and strrchr was
known as rindex.

Function strpbrk returns a pointer to the first occurrence in szring s/ of any
character from string 52, or a null pointer if no character from 52 exists in s/.

Function strspﬁ returns the length of the initial segment of string 5/ that consists
entrely of characters from saring s2.

Function strespn returns the length of the inidal segment of string s/ that consists
entrely of characters not from swzing s2.

Functon strrok considers the string s/ as a sequence of zero or more text tokens
separated by spans of one or more characters from the separator string s2. The first
call (with pointer s/ specified) returns a pointer to the first character of the first
token and writes a null character into s/ immediately folloing the returned token.
The function keeps track of its position in the saing between calls. Subsequent
calls for the same string must be made with a null pointer as the first argument. The

separator string s2 may be different from call to call. When no token remains in s/,
a null pointer is returned.

WARNING

Overlapping moves may yield unexpected results.

Alpha Dragt ' " Page4-60 26 May 1986

Standard C Library strtol Cortland Workshop C

NAME
strtol—convert string to integer

SYNOPSIS

long strtol (str, ptr, base)
char *str;

char **ptr;

int base;

DESCRIPTION
Funcdon strtol returns a long integer containing the value represented by the
character suing str. The string is scanned up to the first character inconsistent with
the base (decimal, hexadecimal, or octal). Leading white-space characters are
ignored. .

If the value of per is not null, a pointer to the character terminating the scan is
returned in *prr. If no integer can be formed, *p:r is set to szr and zero is returned.

If base is zero, the base is determined from the string. If the first character after an
optional leading sign is not 0, decimal conversion is done; if the O is folowed by x
or X, hexadecimal conversion is done; otherwise octal conversion is done.
The functdon call aro/(str) is equivalent to
strtol (str, (char *=*)NULL, 10)
The functon call atoi(str) is equivalent to
(int) strtol (str, (char **)NULL, 10)
NOTE |
Overflow conditions are ignored.
Apple base conventions (3 for hexadecimal, % for binary) are not supported.

SEE ALSO

atof, atoi, scanf.

Alpha Draft | Page 4- 61 26 May 1986

Cortland Workshop C

NAME

sin, cos, tan, asin, acos, atan, atan2—trigonometric functions

SYNOPSIS

#include

extended
extended

extended
extended

extended
extended

extended
extended

extended
extended

extended
extended

extended
extended

DESCRIPTION

<math.h>

sin (x)
X

cos (Xx)
X

tan (x)
Xx;

asin (x)
x;

acos (x)
x;

atan (x)
x;

atan2 (y,

X, ¥

mg

Standard C Library

Functions sin, cos, and ran return, respectively, the sine, cosine, and tangent of
their argument, which is in radians.

Function asin returns the arcsine of x, in the range -x/2 to n/2.

Function acos returns the arccosine of x, in the range 0 to =.

Function aran returns the arctangent of x, in the range -n/2 to ®/2.

Function gran2 returns the arctangent of y/x, in the range - to =, using the signs of

both arguments to determine the quadrant of the return value.

For special cases, these functions return a NaN or infinity as appropriate.

DIAGNOSTICS

These functions honor the floating-point exception flags—invalid operation,
underflow, overflow, divide by zero, and inexact—as prescribed by the Standard
Apple Numeric Environment (SANE).

Alpha Draft

Page 4- 62

26 May 1986

Standaord C Library rig Cortland Workshop C

. NOTE

Functions sin, cos, and tan have periods based on the nearest extended-precision
representation of mathematical n. Hence these functions diverge from their
mathematical counterparts as their argument becomes far from zero.

SEE ALSO

Apple Numerics Manual.

Alpha Draft Page 4- 63 | : 26 May 1986

Cortland Workshop C ungerc Standard C Library

NAME

ungetc—push character back into input stream
SYNOPSIS

#include <stdio.h>

int ungetc (¢, stream)
char ¢:
FILE *stream,

DESCRIPTION
Functon ungerc inserts the character ¢ into the buffer associatedbwith an input
strearn. That character, ¢, will be returned by the next gerc call on that sweam.
Functon ungerc returns ¢ and leaves the file stream unchanged.

One character of pushback is guaranteed provided something has been read from
the stream and the stream is actually buffered.

If ¢ equals EOF, ungerc does nothing to the buffer and returns EOF.
Functon fseek erases all memory of inserted characters.
DIAGNOSTICS
For ungerc to pérform correctly, a read must have been performed prior to the call
of the ungerc function. Functon ungetc returns EOF if it can't insert the character.

If stream is stdin, ungerc allows exactly one character to be pushed back onto the
buffer without a previous read statement.

SEE ALSO

fseek, getc, setbuf.

Alpha Draft Paged-64 26 May 1986

Standard C Library unlink Cortland Workshop C

NAME
unlink—remove a file

SYNOPSIS

int unlink (path)
char *path;

DESCRIPTION

Functon unlink deletes the file named by the pathname pointed to by path.
RETURN VALUE

Upon successful completion, a value of O is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

Alpha Draft Page 4- 65 26 May 1986

Cortland Workshop C write Standard C Library

NAME

write~—write on a file

SYNOPSIS

int write (fildes, buf, nbyte)
int fildes:

char *buf;

unsigned nbyte;

DESCRIPTION
File descriptor fildes is obtained from a crear or open call.

Functon write attemnpts to write nbyre bytes from the buffer pointed to by buf to the
file associated with the fildes. Intemnal limitations may cause write to write fewer
bytes than requested; the number of bytes actually written is indicated by the return

value. Several calls to write may therefore be necessary to write out the contents of
buf.

On devices capable of seeking, the actual writing of data proceeds from the positdon
in the file indicated by the file pointer. Upon return from wrize, the file pointer is
incremented by the number of bytes actually written.

On nonseeking devices, writing always starts at the current position. The value of a
file pointer associated with such a device is undefined.

If the O_APPEND file status flag is set—see open—the file pointer is set to end-of-
file prior to each write.

The file pointer remains unchanged and wrire fails if fildes is not a valid file
descriptor open for writing. [EBADF]

If you try to write more bytes than there is room for on the device, wrire writes as
many bytes as possible. For example, if nbyte is 512 and there is room for 20
bytes more on the device, write writes 20 bytes and returns a value of 20. The next
atternpt to write a nonzero number of bytes will signal an error. [ENOSPC]

RETURN VALUE

Upon successful compledon the number of bytes actually written is returned.
Otherwise, -1 is returned and errno is set to indicate the error.

SEE ALSO

creat, lseek, open.

Alpha Draft Page 4- 66 26 May 1986

Chaprer 5 Cortland Workshop C Language Reference

Chapter 5

The Cortland Interface Libraries

Introduction to the Cortland Interface Libraries

This chapter contains the C definiton of the Cortland Interface Libraries. For complete
documentation of these libraries, see Cortland Tools.

After an introductory description of the interface, the chapter is arranged alphabetically by
library header. All of the identifiers in the Cortland Interface Ljbraries are listed in the
Library Index, Appendix C.

Alpha Draft | Page5- 1 26 May 1986

NAME
_ C interface to the Cortland Tools Reference

SYNOPSIS

#%% This list of #include files is approximate. Some files need to be added

below, *#*

#include <Controls.h> /* Control Manager */
#include <Desk.h> /* Desktop Environment */
#include <Dialogs.h> /* Dialog Manager */
#include <Events.h> /* Event Manager */
$include <Files.h> /* File Operations Manager */
#ineclude <QuickDrawII.h> /* Graphics Core Tools */
#include <Input.h> /* Input Tools */
#include <Memory.h> /* Memory Manager */
$include <Menu.h> /* Menu Manager x/
#include <SANE.h> /* Standard Apple Numerics */
#include <Sound.h> /* Sound Tools */
#include <Text.h> /* Text Editor */
#include <Tools.h> /* Teol Locator */
#include <Window.h> . /* Window Manager */
#include <Misc.h> /* Miscellaneous Tools */

*¥% Any of these? ***

#include <types.h> ?7* common defines and types *2
#include <strings.h> ?* string conversions *?
#$include <quickdraw.h> ?* QuickDraw *?
#include <fonts.h> ?* Font Manager *9
$include <scrap.h> ?* Scrap Manager *?
#include <printing.h> ?* Printing Manager ®?
$include <segload.h> ?* Segment Loader *?2
#include <devices.h> ?* Device Manager *?
#include <disks.h> ?* Disk Driver * 7
#include <sound.h> ?* Sound Driver 7
#include <serial.h> ?* Serial Drivers *2
$inclyde <error.h> ?* System Error Handler *?

“**] am not sure the following belongs here: the MPW C Reference doesn't include this,
R .

/t
APWtypes.h (version 1.0, 13 May 1986)

Standard types, macros and constants for Apple II xx C

Copyright 1986 Apple Computer Inc.
*/

$define nil 0
#define NULL 0

Alpha Draft Page 5-2 26 May 1986

Cortland Interface Library Interface Cortland Workshop C

typedef enum (false, true} Boolean;
typedef char *Ptr; '

typedef Ptr *Handle:

typedef long (*ProcPtr) ():

typedef ProcPtr *ProcHandle;
typedef short OSErr;

typedef long Fixed:

typedef long Frac:

. #define String(size) struet(\ .
unsigned char length; unsigned char text(size);}
typedef String(255) Str255, *StringPtr, **StringHandle:

struct Rect|
short top,left,bottom, right;

)2 o

#define bit0 0X0001
tdefine bitl 0X0002
$define bit2 0X0004
#define bit3 0xX0008
$#define bit4 0X0010
#define bits 0x0020
#define bité 0X0040
#define bit?7 0X0080
#define bit8 0X0100
#define bit$ 0%0200
$define bitl0 0X0400
#define bitll 0X0800
#define bitl2 0X1000
#define bitl3 0X2000
#define bitld 0X4000
tdefine bitl5 0X8000

DESCRIPTION

The C Interface provides C programs with access to all of the libraries defined in
Cortland Tools Reference. Constants, types, and library routines are provided.
The list of libraries appears above.

Header Files: Include the “.h” files in C programs to declare the defines,
types, and functions provided by these libraries. Each library definition
lists the includes necessary for use of that library. Functions whose
declarations can be inferred from calls have been omirtted from the header
files. List the includes in the order in which the libraries are listed above.

Object File: The interface code is contained in file *** filename? ***,
Link this file with the C program and other libraries. Not all functons
require interface code. The linker includes interface code for only those
routines that are called.

Interface Implementation: Most library routines are declared as
external Pascal routines with rap numbers, and are trapped to directly by

Alpha Draft . Pages-3 26 May 1986

Cortland Workshop C Inzerface Cortland Interface Library

Alpha Draft

compiled code. *** True? *** QOther routines are declared to be C routines
and are called through interface glue.

Parameter Types: The C interfaces expect structures (including Points)
to be passed by address. String parameters are null-terminated C strings
unless otherwise indicated. ResTypes and OSTypes can be expressed as
character literals; for example, MENU".

Spelling and Capitalization: The spelling and capitalization of
idendfiers is exactly as specified in Corrland Tools Reference. Constants,
variables, parameter names, fields within structures, and enurneration-type
elements begin with a lowercase letter. Routines and data types begin with
an uppercase letter. Letters that begin new words in English are capitalized.
All other letters are lowercase. When a name includes an acronym, the case

of the entire acronym is determined by the case of the first letter (e.g.,
GetOSEvent, teJustleft). '

Page 5-4 26 May 1986

Cortland Irzerface Library cortrols Cortland Workshop C

NAME
controls—Control Manager

SYNOPSIS

This is the Mac code. The Cortland code will resemble it in functonality but
differ in form. Stay tuned. ***

#¥include <types.h>
#include <quickdraw.h>
#include <controls.h>

/* Control Definition Procedures IDs */

#define pushButProc
#define checkBoxProc
#define radioButProc
#define useWFont

$define scrollBarProc 1

o N = O

/* FindControl Result Codes =/

#define inButton 10
#define inCheckbox 11
#define inUpButton 20
#define inDownButton 21
#define inPageUp 22
#define inPageDown 23
#define inThumb 129

/* DragControl Axis Constraints =/

#define noConstraint 0
$#define hAxisOnly 1
$define vAxisOnly 2

/* Messages to Control definition function */

§define drawCntl
#define testCntl
#define calcCRgns
$define initCntl
$define dispCntl
$define posCntl

tdefine thumbCntl
#define dragCntl
#define autoTrack

W JoWn s WO

typedef struct ControlRecord |
struct ControlRecord **nextControl;
struct GrafPort *contrlOwner:
Rect contrlRect;
unsigned char contrlVis;
unsigned char contrlHilite:
short eontrlvValue;
short contrlMin;

Alpha Draft Page5-5 26 May 1986

Cortland Workshop C conzrols Conrtland Interface Library

short contrlMax;
ProcHandle contrlDefProc;
Handle contrlData;
ProcPtr | contrlAction;
long contrlrfCon:
Str285 contrlTitle;

} ControlRecord, *ControlPtr, **ControlHandle:

/* Initialization and Allocation */

ControlHandle NewControl (theWindow,boundsRect,title,visible, value,

min,max, grocID, refCon)

struct GrafPort *theWindow;

Rect *boundsRect; ‘

char *title;

Boolean visible:

short value:;

short min;

short max;

short proclID;

long refCon:; :
pascal ControlHandle GetNewControl (controllID,theWindow)

short contzrollD;

struct GrafPort *theWindow:
pascal void DisposeControl (theControl)

ControlHandle theContzol:
pascal void KillControls(theWindow)

struct GrafPort *theWindow:;

/* Control Display */

void SetCTitle(theContzrol,title)
ControlHandle theControl:
char *title:

void GetCTitle(theControl,title)
ControlHandle theControl;
char *title;

pascal void HideControl (theControl)
ControlHandle theControl;

pascal void ShowControl (theControl)
ControlHandle theControl:; ’

pascal void DrawControls (theWindow)
struct GrafPort *theWinddw;

pascal void HiliteControl (theControl,hiliteState)
ControlHandle theControl:
short hiliteState;

pascal void UpdateControls(theWindow,update)
GrafPort *theWindow:
RgnHandle update;

/* Mouse Location */

short TestControl (theControl, thePoint)
ControlHandle theControl;
Point *thePoint:

short FindControl (thePoint,theWindow, theControl)
Point *thePoint;
struct GrafPort *theWindow:;

Alpha Draft Page 5-6 26 May 1986

Cortland Interface Library controls Cortland Workshop C

ControlHandle *theControl:
short TrackContrel (theControl,startPt,actionProc)
ControlHandle theControl;
Point *startPt:
ProcPtr actionProc;

/* Control Movement and Sizing */

pascal void MoveControl (theControl,h,v)
ControlHandle theControl;
short h,v:

void DragControl (theControl,startPt,limitRect, slopRect,axis)
ControlHandle theControl; :
Point *startPt;
Rect *limitRect;
Rect *slopRect;
short axis;

pascal void SizeControl(theControl,w,h)
‘ControlHandle theControl;
short w,h;

/* Control Settings and Range */

pascal void SetCtlvValue (theContrel,thevalue)
ControlHandle theContzrol:
short theValue;

pascal short GetCtlValue (theControl)
ControlHandle theContzrol;

pascal void SetCtlMin(theControl,minValue)
ControlHandle theControl:

. short minValue:

pascal short GetCtlMin(theControl)
ControlHandle theControl:

pascal void SetCtlMax(theCentrol,maxValue)
ControlHandle theControl;
short maxValue;

pascal short GetCtlMax(theControl)
ControlHandle theControl;

/* Miscellaneous Utilities */

pascal void SetCRefCon (theControl,data)
ControlHandle theControl;
long data;

pascal long GetCRefCon (theControl)
ControlHandle theControl:

pascal void SetCtlAction(theControl,actionProc)
ControlHandle theControl:
ProcPtr actionProc;

pascal ProcPtr GetCtlAction(theControl)
ControlHandle theControl;

USER ROUTINES

pascal void MyAction()

pascal void MyAction(theControl,partCode)
ControlHandle theControl;
short partCode;

Alpha Draft Page5-7 | 26 May 1986

Cortland Workshop C controls Cortland Interface Library

pascal long MyControl(varCode,theControl,message,param)
short varCode:; .
ControlHandle theControl;
short message;
long param:;

DESCRIPTION

The Control Manager provides routines for creating and manipulating controls (for
example: buttons, scroll bars).

For more detailed information see the Control Manager chapter of theCortland
Tools Reference.

Alpha Draft Page5-8 26 May 1986

Cortland Inzerface Library desk Cortland Workshop C

NAME

desk—Desk Acccssory Manager
SYNOPSIS

*#% Code for this will be added later. ***
DESCRIPTION

The Desk Accessory Manager supports small co-resident application programs like
calculators, calendars, and such. (One of these can be a switcher.)

" There are two kinds of desk accessories on the Cortland: classic desk accessories
that can run with old-style applications (like Apple Works), and new desk
accessories that run in the Cortland desktop environment. The Desk Accessory
Manager checks to see which environment it is in and makes sure that a desk
accessory can run in that environment before calling it.

One classic desk accesory is built in: the Control Panel.

For more detailed informnaton see the Desk Accessory Manager chapter of Cortland
Tools Reference.

AlphaDrafr Page 5- 9 26 May 1956

Cortland Workshop C dialogs Contland Interface Library

NAME
dialogs—Dialog Manager
SYNOPSIS

#x% Crde for this will be added later, #¥*
DESCRIPTION

The Dialog Manager supports dialog boxes and the alert mechanism. It creates and

displays dialog boxes, alerts the user by a sound, and finds out the user’s
responses to the boxes and sounds.

For more detailed information see the Dialog Manager chapter of Cortland Tools
Reference. '

Alpha Draft Page 5- 10 26 May 1986

Cortland Interface Library events -~ Cortland Workshop C

NAME
events—Event Manager
SYNOPSIS

/*
eventTypes.h =-- type definitions used by the event manager (versizn
1.0, 13 May 1986)

‘€ Interface to the Apple II xx Libraries.
Copyright 1986 Apple Computer Inc.
*/

#define nullEvent O
#define MouseDown 1
$define MouselUp 2
$define KeyDown 3
$define undefined4Event 4
#define autoKey 5
#define update 6

$define undefine7Event 7
#define activate 8
#define switch 9

#define DeskAccessory 10
#define deviceDriver 11
$define Applicationl 12
#define Application2 13
#define Application3 14
#define Applicationd 15

#define KeyPad bitl3
#define ControlKey bitl2
#define OptionKey bitll
#define CapslLock bitl0
#define ShiftKey bit$
$define AppleKey bit8
$define BtnlQState bit7
$define BtnlState bité

$define ChangeFlag bitl
#define ActiveFlag bit0

typedef int Peint; /* a structure? */
struct eventRecord(

short int what:

long int message;

long int when;

Point where;

sheort int modifiers;
} s

$define DupStartup 0X0601
$define ResetErr 0X0602
#define EMNotActive 0X0603
#define IllEvent 0X0604
#define IllButton 0X0605
tdefine LargeQueue 0X0606

Alpha Draft : Page5- 11 26 May 1986

Cortland Workshop C everus

#define NoMemory 0X0607

/*

Cortland Interface Library

EventMgr.h == Event Manager (version 1.0, 13 May 1986)

C Interface to the Apple II xx Libraries

Copyright 1986 Apple Computer Inc.
=/

#include <aAPWtypes.h>
#include <eventTypes.h> h

/* standard housekeeping functions = present in every manager */

extern pascal void EMBootInit():

extern pascal void EMStartUp(/*ZeroPage,QueueSize, MinClamp,

XMaxClamp, YMinClamp, YMaxClamp, ProgramID*/) ;
/* short

ZeroPage,QueueSize, XMinClamp, XMaxClamp, YMinClamp, YMaxClamp, ProgramIl:

extern pascal void EMShutDown():
extern pascal int EMVersion():
extern pascal void EMReset ()
extern pascal Boolean EMActive():

/* More Housekeeping */

extern pascal short int DoWindows():

/**‘l*******i**'t***'t*********t***t***t*********/

/* Toolbox event manager routines */
/******t**tt****'tt*ttt*!*ttt**t*!t*t****it*****/

/* Accessing Events */

extern pascal Booclean GetNextvent (/*EventMask,EventPtrx*/);

/* unsigned short EventMask:; eventRecord *EventPtr; */

extern pascal Boolean EventAvail (/*EventMask,EventPtr*/):

/* unsigned short EventMask: eventRecord *EventPtr; */

/* Reading the Mouse */

extern pascal void GetMouse (/*MouselocPtr*/);
/* Point *MouselocPtr */

extern pascal Boolean Button(/*ButtonNum#*/);
/* short int ButtonNum */

extern pascal Boolean StillDown (/*ButtonNum*/);
/* short int ButtonNum; */

extern pascal Boolean WaitMouseUp (/*ButtonNum*/);
/* short int ButtonNum; */

/* Miscellaneous Routines */

Alpha Draft Page 5- 12

26 May 1986

P

Cortland Interface Library eyent‘s X Cortland Workshop C

extern pascal long TickCount():
extern pascal long GetDblTime():
extern‘pascal long GetCaretTime ()

extern pascal void SetSwitch():

/t*******************t******t***************/

/* Operating system event manager routines =/
/*******t*********tk***tt***tttt**i**t*t*t**/

/* Posting and Removing Events %/

$define EventPosted -]
#define EventNotDesiganted 1

extern pascal short PostEvent (/*EventCode,EventMsg*/);
/* short EventCode: long EventMsg; */

extern pascal short FlushEvents (/*EventMask,StopMask*/):
/* short EventMask, StopMask; */

/* Accessing events */

extern pascal Boolean GetQOSEvent (/*EventMask,EventPtr*/);
/* short EventMask; EventRecord *EventPtr; */

extern pascal Boolean OSEventAvail(/*EventMask,EventPtz*/);
/* short EventMask; EventRecord *EventPtr; */

extern pascal veid SetEventMask (/*TheMask*/);
/* short TheMask; */ '

/i***‘ll****t******'*‘t*t'**'****I*********tt*t‘t*t/

/* The Journaling Mechanism */
/tt*:****a**r***x*tt:wt*r*t::*w**:ttti*q*tt****w/

/* TO BE DEFINED, IF ANY */

DESCRIPTION
The Event Manager provides access to the Cortland keyboard, keypad, and mouse.
An application is organized as a loop containing a call to the Event Manager
followed by a series of conditional (switch) statements. These conditional
statements.determyne the program’s operations on the basis of the information
returned by the Event Manager. The Event Manager also reports events within the
applicadon that may require a response: for example, changing one window may
cause another window to become visible and need to be redrawn.

The Cordand Event Manager was designed to be as much like the event manager on

the Macintosh as possible. The main difference is that the Macintosh has two event
managers, one calling the other. The Cortland has only one.

Alpha Draft Page 5- 13 26 May 1986

Cortland Workshop C - : files Cortland Interface Library

NAME

files—File Operadons Manager
SYNOPSIS

*#% Code for this will be added later. ***
DESCRIPTION

The File Operations Manager controls the exchange of information berween an
application and files. It makes calls to ProDOS/16.

For more detailed information see the File Operadons Manager chapter of Cortland
Tools Reference. ‘

NOTE

An I/O completion routine cannot reliably access any globals, strings, or other
functions outside its segment.

##% This is true for Mac. What is true for Cortland? #**

WARNING

The low-level routines that use strings take as input and return as output pointers to
Pascal-style strings (string length in first byte). However, the high-level roudnes
use C-style strings (terminated by a null character) as input and output parameters.

Alpha Draft Page 5- 14 26 May 1986

NAME

inmath—Integer Math

SYNOPSIS

/t
FixMath.h == Fixed Point Math (version 1.0, 13 May 198¢6)

C Interface to the Apple II xx Libraries
Copyright 1986 Apple Computer Inc.
*/ :

#include <APWtypes.h>

/* standard housekeeping functions - present in every manager */
extern pascal void IMBootInit():

extern pascal void IMStartUp():

extern pascal void IMShutDown();

extern pascal int IMVersion():

extern pascal void IMReset ()

extern pascal Boolean IMActive():

#define BadParams 0X0BO1
#define BadChar 0X0B02
#define IntOverflow 0XO0BO3
#define StrOverflow 0X0BO4

struct SDivResult |

short remainder, quotient;
}s
struct UDivResult {

unsigned short remainder, quotient:
)i
struct LDivResult (

long remainder, quotient;
}i
struct LMulResult |

long MostSig, LeastSig:
}:

extern pascal long Multiply(/=*il,i2*/);
/* int 11, 12; "=/

extern pascal LMulResult LMultiply(/*il,i2*/);
/* long i1, i2; */

extern pascal SDivResult SDivide (/*numerator,denominator*/);
/* short numerator, denominator; */ '

extern pasc¢al UDivResult UDivide (/*numerator,denominator*/);
/* unsigned short numerator, denominator; */

extern pascal LDivResult LDivide(/*numerator,denominator*/):
/* short numerator, denominator; */

AlphaDrafi Page5-15 | 26 May 1986

Cortland Workshop C intmath Cortland Interface Libraries

extern pascal Fixed FixRatio(/*numeratcr,denominator*/});
/* short numerator, denominator; */

extern pascal Fixed FixMul (/*£l,£2*/);
/* Fixed £1,£2; */

extern pascal void Int2Hex(/*i,str,len*/);
/* unsigned short i; Ptr str; int len; */

extern pascal void LongZHex(/*l,str,leh*/);
/* unsigned long l:; Ptr str; int len; */

extern pascal unsigned short Hex2Int (/*str,len*/);
/* Ptr str; int len; */

extern pascal unsigned long Hex2Long(/*stz,lenx*/);
/* Ptr str; int len; =/

#define UnsignedFlag 0
#define SignedFlag 1

extern pascal void Int2Dec(/*i, str, len, flag*/):
/* int i; Ptr str; int len, flag; */

extern pascal void Long2Dec(/*l, str, len, flag*/);
/* long l; Ptr str:; int len, flag; */

extern pascal int Dec2Int(/*str, len, flag*/):
/* Ptr str; int len, flag; */

extern pascal long Dec2long(/*str, len, flag*/):
/* Ptr str; int len, flag; */

typedef long HexString4:
extern pascal HexStringd Dec2Int (/*i*/);
/* unsigned short i; */

DESCRIPTION

The Integer Math toolset includes several routines for working on data of types
short, int, long, fixed, and frac (that is, fractional part). It has routiens for
multiplication, division, square root, some trigonometric functions, rounding, and
conversions between data types.

For more detailed information see the Integer Math chapter of Cortland Tools
Reference. ~ ‘

AlphaDraft Page 5- 16 26 May 1986

Cortland Interface Libraries lined

NAME
lined—Line Editor
SYNOPSIS

Cortland Workshop C

% This is the Mac code. The Cortland code will resemble it in functonality but

differ in form. Stay tuned. ***

#include <types.h>
#include <textedit.h>

#define teJustleft 0

#define teJustCenter 1

#define teJustRight (-1)

typedef char Chars[32001];

typedef Chars *CharsPtr, **CharsHandle;

typedef struct TERec ({
Rect destRect:; /* destination rectangle */
Rect viewRect; /* view rectangle */
Rect selRect; /* select rectangle */
short lineHeight; /* current font lineheight =/
short fontAscent; /* current font ascent */
Point selPoint; /* selection point (mouseloc) */
short selStart; /* selection start */
short selEnd; /* selection end */
short active; /* 1= 0 if active ¥/
ProcPtr wordBreak: /* word break routine */
ProcPtr clikLoop: /* elick loop routine */
long clickTime:; /* time of first click =/
short clickLoc: /* char. location of click */
long caretTime; /* time for next caret blink =/
short caretState; /* on/active booleans */
short just; /* £il1l style */
short teLength; /* length of text below */
Handle hText; /* handle to actual text */
short recalBack; /* '= 0 if recal in background =/
short recallines; /* line being recalulated */
short clikStuff; /* click stuff (internal) =/
short cronly: /* set to -1 if CR Line breaks only ~.
short txFont; /* text Font */
Style txFace: /* text Face */
short txMode ; /* text Mode */
short txSize:; /* text Size */
struct GrafPort *inPort; /* Grafport */
ProcPtr highHook: /* highlighting hook */
ProcPtr caretHook; /* highlighting hook */
short nlines; /* number of lines */
short lineStarts([16001); /* line starts ¥/

} TERec, *TEPtr, **TEHandle:

./* Initialization and Allocation */

pascal void TEInit ()

Alpha Draft Page5-17

26 May 1986

Cortland Workshop C lined Cortland Interface Libraries

pascal TEHandle TENew(destRect,viewRect)
Rect *destRect, *viewRect;

pascal void TEDispose (h)
TEHandle h;

/* Accessing Text */

pascal void TESetText (text, length, hTE) -
Ptr text:
long length:
TEHandle hTE:;
pascal CharsHandle TEGetText (hTE)
TEHandle hTE;

/* Insertion Point and Selection Range */

pascal void TEIdle (hTE)
TEHandle hTE:
void TEClick (pt,extend, hTE)
Point *pt;
Boolean extend;
TEHandle hTE; .
pascal void TESetSelect (selStart,selEnd,hTE)
long selStart;
long selEnd:;

TEHandle
pascal void
TEHandle
pascal void
TEHandle

hTE:;

TEActivate (hTE)
hTE:
TEDeactivate (hTE)
hTE;

/* Editing */

pascal void

TEXKey (key,hTE)

short key;

TEHandle
pascal void
TEHandle
pascal void
TEHandle
pascal void
TEHandle
pascal void
TEHandle
pascal void

hTE:

TECut (hTE)

hTE;

TECopy (hTE)

hTE:

TEPaste (hTE)

nTE: .

TEDelete (hTE

hTE;-
TEInsert (text, length, hTE)

L1y

Ptr text:
long length;
TEHandle hTE;

/* Text Display and Scrolling */

pascal vold TESetJust (just,hTE)
short just;
TEHandle hTE:;
pascal void TEUpdate (rUpdate, hTE)
Rect *rUpdate;
TEHandle hTE; .
pascal void TextBox(text,length,box, just)

Alpha Draft Page 5- 18 26 May 1986

Cortland Interface Libraries lined Cortland Workshop C

Ptr text:
long length;
Rect *box;
short just;

pascal void TEScroll (dh,dv,hTE)
short dh;
short dv;
‘"TEHandle hTE:

pascal void TESelView (hTE)
TEHandle hTE:

pascal void TEPinScroll (dh,dv,hTE)
short dh;
short 4w
TEHandle hTE;

pascal void TEAutoView(auto,hTE)
Boolean auto;
TEHandle hTE;

/* Scrap Information =/

OSErr TEFromScrap ()

OSErr TEToScrap() :

Handle TEScrapHandle ()

long TEGetScraplen ()

void TESetScraplen(length)
long length:;

/* Advanced Routines */

vold SetWordBreak (wBrkProc,hTE)
ProcPtr wBrkProc;
TEHandle hTE:

void SetClikLoop(clikProc, hTE)
ProcPtr clikProc;
TEHandle hTE;

pascal void TECalText (hTE)
TEHandle hTE:

USER ROUTINES

Pascal Boolean MyWordBreak (text,charPos)
Ptr text:
short charPos:;

Pascal Boolean MyClikLoop ()

DESCRIPTION

The Line Editor accepts text typed by the user and performs standard editng
funcdons in response to calls from applications. Its functions in¢lude

* insertng and deletdng text

* using the mouse to select text

e cutting and pasting text

For more detailed informaton see the “Line Editor” chapter of the Cortland Tools
Reference.

Alpha Draft Page 5- 19 26 May 1986

Cortland Workshop C lined Cortland Inzerface Libraries

NOTE

The user routines highHook and caretHook are called with register conventdons and
therefore can't be C routines.

#x% Trye for Cortland?7? *%*

Alpha Draft Page 5- 20 26 May 1986

Cortland Interface Libraries

NAME

memory

memory—Memory Manager

SYNOPSIS
/ ®

MMtypes.h =-- general types for Memory Manager (version 1.0, -

May 1986)

C Interface to the Apple II xx Libraries
Copyright 1986 Apple Computer Inc.

*/

typedef
typedef
typedef

#define
$define
#define
#define
$define
#¢define
¥define
#define

#define
#define
#define
$define
tdefine
#define

/*

MemoryMgr.h =-- Memory Manager

unsigned sho
long int MMS
unsigned sho

MMnoError
MMFullErz
MMNilErr
MMNotNilErr
MMLockErr
MMPurgeErr
MMHandleErr
MMIDErr

MMF ixedBank
MMF ixedAddr
MMPageAlign
MMNoSpecMem
MMWithinBank
MMF ixed

rt MMUserID;
ize;
rt Purgelevel;

0

0x0201
0x0202
0%x0203
0x0204
0x0205
0x0206
0x0207

bit0
bitl
bit2
bit3
bit4
bitl4

c Interféce to the Apple II xx Libraries
Copyright 1986 Apple Computer Inc.

*/

#include <APWtypes.h>

#include <MMtypes.h>

/* stahdard housekeeping functions =- present in every manager =/
void MMBootlInit ()
int MMApplInit ()
void MMAppQuit ()
int MMVersion():
void MMResect ()
Boolean MMStatus();

extern pascal
extern pascal
extern pascal
extern pascal
extern pascal
extern pascal

/* Allocating

Alpha Draft

Memory */

Page5-21

(version 1.0, 13 May 1986)

Cortland Workshop C

[N

26 May 1986

Cortland Workshop C memory Cortland Inzerface Libraries

extern pascal Handle
NewHandle (/*BlockSize,Owner,Attributes, Location*/)

/* MMsize BlockSize; MMUserID Owner; short Attributes; Ptr
Location; */

extern pascal void ReallocHandle (/*TheHandle,BlockSize,

Owner, Attributes, Location*/) ;

/* Handle TheHandle:; MMSize BlockSize; MMUserID Owner:
short Attributes; Ptr Location */

/* Freeing Memory */

extern pascal void DisposHandle (/*theHandlex/);
/* Handle theHandle; */

extern pascal void DisposaAll(/*Qwner*/);
/* MMUserID Owner; */

extern pascal void PurgeHandle (/*theHandle*/):
/* Handle theHandle; */

extern pascal void PurgeAll(/*Qwner*/):;
/* MMUgerID OQwner */

/* Information on blocks */

extern pascal MMSize GetHandleSize(/*theHandle*/);
/* Handle theHandle; =*/

extern pascal void SetHandleSize(/*newSize,theHandle*/):
/* MMSize newSize; Handle theHandle; */

extern pascal Handle FindHandle(/*location*/);
/* Ptr location; */

extern pascal MMSize FreeMem():
extern pascal MMSize MaxBlock():
extern pascal MMSize TotalMem():
/* Other properties of block */

>

extern pascal void HLock (/*theHandle*/);
/* Handle theHandle; */

extern pascal void HLockAll(/*Owner*/);
/* MMUserID OQwner; */

extern pascal void HUnlock (/*theHandle*/);
/* Handle theHandle; */

extern pascal void HUnlockall (/*Owner*/):
/* MMUserID Owner; */

extern pascal void SetPurge (/*newPlevel,theHandlex/);
/* Purgelevel newPlevel; Handle theHandle:; */

Alpha Draft) Page 5-22 26 May 1986

Cortland Interface Libraries memory . Cortland Workshop C

extern pascal void SetPurgeAll (/*newPlevel,Owner*/);
/* Purgelevel newPlevel; MMUserID Owner; */

/* Copying Data */

extern pascal void BlockMove (/*Source,Dest,Count*/);
/* Ptr Source,Dest; MMSize Count; */

DESCRIPTION

The Memory Manager controls use of memory for by application programs.
Keeping memory usage under control of the Memory Manager makes it possible to
have co-resident applicatons like desk accessories. Programs call the memory

Manager to request (allocate) memory, release (deallocate) memory, and find out
how much memory is free.

For more detailed information see the Memory Manager chapter of Cortland Tools
Reference.

Alpha Draft Page5-23 ’ 26 May 1986

Cortland Workshop C menus Cortland Interface Libraries

NAME
menus—Menu Manager

SYNOPSIS
/* . .
MenuMgr.h == Menu Manager (version 1.0, 13 May 1986)

C Interface to the Apple II xx Libraries
Copyright 1986 Apple Computer Inc.
*/

#include <APWtypes.h>
#include <eventTypes.h>

$define TheOneWithID 0
$define HeadOflist 1
$define LastInlList 2
$define TheOneBeforeID -1

/* standard housekeeping functions - present in every manager */
extern pascal void BootMmgr():

extern pascal void TermMenus():

extern pascal int MmgrVersion();

extern pascal void MmgrReset ()

struct ItemRecord{
struct ItemRecord *NextItem;
unsigned short ItemId:
unsigned long ItemName;
unsigned char ItemCharcr;
unsigned char ItemCheck:
unsigned char Itemflag;

}:

struct MenuRecord{
struct MenuRecord *NextMenu;
unsigned short Menuld;
unsigned short MenuWidth;
unsigned short MenuHeight;
ProcPtr MenuProc;
unsigned short TitleWidth; ’
StringPtr TitleName;
unsigned char MenuFlag;
struct ItemRecord *ItemList;

Yi

struct” MenuBar |

long *NextCtrl; /* pointer to next control =- !!!!t!ll =/
unsigned char CtrlType:
Rect Bar;

unsigned char FallDown;
unsigned char BarColor:
unsigned char InvertColor;
unsigned char Outline;
unsigned char BarFlag;
struct MenuRecord *Menulist;

Alpha Draft " Page 5-24 : 26 May 1986

Cortland Interface Libraries menus . Cortland Workshop C

struct TwoShort |

unsigned short Divide, XOR;
}: :
extern pascal MenuRecord
*NewMenu(/*tegtColor,background,MenuString*/);

/* short textColor, background; StringPtzr MenuStzing; %/

extern pascal void DisposeMenu (/*Menulist*/);
/* MenuRecord *Menulist; */

extern pascal unsigned short FixMenuBar (/*theBar+/):;
/* MenuBar *theBar; */

extern pascal void CalcMenuSize (/*newWidth,newHeight, MenuPtr*/)
/* unsigned short newWidth,newHeight; MenuPtr ?27?; =/

/* drawing and user interaction routines */

extern pascal void MenuSelect (/*eventRec,theBar*/);
/* eventRec ?77?7; MenuBar *theBar; */

extern pascal void MenuKey(/*eventRec,theBarx*/):
/% eventRec ??7?7; MenuBar *theBar; */

extern pascal void CheckFallDown (/*eventRec,theBar+*/);
/* eventRec ?777; MenuBar *theBar; */

extern pascal void MenuRefresh(/*RedrawRoutine*/);
/* ProcPtr RedrawRoutine; */

/* Drawing */
extern pascal void DrawMenuBar();

extern pascal veid HiliteMenu(/*Hilite,MenuNum*/) ;
/* Boolean Hilite; unsigned short MenuNum: */

extern pascal void FlashMenuBar();
/* Menu and Item Shuffling */

extern pascal void InsertMenu (/*AddMenu, InsertAfter*/):
/* MenuRecord *AddMenu; unsigned short InsertAfter; */

extern pascal void DeleteMenu (/*MenuNum*/);
/* unsigned short MenuNum; */

extern-pascal void InsertlItem(/*AddItem, InsertAfter,MenuNum=*/);
/* ItemRecord *AddlItem; unsigned short InsertAfter, MenuNum; */

extern pascal void DeleteItem(/*ItemNum, MenuNum*/) ;
/* unsigned short ItemNum, MenuNum; */

/* Menu Bar Access */

extern pascal void SetSysBar(/*NewBarx*/):
/* MenuBar *NewBar; */

A)pha Draft Page 5- 25 26 May 1956

Cortland Workshop C menus Cortland Inzerface Libraries

extern pascal MenuBar *GetSysBaz():

extern pascal void SetMenuBar(/*TheBar*/):
/* MenuBar *TheBar; ¥/

extern pascal MenuBar *GetMenuBar():

extern pascal short CountMitems (/*MenuNum¥*/) ;
/* unsigned MenuNum; */

extern pascal void SetFalArea(/*FallHeight*/):; -
/* short FallHeight */

extern pascal short GetFallArea():

extern pascal void
SetBarColors (/*NewBarColor,NewInvertColor,NewQutColor*/) ;
/* unsigned short NewBarColor,NewInvertCclor,NewQutColor; =/

extern pascal unsigned long GetBarColors():;

extern pascal void SetTileStart (/*XStart*/);
/* unsigned short XStart; */

extern pascal unsigned short GetTileStart ():

/* Menu Record Access Routines */

extern pascal MenuRecord *GetMenuPtr(/*LookFor,MenuNum*/);
/* short LookFor; unsigned short MenuNum; */

extern pascal void SetTileWidth (/*NewWidth,MenuNum=*/)
/* unsigned short NewWidth, MenuNum; */

extern pascal unsigned short GetTileWidth (/*MenuNum=*/);
/* .unsigned short MenuNum */

#define MenuFlag OXFF7F

#define MenuTileFlag OXFFBF

#define HighlightFlag OXFFDF

¢define MenuKindfFlag OXFFE7

#define EnableMenu 0X0000

$define DisableMenu 0X0080

$cdefine NormalTile 0X0000

#define InvertTile 0X0040

¢define RedrawHighlight 0X0000

#define XORHighlight 0X0020

$define TextMenu 0X0000

$define ColorMenu 0X0008

$define ApplicationMenu 0X0010

extern pascal void SetMenuFlag(/*NewState,FlagMask,6 MenuNum*/);
/* unsigned short NewState,FlagMask,MenuNum */

extern pascal unsigned short GetMenuFlag(/*MenuNum*/);
/* unsigned short MenuNum; */

extern pascal void SetMenuTile(/*NewStrg,MenuNum*/);

Alpha Draft Page 5- 26 26 May 1986

Cortland Interface Libraries menus Cortland Workshop C

/* StringPtr NewStrg; unsigned short MenuNum; */

extern pascal StringPtr GetMenuTile (/*MenuNum*/);
/* unsigned short MenuNum; */

extern pascal void SetMenulID(/*NewID,MenuNum*/);
/* unsigned short NewlID,MenuNum: */

/* Item Record Access */

extern pascal ItemRecord *GetltemPtr (/*LookFor, ItemNum*/):
/* unsigned short LookFor, ItemNum; */

extern pascal void SetlItem(/*NewStrg, ItemNum*/);
/* StringPtr NewStrg; unsigned short ItemNum; */

extern pascal StringPtr *GetItem(/*ItemNum*/);
7/* unsigned short ItemNum; */

extern pascal void EnableItem(/*ItemNum+*/);
/* unsigned short ItemNum; */

extern pascal void Disableltem(/*ItemNum*/):;
/* unsigned short ItemNum; */

extern pascal void CheckItem(/*Checked, ItemNum*/) ;
/* Boolean Checked:; unsigned short ItemNum; */

extern pascal void SetItemMark(/*Mark,ItemNum*/);
/* unsigned short Mark, ItemNum; */

extern pascal unsigned short GetItemMark (/*ItemNum=*/);
/* unsigned short ItemNum; */

$define Bold 0X0001

¢define Italic 0%x0002

#define Underscore 0X0004

extern pascal void SetItemStyle(/*ChStyle, ItemNum*/)
/* unsigned short ChStyle, ItemNum; */

extern pascal unsigned short GetlItemStyle (/*ItemNum*/):;
/* unsigned short ItemNum; */

4define ItemUnderline 0X0040
$define ItemNoUnderline OXFFBF
#define ItemXORHighlight 0X0020
#define ItemRedrawHiglight OXFFDF

extern pascal void SetlItemFlag(/*NewValue, ItemNum*/); ,
/* unsigned short NewValue, ItemNum */

extern pascal TwoShort GetlItemFlag(/*ItemNum*/):
/* unsigned short ItemNum; */

extern pascal void SetItemID (/*NewlD,ItemNum*/);
/* unsigned short NewlID, ItemNum; */

extern pascal void SetItemBlink(/*Count*/):
/* unsigned short Count; ¥/

AlphaDrafi Page 5-27 26 May 1986

Cortland Workshop C menus Cortland Interface Libraries

/* Miscellaneous routines */
extern pascal void MNewRes ()
extern pascal void

extern pascal void

DESCRIPTION

The Menu Managcr provides routines for creating and using menus. The
applicadon calls the Menu Manager whenever the user gives a command, whether

from the menu by using the mouse or by typing a command key, to find out which
cormmand it is. For more detailed information see the Menu Manager chapter of
Cortland Tools Reference.

WARNING

The names of desk accessories start with a null byte. The output parameter from
GetMenultemn will return a string that begins with a null byte when a desk accessory

is selected from the Apple menu. OpenDeskAcc sk1ps over the null byte when
interpreting its parameter.

##% Trype for Cortland? ##*

-Alpha Draft Page 5-28 26 May 1986

Cortland Interface Libraries misc Cortland Workshop C -

NAME

misc—Miscellaneous Tools for talking to hardware

SYNOPSIS

This code will be added later.
- DESCRIPTION

The Miscellaneous Tools include

' » Routines to access battery-backed-up RAM

* Clock routines

Routines to access peripheral cards
Routines to change firmware vectors
Routines to manage the heartbeat interrupt queue
Routines for directly accessing the mouse
Interrupt-control routines

For more detailed information see the “Miscellaneous Tools” chapter of the
Cortland Tools Reference.

Alpha Draft | Page 5- 29 26 May 1986

. Cortland Workshop C printing Cortland Interface Libraries

NAME
printing—Printng Manager
SYNOPSIS

*%# This is the Mac code. The Cortland code will resemble it in functionality but
differ in form. Stay tuned, ***

#include <types.h>
#include <quickdraw.h> -
#include <printing.h>

/* Printing Methods */

$define bDraftLoop 0 /* draft printing */ ‘
#define DbSpoolloop 1 /* spooling */

/* Printer specification in prStl field of print record */

$define bDevCItoh 1 /* ImageWriter printer */
$define DbDevlLaser 3 /* LaserWriter printer */

/* Maximum number of pages in a spool file */

#define iPFMaxPgs 128 /* max pages in a spool file */
#define iPrPgFract 120 /* paper units per inch =/

/* Result codes =/

#define noErr 0 /* no error */

#define iPrSavPrFil {(-1) /* saving spool file */

#define 1iIOAbort (=27) /* I/0 abort error */

#define iMemFullErr (=108) /* not enough room in heap zone </
#define iPrAbort . 128 /* application or user requestad azszz <

/* Printer Driver Control Call Parameters ¥/

#define iPrDevCtl 7 /* device control */
#define lPrReset 0x00010000 /* reset printer */
$define lPrLineFeed 0x00030000 /* start new line */
#define 1PrLFSixth O0x0003FFFF /* standard 1/6" line feed */
tdefine lPrPageEnd 0x00020000 /* start new page */

#$define iPrBitscCtl 4 /* bit map printing */
#define lScreenBits 0 /* configurable */
$define lPaintBits 1 /* 72 x 72 dots */
#defirre iPrIOCtl S /* text streaming */

/* Printing Resources */

$define sSPrDrvr " . Print" /* Printer Driver resource name */
tdefine iPrDrvrRef (=3) /* Printer Driver reference number */

/* Type definitions */

typedef Rect *TPRect;

AlphaDraft ’ Page 5- 30 26 May 1986

Contland Interface Libraries ' pringng Cortland Workshop C

typedef struct TPrPort |

GrafPort gPort; /* graph port to draw in */
QDProcs gProcs: /* pointers to drawing routines */
long lGParaml; /* internal =/

leng lGParam2; /* internal */

long lGParam3; /* internal */

long: 1lGParamd; /* internal */

Boolean fOurPtr; /* internal */

Boolean fOurBits; /* internal */

} TPzrPort, *TPPrPort:

typedef struct TPrInfo |

short iDev; /* printer information */
short iVRes; /* printer vertical resolution */
short iHRes; /* printer horizontal resolution */
Rect rPage; /* page rectangle */

} TPzrinfo:

typedef enum {feedCut,feedFanfold,feedMechCut,feedOther) TFeed;

typedef struct TPrStl

short whev; /* high byte specifies device */
short iPageV: /* paper height ¥/
short iPageH; /* paper width */
char bPort; /* printer or modem port - ignored */
Treed feed; /* paper type */

} TPrsStl;

typedef enum {scanTB, scanBT, scanlR,scanRL} TScan;

typedef struct TPrXInfo |

short iRowBytes; /* bytes per row */
short iBandvVv: /* vertical dots */
short iBandH; /* horizontal dots */
short iDevBytes; /* size of bit image */
short iBands; /* bands per page */
char bPatScale; /* used by QuickDraw */
char bULlThick: /* underline thickness */
char bUlOffset; /* underline offset */
char bUlShadow; */* underline descender */
TScan scan; /* scan direction */
char bXInfoX: /* not used */

} TPrXInfo:

typedef struct TPrJob |

short iFstPage: /* first page to print */

short iLstPage: /* last page to print */

short iCopies; /* number of copies */

char bJDoclLoop: /* printing method */

Boclean fFromUsr;. /* true 1f called from application =/

ProcPtr pldleProc; /* background procedure */
StringPtr pFileName; /* spool file name */ ?227?

short iFileVol: /* volume reference number */
char bFileVers; /* version number of spool file */
char bJobX; /* not used ¥/

} TPrJob:

typedef struct TPrint |

Alpha Draft Page 5- 31 ' 26 May 1986

Cortland Workshop C

short iPrvVersion; /*
TPrinfo prlnfo; /*
Rect rPaper; /*
TPrStl prsStl; /*

TPrInfo prinfoPT:;
TPrXInfo prXInfo:
TPrJob prdob;
short printX(19]

/*
/*
/*
/*

printing Conland Interface Libraries

Printing Manager version */
printing information */
paper rectangle */

style information */

copy of prInfo */

band information */

job information */

internal */

} TPrint, *TPPrint, **THPrint:

typedef struct TPrStatus

{

short iTotPages; /*
short iCurpage; /*
short iTotCopies; /*
short iCurCopy: /*
short iTotBands; /*
short iCurBand; /*
Boolean f£PgDirty; /*
Boclean fImaging:; /*
THPrint hPrint: /*

TPPrPort pPrPort;
PicHandle hPic;
} TPrStatus;

/t
/t

total number of pages */
page being printed =/
number of copies */

copy begin printed */
bands per page */

band being printed */
true if started printing page */
true if imaging ¥/

print record */

printing port */
internal *x/

/* Initialization and Termination */

pascal void PrOpen ()
pascal void PrClose()

/* Print Records and Dialogs */

pascal void PrintDefault (hPrint)
THPrint hPrint;

pascal Boolean PrValidate(hPrint)
THPrint hPrint;

pascal Boolean PrStlDialog(hPzint)
THPrint hPrint;

pascal Boolean PrJobDialog(hPrint)
THPrint hPrint;

. pascal void PrJobMerge (hPrintSrc,hPrintDst)

THPrint hPrintSrc,hPrintDst;

/* Document Printing */

pascal TPPrPort PrOpenDoc (hPrint,pPrPort,plOBuf)

THPrint hPrint;
TPPrPort pPrPort:
Ptr- pIOBuf;
pascal void PrCloseDoc (pPrPort)
TPPrPort pPrPort;

pascal void PrOpenPage (pPrPort,pPageFrame)

TPPrPort pPrPort;
TPRect pPageFrame;

pascal void PrClosePage (pPrPort)
TPPrPort pPrPort:

/* Spool Printing */

Alpha Draft Page 5--32

26 May 1986

Cortland Interface Libraries pringng Cortland Workshop C

pascal void PrPicFile(hPrint,pPrPort,pI0OBuf, plevBuf,prStatus)
THPrint hPrint:
TPPrPort pPrPort;
Ptr pIOBuf, pDevBuf;
TPrStatus *prStatus;

/* Handling Errors */
pascal short PrErroz()

pascal void PrSetError{iErr)
short iErr;

/* Low Level Driver Access */

pascal void PrDrvrOpen ()

pascal void PrDrvrClose()

pascal void PrCtlCall(iWhichCtl,lParaml, lParam2, lParam3)
gshort iWhichCtl: -
long lParaml,lParam2, lParam3;

pascal Handle PrDrveDCE ()

pascal short PrDrvrVers()

DESCRIPTION

The Printing Manager supports printing on a variety of devices. Programs that call
Printing Manager routdnes should be linked with file PrintCalls.o.

o 3k 2 "I‘me? ot

For more detailed informaton see the Printing Manager chapter of Cortland Tools
Reference.

NOTE

The current Pascal implementation has additional constants and data types that
aren't documented in Cortland Tools Reference because they're not generally used.

Ak Tmc') e sk

This interface follows the Cortland Tools Reference .

AlphaDrafi Page 5-33 | 26 May 1986

Cortland Workshop C quickdraw?2

NAME
" quickdraw2—QuickDraw II
SYNOPSIS

Cortland Interface Libraries

*** This is the Mac code. The Cortland code will resemble it in functonality but

differ in form. Stay tuned. ***

#include <types.h>
#include <quickdraw.h>

/* 16 Transfer Modes */

#define srcCopy 0
#define srcOr]
#define srcXor 2
$define srcBic 3
#define notSrcCopy 4
#define notSrcOr 5
#define notSrcXor 6
#define notSrcBic 7
tdefine patCopy 8
#define patlr 9
#define patXor 10
#define patBic 11
#define notPatCopy 12
#define notPatlOr 13
#define notPatXor 14
$define notPatBic 15

/* QuickDraw Color Separaticn Constants */

$define normalBit
#define inverseBit
$¢define redBit
#define greenBit
tdefine DblueBit
#define cyanBit
tdefine " magentaBit
$define yellowBit
#define DblackBit
tdefine blackColor 33

oy ~JoONWHEEHO

$define whiteColor 30
$define redColor 205
#define greenColor 341
#define blueColor 409
$¢define cyanColor 273

#define magentaColor 137
$define yellowColor €9

/* Picture Comments */

#define picLParen 0
$define picRParen 1

/* Type Style Constants */

Alpha Draft Page 5- 34

o

/* RGB Additive Mapping */

/* CMYBk Subtractive Mapping */

/* Colors Expressed in these Mappings *-

26 May 1986

Cortland Interface Libraries quickdraw?2 Cortland Workshop C

$define normal 0x00
#define bold 0x01
$define- italic 0x02
#define underline 0x04
#define outline 0x08
#define shadow 0x10
#define condense 0x20
#define expand 0x40
/* Types */

typedef unsigned char Pattern(8):
typedef short Bitslé(l6];
typedef enum {frame,paint,erase,invert,fill} GrafVerb;

/* typedefs Style, Point, and Rect appear in file TYPES */

typedef struct FontlInfo (

short ascent;

short descent;

short widMax:

short leading;
} FontlInfo:

typedef struct BitMap |

Ptr baseAddr;
short rowBytes;
Rect bounds;

} BitMap;

typedef struct Cursor |
Bitslé data;
Bitslé mask;
Point hotSpot:

} Cursor:

typedef struct PenState (

Point pnLoc;

Point pnsSize;

short pniMode ;

Pattern pnPat;
} PenState;

typedef struct Region {

short rgnSize;
Rect rgnBBox;
short rgnbData(0]:

} Regicn, *RgnPtr, **RgnHandle;

typedef struct Picture {

short - picSize;
Rect picFrame;
short pichata (0]

) Picture, *PicPtr, **PicHandle;
typedef struct Polygon {

short polySize;
Rect polyBBox:

Alpha Draft " Page 5-35 ‘ 26 May 1986

Cortland Workshop C

Point

)} Poelygon,:

quickdraw?

polyPoints (0]
*PolyPtr, **PolyHandle;

typedef struct QDProcs (

ProcPtr
ProcPtr
ProcPtr
ProcPtr
ProcPtr
ProcPtr
ProcPtr
ProcPtr
ProcPtr
ProcPtr
ProcPtr
ProcPtr
ProcPtr
} @DProcs,

textProc;
lineProc:
rectProc;
rRectProc;
ovalProc:
arcProc;
polyProc:
rgnProc;
bitsProc:
commentProc;
txMeasProc;
getPicProc:
putPicProc;
*QDProcsPtr;

typedef struct GrafPort (

short device;
BitMap portBits;
Rect portRect;
RgnHandle visRgn:
RgnHandle clipRgn;
Pattern bkPat;
Pattern £illPat;
Point ° pnloc:
Point pnSize;
short pnMode;
Pattern pnPat;
short pnvis;
short txFont;
Style txFace;
short txMode ;
short txSize;
long spExtra;
long fgColor:
long bkColor;
short colrBit;
short patStretch;
PicHandle picSave;
RgnHandle rgnsSave;
PolyHandle polySave;
QDProcsPtr grafProcs:
} GrafPort, *GrafPtr;

/* External V

extern struct

char

long

BitMap
Cursor
Pattern
Pattern
Pattern
Pattern

Alpha Draft

ariable Declarations */

gqd |
private(78];
randSeed;
screenBits;
aArrow;
dkGray:
ltGray;
gray;
black:;

Page 5- 36

Cortland [nterface Libraries

° 26 May 1986

Cortland Interface Libraries quickdraw?

Pattern white;
GrafPtr thePort;
} qd: '

/* GrafPort Routines */

pascal void InitGraf(globalPtr)
Ptr globalPtr;

pascal void OpenPort (port)
GrafPtr port;

pascal void InitPort (port)
GrafPtr port:

pascal void ClosePort (port)
GrafPtr port:

pascal void SetPort (port)
GrafPtr port:

pascal void GetPort (port)
GrafPtr *port:

pascal void GrafDevice (device)
short device:

pascal void SetPortBits(bm)
BitMap *bm;

pascal void PortSize (width,height)
short width,height;

pascal void MovePortTo(leftGlobal, rightGlobal)
short leftGlobal, rightGlobal;

pascal void SetOrigin(h,v)
short h,v:

pascal void SetClip(rgn)
RgnHandle rgn;

pascal void GetClip(rgn)
RgnHandle rgn;

pascal void ClipRect (r)
Rect *r;

pascal void BackPat (pat)
Pattern *pat;

/* Cursor Routines ¥/

pascal void InitCursor()

pascal void SetCursor(crsr)
Cursor *crsrc:

pascal void HideCursor ()

pascal void ShowCursor ()

pascal void ObscureCursor()

/* Line Routines */

pascal void HidePen ()

pascal void ShowPen ()

pascal void GetPen(pt)
Point *pt;

pascal void GetPenState (pnState)
PenState *pnState;

pascal void SetPenState(pnState)
PenState *pnState;

pascal void PenSize(width, height)
short width,height;

Alpha Draft Page 5- 37

Cortland Workshop C

26 May 1986

Cortland Workshop C quickdraw? Cortland Interface Libraries

pascal void PenMode (mode)
short mode:

pascal void PenPat (pat)
Pattern *pat;

pascal void PenNormal ()

~pascal void MoveTo(h,v)
short h,v;

pascal void Move (dh,dv)
short dh,dv;

pascal void LineTo (h,v)
short h,v:

pascal void Line(dh,dv)
short dh,dv;

/* Text Routines *x/

pascal void TextFont (font)
shozrt font;
pascal void TextFace(face)
Style face:
pascal void TextMode (mode)
short mode;
pascal void TextSize(size)
short size;
pascal void SpaceExtra({extra)
long extra:;
pascal void DrawChar(ch)
shozrt ch:
void DrawString(s)
char *s;
pascal void DrawText (textBuf, firstByte,byteCount)
Ptr textBuf;
short firstByte,byteCount;
pascal short CharWidth (ch)
short ch:;
short StringWidth(s)
char *s;
pascal short TextWidth (textBuf,firstByte, byteCount)
Ptr textBuf;
short firstByte,byteCount;.
pascal void MeasureText (count, textAddr,charlocs)
short count;
Ptr textAddr,charlocs;
pascal void GetFontInfo(info)
FontInfo *info;

/* Drawing in Color */

pascal void ForeColor(color)
long color:;

pascal void BackColor(cclor)
long color:

pascal void ColorBit (whichBit)
short whichBit;

/* Rectangle Calculations */

pascal void SetRect(r,left,top,right,bottomf

Alpha Draft Page 5- 38 . 26 May 1986

Cortland Interface Libraries quickdraw?2 Cortland Workshop C

Rect *r;
short left,top,right,bottom:
pascal void OffsetRect (r,dh,dv)
Rect *r;
short dh,dv:
pascal void InsetRect (r,dh,dv)
Rect =*r;
short dh,dv;
pascal Boolean SectRect (srcRectl, srcRect2,dstRect)
Rect *srcRectl, *srcRect2, *dstRect;
pascal void UnionRect (srcRectl, srcRect2,dstRect)
Rect *srcRectl, *srcRect2, *dstRect;
Boolean PtInRect (pt,r)
Point *pt;
Rect *r;
void Pt2Rect (ptl,pt2,dstRect)
Point *ptl, *pt2;
Rect *dstRect;
void PtToAngle(r,pt,angle)
Rect *r; ’
Point *pt;
short *angle:
pascal Boolean EqualRect (rectl, rect2)
Rect *rectl, *rectl;
pascal Boolean EmptyRect (r)
Rect *r;

/* Graphical Operations on Rectangles */

pascal void FrameRect (r)
Rect *r;

pascal void PaintRect (r)
Rect *r;

pascal void EraseRect (r)
Rect *r;

pascal void InvertRect (r)
Rect *r;

pascal void FillRect (r,pat)
Rect *r;
Pattern ¥*pat;

/* Qval Routines */

pascal void FrameOval (r)
Rect *r:

pascal void PaintOval (r)
Rect *r;

pascal._void EraseQOval(r)
Rect *r;

pascal void InvertOval(r)
Rect *r;

pascal void FillOval(r,pat)
Rect *r;
Pattern *pat;

/* RoundRect Routines */

pascal void FrameRoundRect (r,ovalWidth,ovalHeight)

Alpha Draft Page 5- 39

26 May 1986

Cortland Workshop C quickdraw? Cortland Interface Libraries

Rect *r;
short ovalWidth,ovalHeight:
pascal void PaintRoundRect (r,ovalWidth,ovalHeight)
Rect *r;
short ovalWidth,ovalHeight: ‘
pascal void EraseRoundRect (r,ovalWidth,ovalHeight)
Rect *r;
short ovalWidth,ovalHeight:

pascal void InvertRoundRect (r,ovalWidth,ovalHeight)
Rect *r;

short ovalWidth,ovalHeight:

pascal void FillRoundRect (r,ovalWidth,ovalHeight,pat)
Rect *r;

short ovalWidth,ovalHeight;
Pattern *pat;

/* Arc Routines */

pascal void FrameArc(r,startAngle,arcAngle)
Rect *r;
short startAngle,arcaAngle;

pascal void PaintArc(r,startAngle,arcingle)
Rect *r;
short startAngle,arzcAngle;

pascal void EraseArc(r,startAngle,arcangle)
Rect *r;
short startAngle,arcAngle;

pascal void InvertArc(r,startiAngle,arcaAngle)
Rect *r;
short startAngle,arcAngle;

pascal void FillArc(r,startAngle,arcAngle,pat)
Rect *r;

shozt startAngle,arcAngle;
Pattern *pat;

/* Region Calculations */

pascal RgnHandle NewRgn ()

pascal void DisposeRgn (zgn)
RgnHandle rgn: :

pascal void CopyRgn (srcRgn,dstRgn)
RgnHandle szcRgn,dstRgn:

pascal void SetEmptyRgn (rgn)
RgnHandle zgn:

pascal void SetRectRgn(rgn,left,top,right,bottom)
RgnHandle zgn;
short left,top,right,bottom;

pascal_ void RectRgn{rzgn,r)
RgnHandle rgn;
Rect *r;

pascal void OpenRgn ()

pascal void CloseRgn (dstRgn)
RgnHandle dstRgn:

pascal void OffsetRgn(rgn,dh,dv)
RgnHandle rgn:;
short dh,dv;

pascal void InsetRgn(zgn,dh,dv)
RgnHandle rgn;

Alpha Draft Page 5-40 26 May 1986

Cortland Interface Libraries quickdraw? Cortland Workshop C

short dh,dv;
pascal void SectRgn (srcRgnd, srcRgnB, dstRgn)
RgnHandle srcRgni, srcRgnB,dstRgn;
pascal void UnionRgn (srcRgnd, srcRgnB, dstRgn)
RgnHandle srcRgnl, srcRgnB,dstRgn;
pascal void DiffRgn(srcRgnd, srcRgnk, dstRgn)
RgnHandle srcRgnh,srcRgnB,dstRgn;
pascal void XorRgn (srcRgna, srcRgnB,dstRgn)
RgnHandle srcRgnh, srcRgnB,dstRgn:
Boolean PtlInRgn (pt,rgn)
Point *pt;
RgnHandle rgn:;
pascal Boolean RectlInRgn(r,rgn)
Rect *r;
RgnHandle rgn:
pascal Boolean EqualRgn(rgna, rgnB)
RgnHandle rgnA, rgnB;
pascal Boolean EmptyRgn (rgn)
RgnHandle rgn:

/* Graphical Operations on Regions */

pascal void FrameRgn (rgn)
RgnHandle rzgn:

pascal void PaintRgm(rgn)
RgnHandle rgn;

pascal void EraseRgn(rgn)
RgnHandle rgn;

pascal void InvertRgn(rgn)
RgnHandle rgn:;

pascal void FillRgn(rgn,pat)
RgnHandle rgn:
Pattern *pat:

/* Graphical Operations on Bit Maps */

pascal void ScrollRect (r,dh,dv,updateRgn)
Rect *r;
short dh,dv;
RgnHandle updateRgn;)
pascal void CopyBits(srcBits,dstBits, srcRect,dstRect,mode, maskRgn)
BitMap *srcBits, *dstBits;
Rect *srcRect, *dstRect;
short mode:;
RgnHandle maskRgn:
pascal void SeedfFill(srcPtr,dstPtr,srcRow,dstRow, height,words, seedH, seed\}
Ptr srcPtr,dscPtr;
short srcRow,dstRow,height,words;
short seedH, seedV;
pascal void CalcMask(srcPtr,dstPtr, srcRow,dstRow,height, words)
-Ptr srcPtr,dstPtr;
short srcRow,dstRow,height,words;
pascal void CopyMask (srcBits,maskBits,dstBits,srcRect,maskRect,dstRect)
BitMap srcBits,maskBits,dstBits;
Rect *srcRect, *maskRect, *dstRect:

/* Picture Routines ¥/

Alpha Draft Page 5-41 ‘ 26 May 1986

Cortland Workshop C quickdraw?2 Cortland Interface Libraries

pascal PicHandle OpenPicture (picFrame)
Rect *picFrame:;

pascal void PicComment (kind,dataSize,dataHandle)
short kind,datasize;
Handle dataEandle;

pascal void ClosePicture()

pascal void DrawPicture (myPicture,dstRect)
PicHandle myPicture;
Rect *dstRect;

pascal void KillPicture (myPicture)
PicHandle myPicture;

/* Polygon Calculations */

pascal PolyHandle OpenPoly()

pascal void ClosePoly()

pascal void KillPoly(poly)
PolyHandle poly;

pascal void QOffsetPoly(poly,dh,dv)
PolyHandle poly:;
short dh,dv;

/* Graphical Operations on Polygons */

pascal void FramePoly(poly)
PolyHandle poly:

pascal void PaintPoly(poly)
PolyHandle poly:;

pascal void ErasePoly(poly)
PolyHandle poly;

pascal void InvertPoly(poly)
PolyHandle poly:

pascal void FillPoly(poly,pat)
PolyHandle poly:
Pattern *pat;

/* Point Calculations ¥/

void AddPt (srcPt,dstPt)
" Point *srcPt, *dstPt;

void SubPt (srcPt,dstPt)
Point *srcPt, *dstPt;

pascal void SetPt (pt,h,v)
Point *pt;
short h,v;

Boolean EqualPt (ptl,pt2)
Point *ptl, *pt2;

pascal void LocalToGlobal (pt)
Point *pt;

pascal void GlobalToLocal (pt)
Point *pt;

/* Miscellaneous Utility Routines */

pascal short Random()

pascal Boolean GetPixel(h,v)
short h,v;

void StuffHex(thingPtr, s)

Alpha Draft Page 5-42 26 May 1986

Cortland Interface Libraries quickdraw? Cortland Workshop C

Ptr thingPtrx:
char *s; .
pascal void ScalePt (pt,srcRect,dstRect)
Point *pt;
Rect *srcRect, *dstRect:
pascal void MapPt (pt, srcRect,dstRect)
Point - *pt;
Rect *srcRect, *dstRect:
pascal void MapRect (r, srcRect,dstRect)
Rect *r, *srcRect, *dstRect:
pascal void MapRgn(rgn, srcRect,dstRect
RgnHandle rgn:
Rect *srcRect, *dstRect;
pascal void MapPoly(poly, srcRect,dstRect)
PolyHandle poly:
Rect *srcRect, *dstRect;

/* Bottleneck Interface */

pascal void SetStdProcs (procs)
QDProcsPtr procs:

void StdText (byteCount, textAddr,numer, denom)
short byteCount:
Ptr textAddr;
Point *numer, *denom:

void StdLine (newPt)
Point *newPt;

pascal void StdRect (verb, r)
GrafVerb verb:;
Rect *rx;

. pascal void StdRRect (verb,r,ovalWidth,ovalHeight)

GrafVerb verb;
Rect *r;
short ovalWidth,ovalHeight;

pascal void StdOval(verk, r)
GrafVerb verb;
Rect *r;

pascal void StdArc(verb,r,startiAngle,arcaAngle)
GrafVerb verb:
Rect *gz;
short startAngle,arcAngle;

pascal void StdPoly(verb,poly)
GrafVerb verb;
PolyHandle poly:

pascal void StdRgn(verb, rgn)
GrafVerb verb:
RgnHandle rgn;

pascal void StdBits(srcBits,srcRect,dstRect,mode,maskRgn)
BitMap *srcBits:
Rect *srcRect, *dstRect:
short mede;
RgnHandle maskRgn;

pascal void StdComment (kind,dataSize,dataHandle)
short kind,dataSize;
Handle dataHandle:

pascal short StdTxMeas (byteCount, textAddr, numer,denom, info)
short byteCount;
Ptr textAddr:

Alpha Draft Page 5-43 26 May 1986

Cortland Workshop C quickdraw?2 Cortland I nzerface Libraries

Point *numer, *denom; .
FontInfo *info;
pascal void StdGetPic(dataPtr,byteCount)
Ptr dacaPtz;
short byteCount; .
pascal void StdPutPic(dataPtr,byteCount)
Ptr dataPtrx:
short byteCount;

USER ROUTINES

pascal void MyText (byteCount, textAddr, numer, denom)
short byteCount; -
Ptr textAddr;
Point numer,denom;
pascal void Myline (newPt)
Point newPt;
pascal void MyRect (verb, r)
GrafVerb verb;
Rect *r;
pascal void MyRRect (verb, r,ovWd, ovHt)
GrafVerb verb;
Rect *z;
short ovWd,ovHt:
pascal void MyOval (verb, r)
GrafVerb verb;
Rect *r;
pascal void MyArc(verb, r,startAngle,arcAngle)
GrafVerb verb;
Rect *r;
short startAngle,arcAngle;
pascal void MyPoly(verb,poly)
GrafVerb verb:
PolyHandle poly:
pascal void MyRgn (verb, rgn)
GrafVerb verb;
RgnHandle rzgn;
pascal void MyBits (srcBits, srcRect,dstRect,mode,maskRgn)
BitMap *sr&Bits:
Rect *srcRect, *dstRect:
short mode:
RgnHandle maskRgn:
pascal void MyComment (kind,dataSize,dataHandle)
short kind,dataSize;
Handle dataHandle;
pascal short MyTxMeas (byteCount, textAddr, numer,denom, info)
short byteCount;
Ptr textAddr;
Point *numer, *denom;
FontInfo *info:
pascal void MyGetPic (dataPtr,byteCount)
Ptr dataPtr;
short byteCount;
pascal void MyPutPic(dataPtr,byteCount)
Ptr dataPtr;
short byteCount;

Alpha Draft Page 5-44 26 May 1986

Cortland Interface Libraries quickdraw2 Cortland Workshop C

DESCRIPTION

QuickDraw II is the Cortland graphics package. It is based on a subset of the
Macintosh QuickDraw subroutines, which support the operadons useful in menus
and windews, such as drawing lines, drawing text characters, and filling areas. In
addidon, QuickDraw II supports Cortland’s standard display mode, the new color
super Hi-Res Graphics.

For more detailed information see the QuickDraw chapter of Cortland Tools
Reference.

WARNING

User routines MyText and MyLine are not identical to their counterparts StdText
and StdLine. Point parameters to MyText and MyLine are passed by value; the
corresponding parameters to StdText and StdLine are passed by reference.

s*% Trye for Cortland? ***

Alpha Draft Page 5-45 26 May 1986

Cortland Workshop C quickdraw? Cortland Interface Libraries

Alpha Draft Page 5- 46 26 May 1986

NAME
sane—~—SANE Numerics
SYNOPSIS

*** This should be exactly like the Macintosh SANE C library. Isit? **=*

#include <sane.h>

/* Decimal Representation Constants */

$define SIGDIGLEN
#define DECSTROUTLEN

20
80

/* Decimal Formattiﬂé Styles x/

#define FLOATDECIMAL
#define FIXEDDECIMAL
/* Exceptions ¥/

#define INVALID
$define UNDERFLOW
#define OVERFLOW
#define DIVBYZERO
#define INEXACT

/* Ordering Relations */
#define GREATERTHAN

#define LESSTHAN
$define EQUALTO
$define UNORDERED

/* Inquiry Classes */

#define SNAN
§define QNAN
$define INFINITE
#define ZERONUM
$define NORMALNUM
#definé DENORMALNUM

/* Rounding Directions */
$define TONEAREST
4¢define UPWARD

#define DOWNWARD

#define TOWARDZERO

/* Rounding Precisions x/

.Alpha Draft

0

1

w e WO W R oy @ o N

WO

Page 5-47

/* significant decimal digics

26 May 1986

-

Cortland Workshop C

#define
#define
#define
typedef
typedef
typedef
typedef
typedef

typedef

typedef
char

EXTPRECISION
DELPRECISION
FLOATPRECISION

short
short
short
short
shdrt

short

exception;
relop;
ngmclass;
rounddir;

roundpre;

environment;

struct decimal (

sgn,

short exp;

struct {(unsigned char

} decimal;

unused;

typedef struct decform {

char style,

unused;

short digits:
} decform;

sane Cortland Irzerface Libraries

0N O

/* sum of INVALID...INEXACT
/* relational operator '
/* inquiry class

/* rounding direction

/* rounding precision

/* sign 0 for +, 1 for -
/* decimal exponent

length, text (SIGDIGLEN], unused} sig:

/* significant digits

/* FLOATDECIMAL or FIXEDDECIMAL

typedef void (*haltvector) ():

/* Conversions between Binary and Decimal Records */

void numldec (£, x,d)

decform *f:
extended x:;
decimal

*d;

extended dec2num(d)

decimal

*d;

/* d <-= x, according te format ¢

/* returns 4 as extended

/* Conversions between Decimal Records and ASCII Strings */

void dec2str(f,d, s)

decform
decimal

char *s;

*f;
*d;

void strl2dec(s,ix,d,vp)
char *s;
short *ix, *vp;

decimal

/* Arithmetic,

*d;

Auxiliary,

extended fabs (x)

Alpha Draft

L))

/* 8 <=-- d, according to format

on input ix i3 starting index into s, on
output ix is one greater than index of last
character of longest numeric substring;
boolean vp = "s begining at given ix is a
valid numeric string or a valid prefix of
some numeric string”

and Elementary Functions =/

/* absolute value

Page 5- 48 26 May 1986

hvs

* .

x
®
*
® ‘
1.4

/

=/

Cortland Interface Libraries . sane Cortland Workshop C

extended x:

extended remainder (x,y,quo) /* IEEE remainder; quo <~= 7 low order =/
extended x,y: /* bits of integer quotient x/y, ,
short *quo; /* =127 <= quo <= 127 -

extended sgrt (x) /* sguare root ™
extended x;

extended rint (x) /* round to -integral value)
extended x:

extended scalb(n.x) /* binary scale: x * 2°n; -
short n;
extended x;

extended logb (x) /* binary log: L
extended x: /* binary exponent of normalized x .

extended copysign(x,y) /* y with sign of x >/
extended x,y;

extended nextfloat (x,y) /* next float representation after v/
extended x,y: /* (£loat) x in direction of (floaz) y=/

extended nextdouble (x,y) /* next double representation after x/
extended x,y; /* (double) x in direction of (douktle) y =/

extended nextextended (x,y) /* next extended representation afzer x ~*/-
extended x,y; /* in direction of y =/

extended log2 (x) /* base=2 log */
extended x;

extended log(x) /* base-e log) */
extended x:

extended logl (x) /* log(l + x) =/
extended x: i

extended exp2 (x) /* base=2 exponential =/
extended x:

extended exp (x) /* base-e exponential *
extended x;

extended expl (x) /* exp(x) = 1 */
extended x: .

extended power(x,y) /* general exponential: x " y *,
extended x,y; .

extended ipower(x,i) /* integer exponential: x * i A
extended x:
short 4i;

extended compound(r,n) /* compound: (1 + r) “ n x/
extended r,n; .

extended annuity(r,n) /* annuity: (1 = (1 +) ~ (=n)) / = i
extended r,n;

extended tan (x) /* tangent ®
extended x;

. extended sin(x) /* sine x/

extended x;

extended cos (x) /* cosine - =,
extended x;

extended atan (x) /* arctangent ®
extended x; , .

extended randomx (x) /* returns next random number: updates x:. ~
extended *x; /* x integral, 1l <= x <= 2731 = 2 x/

/* Inquiry Routines */

numclass classfloat (x) /* class of (float) x x/
extended x; . .
numclass classdouble (x) . /* class of (double) x */

Alpha Draft Page 5- 49 26 May 1986

S

Cortland Workshop C -

extended x:

numclass classcomp (x)
extended x:

numclass classextended(x)
extended x;

long signnum(x)
extended x;

/* Environment Access Routines */

/t
/*
/*

Cortland Iruerface Libraries

class of (comp) x
class of x

returns 0 for +, 1 for =-

/* An exception variable encodes the exceptions
whose sum is its value */

void setexception(e,s)
exception e;
long s:

long testexception(e)
exception e;

void sethalt (e, s)
exception e;
long s;

long testhalt (e)
exception e;

void setround(r)
rounddir r;

rounddir getround()

void setprecison(p)
roundpre p:

roundpre getprecsion{()

void setenvironment (e)
environment e;

void getenvironment (e)
environment *e;

void procentry(e)
environment *e;

void procexit (e)
environment e;

haltvector gethaltvector()

void sethaltvector(v)
haltvector v;

/* Comparision Routine */

relop relation(x,y)
extended x,y;

/* NaNs and Special Constants

extended nan(c)
unsigned char c¢;

extended inf ()

extended pi ()

DESCRIPTION

®

These routines together with Apple's C language fully support the Standard Apple

/*
/t

/%
/*

*/

/t
/t

clrs e flags if s is 0, sets e
otherwise; may cause halt

returns 1 if any e flag is sert,
returns 0 otherwise

disables e halts if s is O,
enables e halts otherwise

£lags

returns 1 if any e halt is enabled,

returns 0 otherwise
sets rounding direction to r

returns rounding direction
sets rounding precision to p

returns rounding precision
sets environment to e

e <-= environment

e <-= environment:
environment <-- IEEE defaul:
temp <--exceptions: environmen:t
signals exceptions in temp
returns halt vector
halt vector <== v

.

returns relation such that
"x relation y" is true

returns NaN with code ¢

infinity
pi

Numeric Environment (SANE). They provide a scrupulously conforming
implementation of extended-precision floating-point arithmetic as specified by [EEE

Alpha Draft

Page 5- 50

<=- &

26 May 1986

®/

=/

x /

v/

x /

=/

® /

*/

Cortland Interface Libraries sane Cortland Workshop C

Standard 754. The SANE Tool Set contains the same routines as Pack 4, Pack 3,
and Pack 7 of the Macintosh Toolkit.

The Standard Apple Numeric Environment is documented in the Apple Numerics
Manual.

Alpha Draft Page5-51 26 May 1986

Cortland Workshop C Schedider Cortland Interface Libraries

NAME _
scheduler—Scheduler
SYNOPSIS
This code will be added later.
DESCRIPTION

The Scheduler makes it possible to delay the execution of tasks that require non-
reentrant system code whenever that code is already in use. Non-reentrant
resources indicate that they are in use by modifying a flag called the Busy Word.
The Scheduler maintains a queue of processes waiting to use non-reentrant
resources. By keeping track of the Busy Word, the Scheduler determines when to
actvate the next process in the queue.

For more detailed informaton, see the “Scheduler ” chapter of the Cortland Tools
Reference.

Alpha Draft Page 5- 52 26 May 1986

Cortland Interface Libraries scrap Cortland Workshop C

NAME
scrap—Scrap Manager
SYNOPSIS

*** This is the Mac code. The Cortland code will resemble it in functionality but
differ in form. Stay tuned. ***

#include <types.h>
#include <scrap.h>

#define noScrapErr (=100) /* desk scrap isn't initialized */
#define noTypeErr (=102) /* no data of the requested :ype */
typedef struct ScrapStuff |

long scrapSize;

Handle scrapHandle; -

short scrapCount;

short scrapState;

StringPtr scrapName;
} ScrapStuff, *PScrapStuff;

/* Getting Desk Scrap Information */
pascal PScrapStuff InfoScrap()
/* Keeping the Desk Scrap on the Disk */

pascal long UnloadScrap()
pascal long LoadScrap ()

/* Reading from the Desk Scrap */

pascal long GetScrap(hDest,theType,ocffset)
Handle hDest;
ResType theType;
long *offset;

/®* Writing to the Desk Scrap */

pascal long ZeroScrap()

pascal long PutScrap(length,theType, scurce)
long length;) :
ResType theType:
Ptr source;

DESCRIPTION

The Scrap Manager provides a mechanism for cutting and pasting between
applications and desk accessories.

For more detailed information see the Scrap Manager chapter of the Cortland Tools
Reference.

Alpha Draft Page 5- 53 | 26 May 1986

Cortland Workshop C '_ segload Cortland Interface Libraries

NAME
segload—Segment Loader
SYNOPSIS

*** This is the Mac code. The Cortland code will resemble it in functionality but
differ in form. Stay tuned. ***

#include <types.ﬁ>
#include <segload.h>

/* Message returned by CountAppFiles =/

#define appOpen 0 /* Open the document (s) */
#define appPrint 1 /* Print the document(s) */
typedef struct AppFile {

short vRefNum; /* volume reference number */

0SType fType;: /* £ile type */

short versNum; /* version number */

Stz255 fName; /® f£ile name */

} AppFile;

pascal void UnloadSeg(routineAddr)
Ptr routineAddr;

void CountAppFiles (message,count)
short *message, *count;

void GetAppFiles (index,theFile)
short index:
AppFile *thefile;

void ClrAppFiles (index)
short index;

void GetAppParms (apName, apRefNum, apParam)
char rapName;
short *apRefNum;
Handle *apParam;

pascal void ExitToShell ()

DESCRIPTION

The Segment Loader is the part of the Cortland Toolbox that lets you divide your
applicaton into several parts and have only some of them in memory at a dme.
When an application starts up, the Segment Loader also provides it with a list of
files to open or print.

t**j}uc?ttt

For more detailed informadon see the Segment Loader chapter of the Cortland
Tools Reference.

Alpha Draft | Page 5- 54 26 May 1986

Cortland Interface Libraries sound

NAME

sound—Sound Manager

SYNOPSIS

Cortland Workshop C

**% This is the Mac code. The Cortland code will resemble it in functionality but
differ greatly in form. Stay tuned. ***

#include <types.h>
#include <sound.h>

/* Mode values for synthesizers */

$#define swMode
¥#define ftMode
#define ffMode

/* four-tone synthesizer ¥/

(=1) /* square-wave synthesizer */
1
0

/* free-form synthesizer */ °

/* Free=Form synthesizer */

typedef unsigned char FreeWave([30001);

typedef struct FFSynthRec |

short
Fixed
FreeWave

mode; /*
count; /*
waveBytes; /*

} FFSynthRec, *FFSynthPtr;

/* Square-Wave synthesizer */

typedef struct. Tone |

short

short

short
} Tone;

count; /*
amplitude; /*
duration; /*

typedef Tone Tones(50011];

typedef struct SWSynthRec |

short
Tones
} SWSynthRec,

mode; /*
triplets; /*
*SWSynthPtr;

/* Four~Tone Synthesizer ®/

typedef unsigned char Wave[ZSG]f

typedef Wave *WavePtr;

typedef struct FTSoundRec {

short
Fixed
long
Fixed
long

Alpha Draft

duration; /*
soundlRate; /*
soundlPhase; /*
sound2Rate; /*
sound2Phase; /*

Page 5- 55

always ffMode */
"sizing" factor */
waveform description */

frequency */
amplitude, 0=255 */
duration in ticks */

always swMode */

sounds

*/

duration in ticks x/

tone
tone
tone
tone

1

1
2
2

cycle rate */
byte offset */
cycle rate */
byte offset */

26 May 1986

Cortland Workshop C sound
Fixed sound3Rate; /*
long sound3Phase; /*
Fixed sound4Rate; /*
long sound4Phase; /*
WavePtr soundlWave; /*
WavePtr sound2Wave; /*
WavePtr sound3Wave; /*
WavePtr sound4Wave; /*

} FTSoundRec, *FTSndRecPtr;
typedef struct FISynthRec |
short mode /*
FTSndRecPtr sndRec: /*

} FTSynthRec, *FTSynthPtzr;

tone
tone
tone
tone
tone
tone
tone
tone

o 2 BN o W

Conrland Inzerface Libraries-

cycle rate */
byte offset */
cycle rate */
byte offset */
wave form */
wave form */
wave form */
wave form */

always ftMode */
tones to play */

void StartSound(synthRec,numBytes, completionRtn)
Ptr synthRec;
long numBytes;
ProcPtr completionRtn;
void StopSound ()
Boolean SoundDone ()
void GetSoundVel (level)
short *level;
void SetSoundVol (level)

short level

DESCRIPTION

The Sound Manager is a Cortland device driver for handling sound and music
generation in a Cortland applicadon. It provides access to the Ensoniq chip.

For more detailed information see the Sound Manager chapter of Cortland Tools

Reference.

Alpha Draft

Page 5- 56

26 May 1986

-

Cortland Interface Libraries textscreen Cortland Workshop C

NAME

tc;ct—Text Screen Tools
SYNOPSIS

% The code for this will be added later. *
DESCRIPTION

The Text Screen Tools make it possible for applications to use the text maodes
without switching modes and moving to bank zero.

For more detailed information see the TextEdit chapter of Cortland Tools
Reference. *

Alpha Draft Page 5-57 26 May 1986

Cortland Workshop C toolloc Cortland Interface Libraries

NAME

toolloc—Tool Locator
SYNOPSIS

This code will be added later.
DESCRIPTION

The Tool Locator provides the mechanism for dispatching tool calls. It allows tool
sets to reside either in ROM or in RAM, transparenty to an application.

For more detailed information see the Tool Locator chapter of Corriand Tools
Reference.

Alpha Draft i Page 5-58 26 May 1986

Coriland Interface Libraries npes Cortland Workshop C

NAME
types—common defines and types
SYNOPSIS

This is the Mac code. It is not known how the corresponding Cortland code
will resemble it. Stay tuned. ***

#include <types.h>

#define nil 0
#define NULL 0

typedef enum {false,true} Boolean;
typedef char *Ptr;

typedef Ptr *Handle;

typedef long (*ProcPtr) ()
typedef ProcPtr *ProcHandle;
typedef long Fixed;

typedef unsigned long ResType:
typedef long OSType:

typedef short QOSErzr;

typedef short Style:

typedef struct Point {

short v
short h:

} Point;

typedef struct Rect |
short top;/
short lefr:
short bottom;
short right:

} Rect:

#define String(size) struct {\
unsigned char length:; unsigned char text[size];}
typedef String(255) Str255, *StringPtr, =**StringHandle:

DESCRIPTION
These defines and types are shared by several Cortland libraries.

The define String approximates Pascal strings. It creates a struct, not an array.
Remember to use & when passing structs as parameters.

Alpha Draft Page 5- 59 ' 26 May 1986

Cortland Workshop C windows Cortland Interface Libraries

NAME
windows—Window Manager

SYNOPSIS

#% This is the Mac code. The Cortland code will resemble it in functionality but
differ in form. Stay tuned. ***

#include <types.h>
#include <gquickdraw.h>
#include <windows.h>

/* Window Definition Procedure IDs =/

#define documentProc
#define dBoxProc

#define plainDBox
$define altDBoxProec
#define noGrowDocProc
#define rDocProc b

o B WO

/* Types of Windows =/

#define dialogKind’ 2
#define userKind - 8

/* FindWindow Result Codes */

#define inDesk
#define inMenuBar
#define inSysWindow
#define inContent
$define inDrag
$define inGrow
#define inGoAway
#define inZoomIn
$define inZoomoOut

@ Jdoan b Wi+ O

/* Axis Constraints for DragGrayRgn */

$define noConstraint 0
#define haAxisoOnly 1
#define vAxisOnly 2

/* Messages to window definition functions */

$define wDraw
#define wHit
$define wCalcRgns
$define wNew
$define wDispose
$define wGrow
#define wDrawGIcon

Ut e WK O

/* defProc Hit Test Codes */

Alpha Draft Page 5- 60 ' 26 May 1986

Cortland Interface Libraries

#define wNoHit
#define wlnContent
#define winDrag.
#define wInGrow
#define wInGoAway
#define wInZoomIn
#define wInZoomout

o b WO

#define deskPatlID 16

typedef GrafPtr WindowPtr;

windows

typedef struct WindowRecord (|

GrafPort port:

short windowKind:
Boolean visible:
Boolean hilited;
Boolean goAwayFlag;
Boolean spareFlag;
RgnHandle strucRgn;
RgnHandle contRgn;
RgnHandle updateRgn;
ProcHandle windowDefProc;
Handle dataHandle;
StringHandle titleHandle:
short titleWidth;

struct ControlRecord **controllist;:
struct WindowRecord *nextWindow;
windowPic;

PicHandle
long refCon:

} WindowRecord, *WindowPeek:

/* Initialization and Allocation */

pascal void InitWindows ()

pascal void GetWMgrPort (wPort)

GrafPtr *wPort:

Cortland Workshop C

WindowPtr NewWindow(wStorage,boundsRect,title,visible,procIZ,behind,

goAwayFlag, refCon)
Ptr wStorage:
Rect *boundsRect: -
char *title;
Boolean visible:
short proclD;
WindowPtr behind:;
Bocolean goAwayFlag:
long refCon;

pascal WindowPtr GetNewWindow(windowID,wStorage,behind)

short windowlID;
Ptr wStorage:;
WindowPtr behind;

pascal void CloseWindow (theWindow)

WindowPtr theWindow;

pascal void DisposeWindow (theWindow)

WindowPtr theWindow:;

/* Window Display */

Alpha braft Page 5-61

26 May 1986

Cortland Workshop C windows

Cortland Irzerface Libraries

void SetWTitle (theWindow,title)
WindowPtr theWindow;
char *title;

void GetWTitle (theWindow,title)
WindowPtr theWindow;
char *title;

pascal void SelectWindow(theWindow)
WindowPtr theWindow;

pascal void HideWindow (theWindow)
WindowPtr theWindow:

pascal void ShowWindow (theWindow)
WindowPtr theWindow;

pascal void ShowHide (theWindow, showFlag)
WindowPtr theWindow;
Boolean showFlag; -

pascal void HiliteWindow (theWindow, fHilLite)
WindowPtr theWindow:
Boolean fHilite;

pascal void BringToFront (theWindow)
WindowPtr theWindow:

pascal void SendBehind(theWindow,behindWindow)
WindowPtr theWindow:
WindowPtr behindWindow;

pascal WindowPtr FrontWindow()

pascal void DrawGrowlIcon (theWindow)
WindowPtr theWindow;

/* Mcuse Location */

short FindWindow{thePt,theWindow)
Point *thePt;
WindeowPtr *theWindow:
Boclean TrackGoAway(theWindow,thePt)
WindowPtzr theWindow;
Point *thePt:
pascal Boolean TrackBox(theW;ndow thePt,partCode)
WindowPTr theWindow;
Point *thePt;
short partCode;

/* Window Movement and Sizing */

pascal void MoveWindow (theWindow, hGlobal, vGlobal, front)
WindowPtr theWindow;
short hGlobal,vGlobal;
Boolean front:

void DragWindow(theWindow, startPt,boundsRect)
WindowPtr theWindow;
Point *startpbt;
Rect *boundsRect;

long GrowWLHdow(theWLndow,startPt sizeRect)
WindowPtr theWindow;
Point *startPt:

. Rect *sizeRect:

pascal void SizeWindow(theWindow,w,h,fUpdate)
WindowPtr theWindow:
shoret w,h:
Boolean fUpdate:

Alpha Draft Page 5-62 26 May 1986

Cortland Interface Libraries windows » Cortland Workshop C

pascal void ZoomWindow (theWindow,partCode, front)
WindowPtr theWindow;
short partCode;
Boolean front;

/* Update Region Maintenance */

pascal void InvalRect (badRect)
Rect *badRect:;

pascal void InvalRgn(badRgn)
RgnHandle badRgn:;

pascal void ValidRect (goodRect)
Rect *goodRect;

pascal void ValidRgn (goodRgn)
RgnHandle goodRgn:

pascal void BeginUpdate (theWindow)
WindowPtr theWindow:

pascal void EndUpdate (theWindow)
WindowPtr theWindow;

/* Miscellaneous Utilities ¥/

pascal void SetWRefCon(theWindow,data)
WindowPtr theWindow;
long data;
pascal long GetWRefCon (theWindow)
WindowPtr theWindow;
pascal void SetWindowPic (theWindow,pic)
WindowPtr theWindow;
PicHandle pic:
pascal PicHandle GetWindowPic (theWindow)
WindowPtr theWindow;
long PinRect (theRect, thePt)
Rect *theRecty
Point =*thePt;
long DragGrayRgn (theRgn,startPt,limitRect, slopRect,axis,actionProc)
- RgnHandle theRgn:
Point *startcPt;
Rect *limitRect;
Rect *slopRect:
short axis; -
ProcPtr actionProc;

/* Low-Level Routines */

pascal Boolean CheckUpdate (theEvent)
struct EventRecord *theEvent;

pascal void ClipAbove (window)
WindowPeek window;

pascal void SaveOld(window)
WindowPeek window;

pascal void DrawNew(window, update)
WindowPeek window;
Boolean update;

pascal void PaintOne(window,clobberedRgn)
WindowPeek window;
RgnHandle clobberedRgn;

pascal void PaintBehind(startWindow, clobberedRgn)

Alpha Draft Page 5-63 26 May 1986

Cortland Workshop C windows Cortland Inerface Libraries

WindowPeek startWindow;
RgnHandle clobberedRgn:
pascal void CalcVis(window)
WindowPeek window;
pascal void CalcVisBehind(startWindow, clobberedRgn)
WindowPeek startWindow;
RgnHandle clobberedRgn;

USER ROUTINES

pascal MyAction()

pascal long MyWindow(varCode, theWindow,message, param)
‘short varCode:;
WindowPtr theWindow;
short message;
long param;

DESCRIPTION

The Window Manager provides routines for creating and manipulating windows. It
creates them, activates them, moves them, resizes them, and closes themn in
response to calls from an application. It keeps rack of overlapping windows and
posts an event so the application can redraw newly uncovered windows. When the
user presses the mouse button, the Window Manager tells the application which
part of which window the cursor was in.

For more detailed information see the Window Manager chapter of Cortland Tools
Reference.

Alpha Draft Page 5- 64 26 May 1986

SANE SANE Data Types Cortland Workshop C

Chapter 6

SANE and the C SANE Library

This chapter describes the Standard Apple Numeric Environment (SANE) and the routnes
contained in the SANE library CSANELib.o. SANE is the basis for all floating-point
mathematical calculations performed by Cortland Workshop C. It meets all requirements
for extended-precision floating-point arithmetc as prescribed by IEEE Standard 754.

The chapter contains three parts:

e A discussion of the floating-point data types provided by SANE.
A description of the constants and types used in the C SANE library.
+ ¢ A description of the functions contained in the C SANE library.

SANE ensures that all floating-point operations are performed consistently and that they
return the most accurate results possible.

SANE provides an easy-to-use, flexible environment for floating-point calculations. It
gives you exmemely accurate results without extra coding. You can write C programs that
use only the standard C float type and be confident that your results are as accurate as
possible within that format. ‘

Programmers who are interested in precision beyond that possible using only the float rype
can use the other floating-point types provided as an extension to C by SANE. In addition.
the SANE library contains numerical functions not found in standard C and routnes for
controlling the environment in which floatirig-point calculations are performed.

If you are using CPW C for advanced numerical programming, you might be interested in
the complete and detailed description of SANE, which is contained in the Apple Numerics
Manual, available from your Apple dealer.

The SANE Data Types

Cortland Workshop C supplements the £ 1oat type with three others: double,
extended, and comp.

A Note on Terminology

SANE is designed to be a generic system that can be used with a variety of high-level
languages. SANE provides the three floating-point types specified by the I[EEE Standard
(where they are called single, double, and extended). CPW C uses the SANE type
single as the C type £loat.

Descriptions of the Types

Alpha Draft - Page6-1 26 May 1986

Cortland Workshop C SANE Data Types SANE

The £1loat type is the smallest format for use with floating-point numbers. It stores
floating-point numbers using 32 bits of storage.

The double type is twice the size of the £loat type. It uses 64 bits for storage.

The extendaed type is larger yet—it uses an 80-bit format. All arithmetic involving real-
type values is done using the extended type.

The comp type stores integral values in a 64-bit format. Arithmedc done with operands of

type comp uses the extended type. Results a551gncd to a variable of type comp are
converted from extended.

Choosing a Data Type

Typically, picking a data type requires that you determine the trade-offs between

fixed- or floating-point form
precision

range

memory usage

e ° ® L]

The precision, range, and memory usage for each SANE data type are shown in Table 5-1,
SANE Data Types.

Many programs require a counting type that counts things (pennies, dollars, widgets)
exactly. Using SANE, you can write a program that deals with monetary valu=s by
representing these values as integral numbers of cents or mils, which can be stored exactly
in the comp type. The sum, difference, or product of any two comp values is exact if the
magnitude of the result does not exceed 263-1 (that is, 9,223,372,036,854,775,807). This
number is larger than the U.S. nadonal debt expressed in Argentine pesos. In addition,
comp values (for example, the results of accounting computations) can be mixed with
extended values in floating-point computations (such as compound interest).

Arithmedc with comp-type variables, like all SANE arithmetic, is done internally using the
extended type for arithmedc. There is no loss of precision, as conversion from comp to

extended is always exact. You can save by storing numbers in the comp type, which is
20 percent shorter than extended (64 versus 80 bits).

Values Represented

The floadng-point types (float, double, and ext ended) store binary representatdons
of a sign (+ or -), an exponent, and a significand. A represented number has the
value

* significand * 2¢xponent

where the significand has a float bit to the left of the binary point (that is,
0 £ significand < 2).

Alpha Draft . Page 6-2 26 May 1986

SANE

SANE Data Types

Range and Precision of SANE Types

Cortland Workshop C

The range and precision of the floating-point types supported by SANE and CPW C are
shown in Table 5-1. Decimal ranges are expressed as chopped two-digit decimal
representations of the exact binary values.

Table 5-1.

Type identifier

Size (bytes:bits)

SANE Data Types

Binary exponent range

Minirmum
Maximum

Significand

precision
Bits
Decimal digits
Decimal range

(approximate)

Min negadve
Max neg norm
Max neg denorm
Min pos denorm
Min pos norm
Max positive

Infinides

NaNs

Example

float double
4:32 8:64
=126 -1022

127 1023

24 53

78 15-16
-3.4E+38 -1.7E+308
-1.2E-38 -2.3E-308
~1.5E-45 -5.0E-324
1.5E-45 5.0E-324
1.2E-38 2.3E-308
3.4E+38 1.7E+308
Yes Yes

Yes Yes

Using the £1loat type, the largest representable number has

significand

exponent
value

=2-2"23

= L11111111111111111111111,
=127

(2-2-23) #2127

=3.403 * 1038

the smallest mpmscnﬁble positive normalized number has

significand

exponent
value

Alpha Draft

1
1.00000000000000000000000,
=-126

=1 * 2-126

Page 6-3

comp extended
8:64 10:80

ann 16383

ceee 16383

63 64
18-19 19-20
=9.2E18 -1.1E+4932
-1.7E=4932

-1.9E-4951

1.9E-4951

1.7E=4632

=9 2E18 1.1E+4932
No Yes

Yes Yes

26 May 1986

Cortland Workshop C 'SANE Data Types

=1.175 * 10-38

and the smallest representable positive denormalized number has

significand =2-23
- =(.00000000000000000000001 4
exponent ==126
value =2—23 #)= 126
=1.401 * 1045

The £1ocat Type
A 32-bit float number is divided into three fields as shown below.

»*# copy of figure on page 16 of Apple Numerics Manual ***
Figure 6-1: float type

The value v of the number is determined by these fields:

If0<e <255, then v = (<1)5 * 2(e=127) * (1 f),
Ife=0andf=0, then v = (=1)5 *2(-126) * (0 /).
Ife=0andf=0, thenv = (-1 *0.

Ife=255andf=0, then v = (=1)5 * oo,
Ife=255andf=0, then v is a NaN.
The double Type
A 64-bit double number is divided into three fields as shown below.
% copy of top figure on page 17 of Apple Numerics Manual! *

Figure 6-2: double type

The value v of the number is determined by these fields:

If 0 < e <2047, then v = (<1)5 #2(e-1023) = (] p),
Ife=0andf=0, then v = (=1)5 #2(-1022) « (0 f),
Ife=0andf=0, thenv=(=1)¥*0.

If e=2047 and f =0, then v = (=1)5 * oo,
Ife=2047 and f = 0, then v is a NaN.

The comp Type

A 64-bit comp number is divided into two fields as shown below.

Alpha Draft ' Page 64

SANE

26 May 1986

SANE SANE Data Types Cortland Workshop C

*#% copy of bottom figure on page 17 of Apple Numerics Manual oo
Figure 6-3: Comp type
- The value v of the number is determined by these fields:

Ifs=1landd=0, then v is the unique comp NaN. ‘
Otherwise, v is the two's-complement value of the 64-bit representation.

The extended Type

An 80-bit extended format number is divided into four fields as shown below.
copy of figure on page 18 of Apple Nunerics Manual ***

Figura: 6-4: Extended Type :

The value v of the number is determined by these fields:

If 0 <= ¢ < 32767, then v = (=1)5 *2(e~16383) » (; £,

Ife=32767 andf=0, thenv=(=1) *es, regardless of i.
Ife=132767 and f= 0, then visa NaN, regardless of i.

Extended Arithmetic

While the CPW C types float, double, and comp are intended for economical data
storage, the extended type is the foundation for all arithmetic computation. As specified
by the IEEE Standard, all basic arithmetic operadons, including addition, subtract,
multiply, divide, and square root, yield the best possible results. In CPW C these
operations produce extended results, so they are accurate to a precision of 19 decimal

digits, throughout a range exceeding 10~4900 o 10+4900,

CPW C takes advantage of ext ended arithmetic by storing all non-integer numeric .
constants in the extended format, and by evaluating all non-integer numeric expressions to
extended, regardless of the types involved. For example, the entire right side of the
assigr;mcm below will be computed in ext ended before being converted to the type of
the left side:

float x, a, b, c:

‘X = (b + sgrt(b * b= a * ¢}) / a;

With no special effort by the programmer, CPW C performs computations using extended
precision and range. Extra precision means smaller roundoff errors, so that results are
more accurate, more often. Extra range means overflow and underflow are rarer, so that
programs work more often.

Alpha Draft Page 6-5 26 May 1986

Cortland Workshop C SANE Data Types SANE

By following a few simple programming practices you can exploit the ext ended type,
beyond what CPW C does for you automatically.

Declare variables used for intermediate results to be of type extended. This practice is
illustrated in the following example, which computes a sum of products.

float sum;

float x[N], y[N};
int i; '
extended t:;

t = 0,0;

for (i = 0; i < N; i++)
t = ¢t + x{i] * y(i]):

sum = t;

Had t been declared as f1oat, like the input arrays x and y and the result sum, each time
through the loop the assignment to t would have caused a roundoff error at the limit of
float precision. In the example, all roundoff errors are at the limit of extended precision,
except for the one caused by the assignment of t to sum. This means roundoff errors will
be less likely to accurnulate to produce an inaccurate result.

Declare formal value parameters and function results to be of type extended, rather than
float, double, or comp. This saves CPW C from having to do unnecessary
conversions between numeric types, which may result in loss of accuracy. The example
below illustrates this practce.

$include <SANE.h>
extended area(radius)
extended radius:
{
retuzn pi() * radius * radius;

}

" Number Classes
Representations in the SANE data formats fall into five classes:

* Normalized numbers—like 3.0, 75.8, -2.3e78 and all others that can be
represented with a leading significand bit of 1.

Zero—+0.0 and -0.0.

Infinides—positive and negatve infinity.

NaNs—short for Not-a-Number.

Denormalized numbers—nonzero numbers that are too small for norrnahzed
representation.

Infinities: Infinities are special SANE representations that can arise in two ways
from operations on finite values:

* When a operation should produce an exact mathematical infinity (suchas 1.0/0.0).
the result is an infinity,

Alpha Draft | Page 66 26 May 1986

SANE . SANE Data Types Cortland Workshop C

« When an operation produces a number with magnitude too great for the number’s
intended floating-point format, the result may (depending on the current rounding
direction) be an infinity.

Library CSANELIib.o ¢ontains a function inf that returns the constant INF, which has
the value posidve infinity. INF also represents infinity for input and output of floating-
point values. Infinities behave like mathematical infinities. For example,

1-INF = -INF. Infinides can be helpful even when “infinity arithmetic” is not the goal.
For example, if X*X is too large for the ext ended format, the expression

1 + 1/ (X*X) stll computes to the correct value of 1.0 (assuming overflow halts are

off).
Try this:

main ()
{
extended x;

x = 1e4000;

printf("x * x = &%f \n", x * x);

printf ("l / (x * x) = %f \n", 1 / (x * x));

printf("l + 1 / (x * x) = %£ \n", 1 + 1/ (x * x)):
) .

NaNs: Another special SANE representation is a NaN (Not-a-Number). A NaN is
produced whenever an operation cannot produce a meaningful numeric result. For
example, 0.0/0.0 and sqrt (-1.0) yield NaNs.

Each time a NaN is generated, an associated NaN code is returned as part of the NaN's
representadon. This code tells you what kind of operation caused the NaN to be created.
NaN codes, shown in Table 5-2, can help with debugging.

Table 5-2. NaN Codes

Code Meaning

1 Invalid square root, such as sqrt (=1.0)
2 Invalid addidon, such as (+INF) = (+INF)
4 Invalid division, suchas 0.0/0.0
8 Invalid multiplication, suchas 0.0 * INF
9 Invalid remainder, such as X REM 0
17 Attemnpt to convert invalid ASCI string
- 20 Result of converting the comp NaN to floating-point format
21 Attemnpt to create a NaN with a zero code
33 Invalid argument to trig routine
34 “Invalid argument to inverse trig routine
36 Invalid argument to log routine
37 Invalid argument to x or xY routine
38 Invalid argument to financial function

The statement x = 0.0/0.0 will produce the result NAN(004) provided the invalid
operation halt is off. NAN (004), nan (4), and NaN are examples of acceptable input for
reading a NaN into a SANE variable at execution time. At compile time, you specify a

Alpha Draft Page 6-7 v 26 May 1986

Cortland Workshop C SANE Dara Types SANE

NaN by means of the nan function provided in CSANELIib.o. See the fconstants page in
the C SANE Library section of this chapter for more information about the nan function.

Denormalized Numbers: Whenever possible, SANE stores values in normalized form:
the most significant bit of the significand is a one, rather than a zero.

However, when a very small number is being stored, and the exponent is the smallest
possible negative value, it is possible to store stll smaller values by storing leading zeroes.
For example,

1.0..05 * 2-126 — smallest normalized float

0.1..05 * 2-126 — sl smaller denormalized float

Because of denormalized numbers, IEEE arithmetic has the desirable property that 2 ! =& if
andonlyif A = B != 0. In most non-IEEE arithmetcs, A - B will “flush to zero” if

A-B is too small for normalized representation, even though A and B may be different
values.

Exceptional Conditions

Exceptional conditions can arise from floating-point calculations in a number of cases. For
examnple, multiplying two very large values can result in a value too large to be represented
in one of the CPW C data formats. Or an operation such as 0.0/0.0 can be performed.

SANE provides a way for a program to deterrnine when a floating-point calculation has
resulted in one of these exceptdonal condidons by setting a flag when an exception occurs.

The SANE environment includes a hait setting for each of the five exceptions. The halt
setting determines whether the occurrence of the excepdon halts the program. The CPW C
default setting is the [EEE Standard default, which calls for all halts clear (off). You can
access the halt settings by using the testhalt functon and the sethalt function.

Exceptonal ¢onditions fall into five categories:

invalid operation
underflow
overflow
divide-by-zero
inexact

L e e o© o

Invalid Operation: The invalid operation exception arises when operands for an
operation are invalid, so that a meaningful numeric result is impossible. For example,
0.0/0.0 and sgrt (-1.0) are invalid operadons.

Underflow: Underflow occurs when a result is both denormalized and has lost
significant digits through rounding. For example, to return the result of:

Alpha Draft Page 68 26 May 1986

SANE : SANE Data Types Cortland Workshop C

(1.00000000000000000000001 5 * 2-126) /2

to the £1loat format, a leading zero would be introduced and the last significant bit would

be lost in rounding. This result:
0.1000000000000000000000000, * 2-126

would be returned and underflow would be signaled.

Overflow: The condition of calculating a value that is too large to fit in the format of its
designated type is called overflow. The destination format must be one of the floating-
point types; if the destination format is an integer type, the invalid exception occurs.

Divide-by-Zero: The divide-by-zero exception occurs when a finite nonzero number is
divided by zero. It also occurs when an operation on finite operands produces an exact
infinite result. For example, the operation 1.0/0. 0 (which results in INF) and the
operaton log (0.0) (which results in —~INF) both signal divide-by-zero.

Inexact: The inexact exception occurs if the rounded result of an operation is not identical
to the mathematcal (exact) result. (Thus, any time overflow or underflow occurs, the
inexact excepton is signaled.) For example, the operadon 2.0/3. 0 signals inexact,
regardless of the floating-point format used.

The Environment

The SANE environment consists of :

» ‘rounding direction
¢ rounding precision
o excepton flags

¢ halt settngs

The C SANE library includes functions that allow you to determine the current status of the

-environment. These functdons can be used to flag exceptonal conditions and to control
optional environment settings. For example, you may be working with very small values
and need to know exactly when underflow occurs. Or you rmght want to have floating-
point conversions rounded downward.

The standard rounding direction is TONEAREST. You can find out the current rounding
direction by using the get round funcdon. You can change thc rounding direction by
using the set round functon.

The following routine saves the current rounding direction, computes a function using
TOWARD ZERO rounding, and finally restores the saved rounding directdon.

rounddir r:
extended x, y;

Alpha Draft Page 6-9 26 May 1986

Cortland Workshop C SANE Data Types SANE

r = getround();
setround (TOWARDZEROQO) ;
y = £(x):
setround(r):

Normally, all CPW C floating-point calculations return results that are rounded to extended
precision and range. However, the rounding precision can be set to float or
double precision and range. Results will sdll be returned in the extended format.
There is no performance benefit in setting £1loat or double rounding precision. You
can access the rounding precision by using the setprecision function and the
getprecision function. These funcdons are useful if you want to use SANE to
perform calculations and then simulate the results you would get if you used a system that
did not provide extended-precision arithmetc.

The endre SANE environment (rounding direction, rounding precision, exception flags,
and halt settings) can be encoded in a value of type environment. The procedures described
below access the current SANE environment as a whole. They are useful for managing the
environment so that routines run with the environments they require and for controling the
exception information passed between roudnes.

When your program begins, the environment will reflect the IEEE standard
environment defaults:

Rounding direcionr—TONEAREST

Rounding Precision—EXTENDED

All exceptdon flags cleared

Halt on INVALID, UNDERFLOW, and DIVBYZERO

L ® e L]

To reinstall the [EEE standard defaults, use the statement

setenvironment (0);

The following routine runs under the [EEE default environment, while not affectng its
caller’s environment:

*** TRANSLATE FROM PASCAL TO Cx=**
PROCEDURE P, .
VAR

SaveEnv:Environment;

BEGIN

GetEnvironment (SaveEnv) ;

- SetEnvironment (0) ;

SetEnvironment (SaveEnv) ;
END;

The staternent
procentry(&e);

is equivalent to

Alpha Draft Page 6-10 ‘ 26 May 1986

SANE SANE Data Types Cortland Workshop C

getenvironment (&e)
setenvironment (0) ;

The procentry and procexit functions can be used in routines to selectively hide
spurious exceptions from the routine’s caller. For example:

extended arccos(x)
extended x;
{

environment e:;

procentry(&e);

x = atan(sgrt((1.0-x) / (1.0+x))):
setexception (DIVBYZERO, 0);
procexit (e) ;

return Xx;

}

The statement
procentry(&e)

saves the caller's environment in e and sets IEEE defaults, so exceptons cannot halt the
routdne. If x=~1, the computation of the right side of the assignment to acos will signal
DIVBYZERO, even though acos will be assigned the correct value, pi () /2. The
functon call

setexception (DIVBYZERO, false)

clears the DIVBYZERO flag, so the caller never seesit. If x > lorx <=1, the
computadon of acos will appropriately signal INVALID. The procexit functdon will

resignal INVALID after restoring the caller's environment, so if the caller's environment
calls for halts on invalid, the halt will occur.

Alpha Draft Page 6-11 26 May 1986

C SANE Library Constants and Types

This secdon explains each of the constants and types used in the C SANE library.

Exception Condition Constants
Table 5-3 defines the excepdon condition constants:
Table 5-3. Exception Condition Constants

Constant Event Causing

Exception Value Exception Example
INVALID 1 Operadon not meaningful—NaN result sgrt (=1.0)
UNDERFLOW 2 Accuracy lost—result too small (exp2(16383.0)) Z.C
OVERFLOW 4 Result too large for number exp2(16384.0C)
representation
DIVBYZERO 8§ Division of nonzero number by zero 1.0/0.0
INEXACT 16 Rounded result not same as exact 1.0/3.0
math result

The exception condidon constants are used to define the value of a variable of type
exception. ,

For example, if e is a variable of type exception, then
e = INVALID + OVERFLOW + DIVBYZERO
gives e a value that represents these three exceptions collectively.

The setexception and sethalt procedures each take arguments of type
exception.

The testexception and testhalt funcdons each return a value of type
exception.

The DECSTROUTLEN Constant

DECSTROUTLEN defines the maximum output length of a decimal string; it is defined by
this declaradon:

tdefine DECSTROUTLEN 80

The SIGDIGLEN Constant

Alpha Draft Page 6-12 : 26 May 1986

SANE Constants and Types - Macintosh Workshop C

The SIGDIGLEN constant represents the number of significant digits in a floating-point
value; it is defined by this declaration:

#define SIGDIGLEN 20

The FLOATDECIMAL and FIXEDDECIMAL Constants

These constants represents the style of decimal representation in a number of type
decform:

#define FLOATDECIMAL] /* £loating point */
$define FIXEDDECIMAL 1 /* fixed point */
The decform Structure Type :

A struct of type decform (decimal format) is defined by this declaradon:

typedef struct decform {
char style, unused;
short digits;

} decform;

A decform stucture holds the specifications for the format of a decimal number.

* The style variable specifies the decimal representation as either FLOATDECIMAL
or FIXEDDECIMAL.

* The digits variable holds the number of significant digits for FLOATDECIMAL
style or the number of dlgus to the right of the decimal point for FIXEDDECIMAL
style.

The num2dec functon takes a decform argument. It uses the information in decfcxm
to determine the format for the string returned in the functdon result.

The decimal Structure Type
A struct of type decimal is defined by this declaration:

typedef struct decimal | _
char sgn, unused; /* sign 0 for +, 1 for -
short exp: /* decimal exponent
struct (unsigned char length, text (SIGDIGLEN], unused} sig:;
/* significant digits
} decimal;

The relop Tybe

Alpha Draft Page 6-13 26 May 1986

Macintosh Workshop C Constarts and Types SANE

The relop (relatonal operator) type is defined by this declaradon:
typedef short relop: ' /* relational operator */

A result of this type is returned by the relation function, described later.

The numclass Type

The numclass type is defined by this declaration:

typedef short numclass; /* inquiry class */

Table 14-4, Number Class Descriptions

Number Class Value Meaning

SNAN 0 Signaling NaN
QNAN 1 Quiet NaN
INFINITE 2 Infinity or -Infinity
ZERONUM 3 0.0 or -0.0
NORMALNUM 4 Normalized number
DENORMALNUM 5 Denormalized number

Quiet NaNs are the usual kind produced by floating-point operations. Signaling NaNs,
potentially useful for flagging uninidalized varaibles, are discussed in the Apple Numerics
Manual.

The numclass type is used to return results from the inquiry functions, described below.

The exception Type
A variable of type except ion holds an integer value that corresponds to the value of one
of the exception constants, or to a sum of two or more of the exception constants. The
exception type is defined by this declaration:

typedef short exception: /* sum of INVALID...INEXACT */

The setexception, testexception, sethalt,and testhalt functions all take
arguments of type exception.

The haltvector Pointer Type

A variable of type haltvector points to the address to which control is transferred when
a halt occurs. The haltvector type is defined by this declaration:

typedef void (*haltvector) ():

The gethaltvector and sethaltvector funcdons take arguments of type
haltvector.

Alpha Draft | Page 6-14 26 May 1986

SANE Constants and Types " Macintosh Workshop C

The rounddir Type
The rounddir (rounding direction) type is defined by this declaration:
typedef short rounddir:; /* rounding direction */

The rounddir type is used to determine how values are to be rounded, when rounding
becomes necessary during arithmetic operations or conversions. The set round function
takes an argument of type rounddir . The getround function returns a value of type
‘rounddir.

The roundpre Type
The roundpre (rounding precision) type is defined by this declaration:
typedef short roundpre; . /* rounding precision */);

Rounding precision can be used to simulate arithmetic with only £1lcat or double

precision. The setprecision function takes an argument of type roundpre . The

getprecision functon returns a value of type roundpre .

The environment Type

A variable of type environment holds a value that represents the settings of the SANE

environment. For example, a setting of O represents the default [EEE settng (including no
- halts set). The environment type is defined with this declaration:

typedef short environment:;

You use a variable of type environment with these environmental access routines:
setenvironment, getenvironment, procentry, and procexit.

Alpha Draft Page 6-15 ' 26 May 1986

Macintosh Workshop C -Constants and Types SANE

C SANE Library Functions

This section includes a description of each of the functions in the C SANE Library. These
include

SANE arithmetic functions

conversions between decimal, string, and binary representation
elementary transcendental functions

funcdons that save and restore environmental settings
functons that handle exceptional condidons

funcdons that provide constants for NANs, INF, and =
financial functons

IEEE recommended functions

functons that determine the class of a numeric value

a random number function

a relationship function

funcdons that set rounding direction and precision

® © o o ® © o °® L] ° o o

Trigonometric functions are provided in the Standard C Library: the tan, sin, cos, and
atan funcdons are implemented with SANE arithmetic and conform to the [EEE Standard.
The Standard C Library also provides asin, acos, and atan2 functions. All of these
functions are documented in Chapter 3.

More information on SANE functions can be found in the Apple Nwnerics Manual.

Note: Any functdon with a formal parameter of any of the floating-point types can
be passed a value of any floating-point type.

Alpha Draft . Page6-16 26 May 1986

C SANE Library arithmetic Macintosh Workshop C

NAME
remainder, rint—SANE arithmetic functions
SYNQOPSIS

#include <SANE.h>

extended remainder (x,y,Quo) /* IEEE remainder; quo <=-- 7 low order
extended x,y: : /* bits of integer quotient x/y,
short *quo; . /* =127 <= quo <= 127
extended rint (x) /* round to integral value
extended x:
DESCRIPTION

The remainder functon returns the remainder of the division of its two extended
arguments x/y, as specified by the IEEE Standard. This function returns an exact
remainder of the smallest possible magnitude. The result is computed as

x-n*y

where n is a nearest integral approximation to the quotient x/y. For example,
remainder(9,0,5.0,q) returns =1.0, because -1 = 9=2*5,

The integer variable argument quo receives the seven low-order bits of n as a value
between ~127 and 127, this is useful for programming functions, like the
" rigonometric functdons, that require argument reduction.

The rint function takes an ext ended argument and rounds it to an integral value
in the extended format. Note that all sufficiently large floating-point values are
integral. The result depends upon the rounding direction, which can be changed
using the setround functon.

SEE ALSO

fabs, sgrt.

Alpha Draft Page 6-17 26 May 1986

Macintosh Workshop C , conversions C SANE Library

NAME
num2dec, dec2num, dec2str, str2dec _
——conversions between decimal, string, and binary representation
SYNOPSIS
#include <SANE.h>
void num2dec (£, x,d) /* d <== x, according to format ¢
decform *£;
extended x:;
decimal *d;
extended decZnum(d) /* returns d as extended
decimal »*d:
void dec2str(f,d, s) /* 8 <== d, according to format f
decform *£;
decimal *d;
char *s;
void str2dec(s,ix,d,vp) /* on input ix is starting index into s, zn
char *s; /* output ix is one greater than index cf .
short *ix, *vp; /* character of longest numeric substring:
decimal *d; /* boolean vp = "8 begining at given ix :-.s
/* valid numeric string or a valid prefix :
/* some numeric string”
DESCRIPTION

The num2dec funcdon converts a numneric value x to a decimal st ruct d. Here
are some examples; the headings represent the effects of different decform
parameters for x = 123.45 and sgn = 0:

style digits exp sig
FLOATDECIMAL 6 -3 6, "123450"
FLOATDECIMAL 2 1 2, "12"
FIXEDDECIMAL 6 -6 9, "123450000"
FIXEDDECIMAL 2 -2 5, "12345"

The dec2num function takes a decimal argument and converts it to type
extended.

The dec2str functon converts a st ruct of type decimal to a string value using
the specifications in the decform struct.

The str2dec functon takes a string argument and converts it to a st ruct of
type decimal. It scans the string in s and returns the result in d. On input, the
index variable ix is the starting index into the string; on output, the value of ix is
one greater than the index of the last character in the numeric substring just parsed.
The longest possible numeric substring is parsed; if no numeric substing is
recognized, ix remains unchanged. If the entire input saing, beginning at ix, is a

Alpha Draft Page 6-18 26 May 1986

[}

n

[\

"

4 X x4

C SANE Library) conversions ' Macintosh Workshop C

valid numeric string or a valid prefix of a numeric string, the function sets vp to |
to indicate successful completion.

Alpha Draft Page 6-19 26 May 1986

Macintosh Workshop C elems C SANE Library

NAME

logl, log2, expl, exp2, ipower, power—elementary transcendental
functions

SYNOPSIS
#include <SANE.h>

extended logl (x) /* log(l + x)
extended x;

extended log2 (x) /* base=2 log
extended x;

extended expl (x) /* exp(x) = 1
extended x:;

extended exp2 (x) /* base-2 exponential
extended x;

extended ipower(x,i) /* integer exponential: x * i
extended x:;
short 1i;

A

extended power (x,y) /* general exponential: x
extended x,y;

DESCRIPTION

b4

The logl function returns the base-e logarithm of 1 plus x. For x near 0, logl(x)
is more accurate than log(1.0+x).

The Log2 function returns the base-2 logarithm of x.

The expl function returns e*~1. For x near 0, exp1l (x) is more accurate than
exp(x) - 1.0.

= The exp2 functon returns 2 raised to the power of x: 2%,

The ipower function returns the value of x, raised to the integer power of i: x'.

The power function returns the value of x, raised to the floating-point power of »:
xY.

SEE ALSO

atan, cos, exp, log, sin, tan.

Alpha Draft Page 6-20 26 May 1986

C SANE Library environment Macintosh Workshop C

NAME

getenvironment, setenvironment, procentry, procexit,
gethaltvector, sethaltvector '
—save and restore SANE environmental settings
SYNOPSIS
#include <SANE.h>

void getenvironment (e) /* e <-= environment
environment *e;

‘void setenvironment (e) /* sets environment to e
environment e:;

void procentry(e) /* e <== environment;
environment *e; /*® environment <==- IEEE defaul:
void procexit (e) /* temp <--exceptions; environmen: <-- =;
environment e; /* signals exceptions in temp
haltvector gethaltvector () /* returns halt vector
void sethaltvector(v) /* halt vector <=-= v

haltvector v;

DESCRIPTION

The getenvironment function assigns the current settings of the environment to
variable e. . '

The setenvironment functon sets the effective environment to the one
specified in e.

The procent ry function saves the current environment (the rounding direction,
rounding precision, exception flags, and halt settings) in e and then sets the
environment to the IEEE defaults.

The procexit functon temporarily saves the current exception flags, sets the
effective environment as encoded in e, and then signals the temporarily saved
exceptons. -

The gethaltvector function returns as its function result the address of a halt
vector. ‘

"The sethaltvector function sets in v the address of a halt vector.

Alpha Draft Page 6-21 26 May 1986

Macintosh Workshop C exceptions C SANE Library

NAME

setegception, testexception, testhalt, sethalt-——exceptional
conditions

SYNOPSIS

#include <SANE.h>

#define INVALID 1

$define UNDERFLOW 2

#define OVERFLOW 4

$define DIVBYZERO 8

#define INEXACT 16

void setexception(e,s) /* clrs e flags if s is 0, sets e f.ac:s
exception e; /* otherwise; may cause halc®
long s;

long testexception (e) /* returns 1 if any e flag is set,
exception e; /*® returns 0 otherwise

long testhalt (e) /* returns 1 if any e halt is enatleZ,
exception e; /* recurns 0 otherwise

void sethalt (e, s) /* disables e halts if s is 0,
exception e; /* enables e halts otherwise
long s;

DESCRIPTION

The C SANE library defines a constant for each kind of exception: invalid,
underflow, overflow, divide-by-zero, and inexact.

If parameter sis 0, setexception signals the exceptions encoded in e;
otherwise it clears the exception flags specified by e. For example,

setexception (OVERFLOW + INEXACT, 0); '

This statement signals the overflow and inexact exceptions. If halt on overflow or
inexact were set, this staternent would halt the program.

The testexception function takes an argument of type exception and returns |
if any of the excepticns encoded in ¢ are set. :

Following the setexception functon call above, the call

testexception (QVERFLOW + INVALID)

would return a value of 1.

The testhalt function returns 1 if any of the flags indicated by e is set;
otherwise it returns 0.

Alpha Draft Page 6-22 26 May 1986

C SANE Library exceptions Macintosh Workshop C

The sethalt function lets you enable or disable exceptions. Enabled exceptions
cause your program to halt when they occur; disabled exceptions allow your

program to continue processing when they occur. If sis O, the exceptions in ¢ are
enabled; otherwise they're disabled.

Alpha Draft Page 6-23 26 May 1986

Macintosh Workshop C Sfeonstants - C SANE Librarv

NAME

inf, nan, pi-——functions that return a constant value
SYNOPSIS

#include <SANE.h>

extended inf () ' /* returns INF

extended nan{(¢) /* returns NAN with code ¢
unsigned char c:

extended pi () /* returns the value of pi

DESCRIPTION

The inf function returns the constant INF.

The nan function returns a NaNN associated with the code given as an argument.
The SANE NaN error codes are shown in Table 5-2 in the “Number Classes”

section earlier in this chapter.

The pi function returns the nearest ext ended approximation to the mathematcal

value of r.

Alpha Draft Page 6-24 26 May 1986

C SANE Library Sfinancial Macintosh Workshop C

NAME

compound, annuity—financial functons
SYNOPSIS

#include <SANE.h>

extended compound(r,n) /* compound: (1 + r) “ n
extended r,n;

extended annuity(r,n) /* annuity: (1 - (1 +) ~ (=n)) / =
extended r,n;

DESCRIPTION

In the compound function, r specifies the interest rate per period as a decimal
(.1075), not as a percent (10.75%); n specifies the number of periods. The

function returns (1+7)3, which is the principal plus accrued compound interest on
an original investment of one unit.

In the annuity function, r specifies the interest rate; n specifies the number of

periods. The functon returns (1-(1+r)-%)/r, which is the present-value factor of an
ordinary annuity.

Here is an example of how the annuity function can be used:

main ()
{ : .
extended loan, payment, interest, periods;

printf ("Loan amount: ");

scanf ("%nf", &loan);

printf ("Annual interest rate (E.g. enter 10% as 0.1): "):
scanf ("%nf", &interest);

printf ("Number of yeazrs: ");

scanf ("¥nf", &periods):;

payment = loan / annuity(interest/l2, periods*l2);

printf ("Your payment is: %8.2f \n", payment):

In this example, given a loan amount of $120,;000 and an interest rate of .10735 per
year for 30 years, the payment will be $1120.18.

Alpha Draft Page 6-25 26 May 1986

Macintosh Workshop C IEEE C SANE Lz’brar_v

NAME

scalb, logb, copysign, nextfloat, nextdouble,
nextextended
.—recommended [EEE functions

SYNOPSIS
#include <SANE.h>

extended scalb(n,x) /* binary scale: x * 2”°n;
short n;
extended x;

‘extended logb (x) /* binary log:
extended x; . /* binary exponent of normalized =«
extended copysign(x,y) /* y with sign of x
extended x,y:;
extended nextfloat (x,y) /* next float representation afzerx
extended x,y; /* (float) x in direction of (f.zaz,
extended nextdouble(x,y) /* next double representation af:zsr
extended x,y: /* (double) x in direction of (douzl
extended nextextended (x,y) /* next extended representatizn afzsr
extended x,y: /* in direction of y
DESCRIPTION

The scalb functon scales x by the power of two specified by n. The value 27x is
returned in extended format.

The 1logb function returns the largest power of two that does not exceed the
magnitude of x. For example,

logb (~65535.0)
yields 15 because 215 < 65535 < 216,

The copysign function returns the value of y with the sign of x. For example,
copysign(2.0, -3.0) yields 3.0.

The next £1loat functon returns the next value that can be represented in float
format after x, in the direction of y.

The nextdouble functon returns the next value that can be represented in double
format after x, in the directon y.

The nextextended function returns the next value that can be represented in
extended format after x, in the direction of y.

Alpha Draft Page 6-26_ 26 May 1986

C SANE Library [EEE Macintosh Workshop C

NOTE

Additional [EEE recommended functions are described on the inquiry page.

Alpha Draft Page 6-27 26 May 1986

Macintosh Workshop C inquiry C SANE Library

NAME

classfloat, classdouble, classextended, classcomp,
signnum ’ ‘
—determine the class of a numeric value

SYNOPSIS
#include <SANE.h>

numclass classfloat (x) /* class of (float) x
extended x:

numclass classdouble (x) /* class of (double) x
extended x:

numclass classextended (x) /* class of x
extended x:

numclass classcomp (x) /* class of (comp) x
extended x; ‘

long signnum(x) /* returns ¢ for +, 1 for -

extended x:

DESCRIPTION

These functions are [EEE recommended functions (in addition to those on the /EEE
page). The result of each of these funcdons is of type numclass.

The classfloat function determines the number class of its extended
argument as if it were type £1loat. For example,

classfloat (1.0)
classfloat (le=310)

The first functon call returns NORMALNUM, the code for a normalized number. The

second call returns ZERONUM, the code for zero (because le~310 rounds to +0 in
the extended format).

The classdouble functon determines the nurmnber class of its ext ended
argument as if it were type double. For example,

- classdouble (0.0/0.0)
classdouble(le=310)

The first example returns QNAN, the code for a quiet NaN. The second example
returns DENORMALNUM, the code for a denormalized number (because 1e~310 is
denormalized in the double format).

The classextended function determines the number class of its extended
argument. For example,

Alpha Draft Page 6-28 26 May 1986

C SANE Library inquiry Macintosh Workshop C
classextended(1.0/0.0)
classextended(le-=310)

The first example returns INFINITE, the code for infinides. The second example
returns NORMALNUM, the code for a normalized number.

The classcomp function determines the number class of its extended argument as
if it were type comp. For example,

classcomp(1.0)
classcomp (0.1)

The first example returns NORMALNUM, the code for a normal number. The second
example returns ZERONUM, the code for zero. (Remember that comp stores
integral values.)

The signnum function indicates the sign of x: it returns 1 if x is negatve, 0 if x is
positive.

Alpha Draft - Page 6-29 26 May 1986

Macintosh Workshop C randomx C SANE Library

NAME

randomx—next extended random number
SYNOPSIS

$include <SANE.h>

extended randomx (x) /* returns next random num; updatzes .
extended *x; /* X integral, 1 <= x <= 2731 =~ 2
DESCRIPTION

The randomx function takes a variable argument of type extended which

contains an integral value in the range 1< < 231-2. It retumns the next random
number in sequence within the same range. Variable x is updated to the value
retumned. The randomx function uses this algorithm:

NewX = (73 * OldX) mod (231-1)
SEE ALSO

rand.

Alpha Draft ' Page 6-30 26 May 1986

C SANE Library relation Macintosh Workshop C

NAME
relat ion—specify relationship between two arguments

SYNOPSIS

#include <SANE.h>

#define GREATERTHAN 0
#define LESSTHAN 1
$define - EQUALTO 2
#define UNORDERED 3
relop relation(x,y) /* returns relation such that
extended x,y: /* "x relation y" is true
DESCRIPTION

The relation functon returns a value that specifies the reladonship berween the
two arguments as greater than, less than, equal to, or unordered.

For example,
relation (0.1, nan{(0}))

returns UNORDERED, since all comparisons involving NaNs are unordered.

Alpha Draft Page6-31 26 May 1986

Macintosh Workshop C rounding C SANE Librarv

NAME

getround, setround, getprecision, setprecision—rounding
direction and precision

SYNOPSIS
#include <SANE.h>
#define TONEAREST 0
#define UPWARD 1
#define DOWNWARD 2
#define . TOWARDZERO 3
#define EXTPRECISION 0 /* extended */
#define DBLPRECISION 1 /* double =/ ,
#define FLOATPRECISION 2 /* float */ (
rounddir getround() /* returns rounding direction x
void setround(r) /* sets rounding direction to r -
rounddir r:
roundpre getprecision() /* returns rounding precision
void setprecision(p) /* sets rounding precisicn ts p

roundpre p;

DESCRIPTION

The rounding direction can be set to nearest, upward, downward, or toward
zero. The default rounding directon is to nearest. The rounding precision may
be set to extended, double, or float. The default rounding precision is extended.

The get round functon retumns the current rounding direcdon as a value of type {

rounddir.

@

The setround functon sets the effective rounding directon to the one indicated

by p.

The getprecision function returns the current rounding precision.

The setprecision function sets the desired rounding precision.

Alpha Draft

Page 6-32 ' 26 May 1986

Appendix A

Calling Conventions
%% Needs engineering edit!! ***

Cortland Workshop C uses two different function-calling conventions: C calling
conventions and Pascal-compatible calling conventdons.

C Calling Conventions

This section describes the normal C calling conventions. It explains how functon
parameters are passed, hew function results are returned, and how registers are saved
across function calls. This informaton is useful when writing calls between C and
assembly language. '

Parameters

Parameters to C functions are evaluated from right to left and are pushed onto the stack in
the order they are evaluated. Characters, integers, and enumeration types are passed as
sign-extended 32-bit values. Pointers and arrays are passed as 32-bit addresses. Types
float, double, comp, and extended are passed as extended 80-bit values. Structures are
also passed on the stack. Their size is rounded up to a multiple of 16 bits (2 bytes). If
rounding occurs, the unused storage has the highest memory address. The caller removes
the parameters from the stack.

Function Results
*** On Cortland, function results are retumned in a global variable, not on the stack. The
conventions for returning functon results are still being defined. ***

Register Conventions

No registers are preserved across function calls. Tool calls have their own conventions for
returning error codes in the A register.

Pascal-Compatible Calling Conventions

This section describes the conventions used for calling Pascal functions from C and for
functions written in C that use Pascal-compatible calling conventons. These conventions
differ from the usual C calling conventions defined in Chapter 2; they also differ from the
calling conventions used by the Pascal compiler.

Alpha Draft Page A-1 26 May 1986

Cortland Workshop C Appendix A

Parameters

Parameters to Pascal-compatible functions are evaluated left to right and are pushed onto
the stack in the order they are evaluated. Characters and enumeration types whose literal
values fall in the range of types char or unsigned char are pushed as bytes. (This requires a
16-bit word on the stack. The value is in the high-order 8 bits; the low-order 8 bits are
unused.) Shortints and enumneration types whose literal values fall in the range of types
short or unsigned short are passed as 16-bit values. Ints, long ints, and the remaining
enurmneration types are passed as 32-bit values. Pointers and arrays are passed as 32- bit
addresses. SANE types float, double, comp, and extended are passed as extended 80-bit
values; however this doesn't correspond to the Pascal compiler's calling conventions, so a
compiler warning is given. Table 2-2 shows the recommended way to pass SANE-type
values to Pascal. Structures are also passed by value on the stack, and also yield a
compiler warning. Their size is rounded up to a multiple of 16 bits (2 bytes). If rounding
occurs, the unused storage has the highest memory address. The function being called
removes the parameters from the stack.

Function Results

#*#% On Cortland, function results are returned in a global variable, not on the stack. The
conventions for returning functon results are still being defined. ***

Register Conventions

No registers are preserved across function calls. Tool calls have their own conventions for
returning error codes in the A register.

Alpha Draft Page A2 26 May 1986

Appendix B

Files Supplied with Cortland

Workshop C

Cortland Workshop C is intended for use with the Cortland Programmer's Workshop. The
files listed below are on the Cortland Workshop C release disk, which contains the C
compiler, the Standard C Library, and the Cortland Interface Library. These files may be
used directly from the release disk or copied to a hard disk.

C Compiler Files

File Name
C

Instructon
MakeFile
Sample.c
Sample.r

Size

X
2K
2K

10K
2K

Comments

MegaMax C compiler

instructions for building sample programs
sample program makefile

sample C program

sample resource maker input

Standard C Library Include Files

File Name

CType.h
ErrNo.h
FCntl.h
I0Ct.h
Math.h
StdIO.h
Values.h
VarArgs.h
Signal.h

Size

2K
3K
2K

Comments

character types

C library error numbers

file control

input/output control

math functions

standard input/output

numneric parameters

variable argument list processing
signal handling

Cortland Interface Library Include Files

File Name

AppleTalk.h
Controls.h
Desk.h
Devices.h
Dialogs.h
Disks.h

Alpha Draft

Size

Comments

AppleTalk Manager
Control Manager
Desk Manager
Device Manager
Dialog Manager
Disk Manager

Page B-1 26 May 1986

Cortland Workshop C

Error.h
Events.h
Files.h
Fonts.h
Graf3D.h
Memory.h
Menus.h
OSEvents.h
OSUtdls.h
Packages.h
Printing.h
QuickDraw.h
Resources.h
Retrace.h
SANE.h
Scrap.h
Segload.h
Serial.h
Sound.h
Strings.h
TextEdit.h
ToolUdls.h
-Types.h
Windows.h

System Error Handler
Event Manager

File Manager <HFS>
Font Manager

Graf3D interface

Memory Manager

Menu Manager

Operating Systemn Event Manager
Operating System Utilities
Package Manager and packages
Printing Manager
Quickdraw

Resource Manager
Vertical Retrace Manager
SANE Numerics

Scrap Manager

Segment Loader

Serial Drivers

Sound Driver

string conversions
TextEdit

Toolbox Utlides

common defines and types
Window Manager

Standard C Library Object Files

File Name

CRuntime.o
Math.o
StdCLib.o

Size
7K

SK

26K

Comments

Appendix B

execution starting point for use with C libraries

C Library math functions
Standard C library

Cortland Interface Library Object Files

File Name

Clnterface.o
CSANELib.o
PrintCalls.o

Alpha Draft

Size

21K
5K

Comments

Cortland Interface Libraries
SANE library
Printing Manager routines

Page B-2

26 May 1986

Appendix C

Comparison with
Macintosh Workshop C

Data Types

The following data types are implemented differently in CPW and MPW C.
Data Type Size in bits

' CPW MPW

int 16 32

unsigned int 16 32

enum 8orl6 8, 16 or 32

Register Variables

Register variables are not supported in Cortland Workshop C due to the small number of
registers available on the 65816. Use of the register declaration will cause the compiler to
generate code at least as efficient as that generated by the same program without register
declarations.

Struciured Variables

Stuctures may be assigned, passed as parameters, and returned as function results in both
versions of C. Cortland Workshop C allows equality comparison for structures; MPW C
does not. '

Pascal-Compatible Function Declarations

A functdon or procedure written in Pascal (or written in assembly language following
Pascal calling conventons) can be called from either MPW C or Cortland Workshop C.
For example, the DrawText procedure is defined in Pascal as:

PROCEDURE DrawText (textBuf: Ptr:;
firstByte, byteCount: INTEGER):

Alpha Draft " PageC-1 26 May 1986

Cortland Workshop C Appendix C
The MPW syntax for such a declaradon is:

pascal void DrawText (textBuf, firstByte, byteCount)
Ptr textBuf;
short firstByte, byteCount;
extern;

The CPW syntax for this declaration is:
extern pascal void DrawText ()
To make the CPW form more readable, we can list the parameters in a comment:

extern pascal void DrawText ()
/* Ptr textBuf;
short firstByte, byteCount;
extern; */

In additon, in MPW C the word extern may be followed by a constant, which is
interpreted as a 16-bit 68000 instruction that replaces the usual subroutine call (JSR)
instruction in the calling sequence. This allows direct traps to the Macintosh ROM. For
example:

pascal void OpenPort (port)
GrafPtr port;
extern OxA86F;

%* Issues for further investigation *

*** How do the C's implement byte-sized elements of smuctures? Are they padded o
word-length? **#

Alpha Draft Page C-2 26 May 1986

Appendix D

Library Index

About the Library Index

The Library Index contains an index entry for all the defines, types, enumneration literals,
global variables, and functions defined in the Standard C Library and the Cortland Interface

Libraries.
¢ Column 1 contains an alphabetical list of the index entries.
+ Column 2 specifies the type of declaration (for example, “literal”) for the index enmry.

o Column 3 contains the library header under which documentation for the index entry
can be found. If column 3 contains “(C)” following the library header—for example.
*“abs(C)"—look in Chapter 3, The Standard C Library. Otherwise look in Chapter 4,
The Cortland Interface Library. These chapters are organized alphabetically by library
header except for the first entry in each, which contains introductory material.

Alpha Draft Page D-1 26 May 1986

Cortland Workshop
C Pocket Reference

Writer: Don Reed, Apple Technical Publications Department
Alpha Draft: 26 May 1986
Part Number: PAP002-21

Copyright © 1986 Apple Computer Inc. All rights Reserved

Cortland Workshop C Pocket Reference

Contents

The compiler
Compiler commands
Compiler options (table)

Language specification
Size and range of data types (table)
Reserved words ‘

Operator precedence

Identifiers

Tﬁe Standard C Library
ASCII Table

Cortland Workshop C Pocket Reference

Cortiand Workshop C Pocket Reference
The compiler

Compiler commands

COMPILE ([+L|-L] [+S|-Slsourcefile [KEEP=outfile] (NAMES=(seg![seg2|,...1])]
{languagel=(option ...) [language2=(option ...) ...]]

CMPL (+L|-L] [+S|-S]sourcefile [KEEP=outfile] (NAMES=(seg![,seg2[,...1)]
[languagel=(oprion ...) (language2=(option ...) ...]]

CMPLG [+LJ-L] (+S]-S]sourcefile [KEEP=ourfile] [NAMES=(segI[seg2[,...]])]

(languagel=(option ...) [language2=(option ...) ...]]

Compiler options

Option Description

=LJ-L +L produces source listing,

ENIENS +S produces symbol table

sourcefile The full pathname and filename of the source file.
KEEP=outfile Filename of output file.

Cortland Workshop C Pocket Reference

Cortland Workshop C Pocket Reference

NAMES=(seg! seg2,...) Partial compilation of segments seg/, seg2,...
languagel=(option ...) Options for languagel.

Language specification

Size and range of data types

Type Bits Range
char 8 =128 to 127
unsigned char 8 0to 255

short - 16

unsigned short 16
int 16
unsigned int 16
long 32
unsigned long 32
enum 8, 16, 32
x 32
float 32
double | 64
comp 64
extended 80

Cortland Workshop C Pocket Reference

-32,768 to 32,767
0 to 65,535

© =32,768 to 32,767

0 to 65,535

-2,147,483,648 to 2,147,483,64
0 to 4,294,967,295 ‘
enumerated types

pointer types

+1.5E-45 to £3.4E38
+5.0E-324 to £1.7E308
=—0.2E18 to =+9.2E18
+1.9E-4951 to £1.1E4932

Cortland Workshop C Pocket Reference

Reserved words

int extern
char register
float typedef
double static
struct goto
union return
long sizeof
short break

unsigned continue
auto if

else
for

do
while
switch
case
default
entry

Operator precedence

Operator

) (] ->

o~ ++ == = (type)
* / %

ES .

<< >>

< <= > >=

_—= "—"

&

Cortiand Workshop C Pocker Reference

*

&

sizeof

Associativity
left to right
right to left
left to right
left to right
left to right
left to right
left to right
left to right
left to right

Cortland Workshop C Pocket Reference

~

left to right
left to right
left to right
right to left
right to left
left to right

10

+

~Character constants

new-line
horizontal tab
vertical tab
backspace
carriage return
form feed
backslash
single quote
bit pattern

nl (1f)
ht

vt

bs

cr

ff

\

\O{0-7][0-7]

Cortland Workshop C Pocket Reference

\n
\t
\v
\b
\r
\f
\\
\l
\O[0-7][0-7]

1

Cortland Workshop C Pocket Reference

Equivalent data types

Pascal Data Type C Equivalent
boolean Boolean

var boolean Boolean *
boolean result Boolean

Comments

Defined in file Types.h as enum
{false,true}.

In G, false is zero and true is often
considered nonzero.

In Pascal, false is zero and rrue is
one.enumeration

(<128 or>255 literals)

enumeration
(128 to 255 literals)

var enumeration

(<128 or 255 literals)
var enumeration

(128 to 255 literals)
enumeration result

(<128 or >255 literals)
enumeration result

enum

short

enum *
short *

enum

Cortland Workshop C Pocket Reference

Use identical ordering of the enumeration
literals.

Pascal passes enumerations with 128 or
more literals as words.

3

Cortland Workshop C Pocket Reference 4

(128 to 255 literals) short
char short Pascal passes chars as 16-bit values.
var char ' char *
char result short
integer short 16-bit signed values.
var integer short *
short result short
longint int or long 32-bit signed values.
var longint int * or long * *%% long only??? #*%
longint result int or long wux Jong only??? #¥%

real extended *

var real float *

real result float
double extended *
var double - double *
double result double
comp extended *

Cortland Workshop C Pocket Reference

Pascal passes real parameters as extended
by address.

Pascal returns real results by value.

Pascal passes double parameters as
extended by address.

The caller supplies the address of the
double result.

Pascal passes comp parameters as
extended by address.

I5

Cortland Workshop C Pocket Reference

var comp comp *
comp result comp
extended extended *
var extended extended *
extended result extended
pointer pointer
var pointer pointer *

pointer result ° pointer

16

The caller supplies the address of the
comp result.

Pascal passes extended parameters by
address.

The caller supplies the address of the
extended result.

32-bit addresses.

array (1 or 2 bytes) short

array (3 or 4 bytes) int or long
array (5 or more bytes) array

var array array
array result -ee

record (1 to 4 bytes) struct
record (5 or more bytes) struct *
var record (any size) struct *

record result (1 or 2 bytes) short
record result (3 or 4 bytes) int or long

Cortland Workshop C Pocket Reference

Pascal passes small arrays by value.
*%% long only??? wws

Pascal passes larger arrays by address.
C does not allow array results.

Pascal passes small records by value.
Pascal passes larger records by address.

Pascal returns small records by value.
wx% long only??? *%=

17

Cortland Workshop C Pocket Reference

record result (1 or 2 bytes) struct

set (1 to 7 elements) char
set (8 to 16 elements) short
set (217 elements) struct
var set (1 to 7 elements) char *
var set (8 to 16 elements) short *
var set (217 elements) struct *

set result (1 to 7 elements) char

18

The caller supplies the address of the
record result.

Pascal passes sets with | to 7 elements as
bytes.

Pascal passes sets with 8 to 16 elements
as words.

Pascal also passes larger sets by value.

Pascal returns small sets by value.

_setresult (8 to 16 elements) short
set result (217 elements) struct The caller supplies the address of the set
result.

Error numbers

Number Name Meaning
1 [EPERM] Not owner
2 {(ENOENT] No such file or directory

Cortland Workshop C Pocket Reference 19

Cortland Workshop C Pocket Reference

[EIO]
[ENXIO]
(EBADF]
(ENOMEM]
(EACCES]
(EEXIST]
[ENODEV]
[ENOTDIR]
[EISDIR]
[EINVAL]]
[ENFILE]
[EMFILE]

/O error

No such device or address
Bad file number
Not enough space
Permission denied
File exists

No such device

Not a directory

Is a directory
Invalid argument
File table overflow
Too many open files

28 [ENOSPC) No space left on device
29 [ESPIPE] llegal seek
30 "[EROFS] Read-only file system

The Standard C library

errno B85 299 s

#include <errno.h>
extern int errno;

Cortland Workshop C Pocket Reference’ 2]

Cortland Workshop C Pocket Reference

abs -
int abs (i)
int i;

atof :
extended atof (nptr)
char *nptr;

atoi, atoi

int atoi (str)
char *str;

long atol (str)
char *str;

close

int close (fildes)
int fildes:

Cortland Workshop C Pocket Reference

Cortland Workshop'C Pocket Reference

toupper, tolower, _toupper, _tolower, toascii

$include <ctype.h>

int
int
int
int
int
int
int
int

toupper (c¢)
c;

tolower (c)
c;

_toupper (c)

el

_tolower (c¢)

c:

int toascii (c) ' |

int ¢; |
creat ' |
int creat (path) |
char *path; {

§salgha, .isupper, 'islower,_ isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, isascii
#include <ctype.h>

int isalpha (c¢)

Cortland Workshop C Pocket Reference . 2

i
|
|
|

Cortland Workshop C Pocket Reference

int ¢

int isascii (¢)
int ¢

dup
int dup (fildes)
int fildes;

exit, _exit
void exit (status)
int status;
void _exit (status)
int status:

exp, log, logl0, pow, sqrt
’ #include <math.h>

extended exp (Xx)
extended x;

Cortland Workshop C Pocket Reference

Cortland Workshop C Pocket Reference

extended
extended

extended
extended

extended
extended

extended
extended

log(x)
x;

logl0 (x)
X

pow(x, y)
X, y;

sqgrt (x)
x;

faccess

int faccess (char *fileName, usigned int emd, ..);

fclose, fflush
#include <stdio.h>

int fclose (stream)
FILE *stream;

int ££flush (stream)
FILE =*stream;

Cortland Workshop C Pocket Reference

Cortland Workshop C Pocket Reference

fentl
#include <fentl.h>

int fentl (fildes, cmd, arg)
int fildes;

unsigned int emd;

int arg:

ferror, feof, clearerr, fileno
#include <stdio.h>

int feof (stream)

FILE *stream;

int ferror (stream)
FILE *stream;

void clearerr (stream)
FILE *stream;

int fileno (stream)
FILE ¥*stream:

Cortland Workshop C Pocket Reference

3

Cortland Workshop C Pocket Reference

floor, ced, fmod, fabs

#include

extended
extended

extended
extended

extended
extended

<math.h>

floor(x)
X

ceil (x)
X:

fmod (x, y)
X, y;

N

‘extended fabas (x)
extended x:

fopen, freopen, fdopen
#include <stdio.h>

FILE *fopen (filename, type)
char *filename, *type;

FILE *freopen (filename, type,
char *filename, *type:
FILE *stream;

Cortland Workshop C Pocket Reference

stream)

Cortland Workshop C Pocket Reference

FILE *fdopen (fildes, type)
int fildes:
char *type:

fread, fwrite
#include <stdioc.h>

int fread(ptrz, size, nitems, stream)
char *ptr;

int size, nitems;

. FILE *stream;

frexp,

int fwrite(ptr, size, nitems, stream)
char *ptr;

int size, nitems:;

FILE *stream;

ldexp, modf

extended frexp(value, eptr)
extended value;

int t*eptr;

extended ldexp(value, exp)
extended value:;

Cortiand Workshop C Pocket Reference

Cortland Workshop C Pocket Reference

int exp:

extended modf (value, iptr)
extended value, *iptr;

fseek, rewind, ftell
#include <stdio.h>
int fseek (stream, offset, ptrname)

FILE *stream;
long offset;

int ptrname:;

" void rewind (stream)
FILE *stream;

long ftell (stream)
FILE *stream;

getc, getchar, fgetc, getw
#include <stdio.h>

int getc(stream)

Cortland Workshop C Pocket Reference

Cortland Workshop C Pocket Reference

FILE *stream;
int getchar()

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE *stream;

gets, fgets
#include <stdio.h>

char *gets(s)
char *s;

‘char *fgets(s, n, stream)
char *s;

int n;

FILE *stream;

hypot
#include <math.h>

extended hypot (x, y)

Cortland Workshop C Pocket Reference

Cortland Workshop C Pocket Reference

extended x, y;

ioctl
#include <ioctl.h>
int ioctl (fildes, cmd, arzg)
int filedes;
unsigned int cmd;
long *arg:
Iseek

long lseek (fildes, offset, whence)

int fildes;
long offset;
int whence;

malloc, free, realloc, calloc, cfree
char *malloc(size)
unsigned size:

void free(ptr)
char *ptr;

char *realloc(ptr, size)

Cortland Workshop C Pocket Reference

4]

Cortland Workshop C Pocket Reference

char *ptr:
unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

cfree *»% 7 *¥*%

memccpy, memchr, memcmp, memcpy, memset
char *memccpy(sl, s2, ¢, n)
char *sl, ®s2:
int ¢, n;

char *memchr(s, c, n)
char *s3;
int ¢, n;

int memcmp(sl, s2, n)
char *sl, *s2;
int n;

char *memcpy(sl, s2, n)

char *sl, *s2;
int n:

Cortland Workshop C Pocket Reference

43

Cortland Workshop C Pocket Reference

char *memset (s, ¢, n)
char *s;
int ¢, n;

onexit
#include <stdio.h>

int onexit (func);
void (*fune) ();

open
#include <fentl.h>

int open(path, oflag)
char *path;
int oflag;

printf, fprintf, sprintf
#include <stdio.h>

int printf(format [, arg } ...)
char *format;

int fprintf(stream, format [, arg] ...)
FILE *stream;

Cortland Workshop C Pocket Reference 45

Cortland Workshop C Pocket Reference

char *format;

int sprintf(str, format | ; arg]
char *str, format;

putc, putchar, fputc, putw
#include <stdic.h>

int putc(c, stream)
char c¢;
FILE *stream;

int putchar(c)
char ¢:

int fputc(c, stream)
char c¢;
FILE *stream;

int putw(w, stream)

int w;
FILE *stream;

Cortland Workshop C Pocket Reference

Cortland Workshop C Pocket Reference .

puts, fputs

qsort

#include <stdio.h>

int puts(s)
char =*s;

int fputs(s, stream)
char *s3;
FILE *stream;

~void gsort ((char *) base, nel, sizeof (*base), compar)

unsigned int nel;
int (*compar ():

rand, srand
int rand()

veid srand(seed)
unsigned seed;

read

int read(fildes, buf, nbyte)
int fildes;

Cortland Workshop C Pocket Reference

Cortland Workshop C Pocket Reference

char *buf;
unsigned nbyte;

scanf, fscanf, sscanf
$include <stdio.h>

int scanf(format (, pointer] ...)
char *format:

int fscanf(stream, format (, pointer]
FILE *stream;
char *format;

int sscanf (s, format { , pointer] ...)
char *s, *format;

setbuf, setvbuf
#include <stdio.h>

void setbuf (stream, buf)
FILE *stream;
char *buf;

int setvbuf (stream, buf, type, size)
FILE *stream;

Cortland Workshop C Pocket Reference 57

Cortland Workshop C Pocket Reference

char *buf;
int type;
int size;

sigset, sighold, sigrelease, sigpause
#include <Signal.h>

SignalHandler * sigset (sigMap,
SignalMap sigMap:
SignalHandler *newHandler: -

void _sig_dfl (sigNo, sigState,

newHandler)

sigEnabled)

52

SignalMap sigNo:
SignalMap sigState;
SignalMap sigEnabled:;

SignalMap sighold (sigMap)
SignalMap sigMap;

void sigrelease (sigMap, prevEnabled)
SignalMap sigMap:
SignalMap prevEnabled;

void sigpause (sigMap)

Cortland Workshop C Pocket Reference

53

Cortland Workshop C Pocket Reference

SignalMap sigMap:

sinh, cosh, tanh
¥include <math.h>

extended sinh (x)
extended x:

extended cosh (x)
extended x;

extended tanh (x)

extended x:

stdio
¥include <stdio.h>

FILE *stdin, *stdout, *stderr:
strcat, strncat, strcmp, strncmp, strepy, strncpy, strien,strchr, strrchr,
strpbrk, strspn, strcspn, strtok

char *strcat (sl, s2)
char *sl, *s82;

.Cortland Workshop C Pocket Reference

Cortland Workshop C Pocket Reference

char *strncat (sl, s2, n)
char #*sl, #s2;
int na:;

int stremp (sl, s2)
char *sl, =s2;

int strnemp (sl, s2, n)
char *sl, *g2;
int n;

char *strepy (sl, s2)

char *sl, *s32;

char *strncpy (sl, s2, n)
char *sl, ®s2;

int n:

int strlen (s)
char *s;

char *strchr (s, c)
char *s, ¢;

Cortland Workshop C Pocket Reference

Cortland Workshop C Pocket Reference

" char
char

char
char

*strrechr (s, ¢)
*s, <

*strpbrk (sl, s2)
*sl, *s2;

int strspn (sl, s2)

char

*g)l, *s2;

int strespn (sl, s2)

char

*8l, *s2;

char *strtok (sl, s2)
char *sl, *s2;

strtol

long strtol (str, ptr, base)
char *str;

char **ptr;

int base;

sin, cos, tan, asin, acos, atan, atan2
#include <math.h>

Coritland Workshop C Pocket Reference

39

Cortland Workshop C Pocket Reference

extended
extended

extended
extended

extended
extended

extended
extended

sin (x)
x;

cos (x)
X

tan (x)
x:

asin (x)
x;

extended
extended

extended
extended

extended
extended

-ungetc
#include

acos (x)
X

atan (x)
x;

atan2 (y,
X, ¥y

<stdio.h>

x)

Cortland Workshop C Pocket Reference

6!

Cortland Workshop C Pocket Reference

int ungete (¢, stream)
char c;
FILE *stream;

unlink X
int unlink (path)
char *path;
write
int write (fildes, buf, nbyte)
int fildes:

char #buf;

unsigned nbyte;

ASCII Table

Cortland Workshop C Pocket Reference

Cortland Workshop C Pocket Reference

Char Dec Oct Hex

nuwl
soh
stx
etx

—— s g
W~ OV WL EaWN—~O

TNWPr 0oL~

Char
sp
!

FEEIEE S RN -&*“t z

Dec Oct Hex

32
33
34
35
36
7
38
39
40
41
42
43
44
45

40
41
42
43

“’

45
46
47
30
51
52
53
54
55

20
21
22
23
24
25
26
27
28
29
2A
2B
2€
2D

TR ZmOmmuNw>®

Oct Hex
100 40
101 41
102 42
103 43
104 44
108 45
106 46
107 47
110 48
111 49
112 4A
113 4B
114 4C
115 4D

Char

B R e 3700 pod .0 T

Dec
96
97
98
99

100
101
102
103
104
105
106
107

- 108

109

Oct Hex
140 60
141 61
142 62
143 63
144 64
145 65
146 66
147 67
150 68
151 69
152 6A
153 6B
154 6C
155 6D

-

$0
si
dle

de2

nak
syn
etb
can

sub
esc
fs

Cortland Workshop C Pocket Reference

T 14

15
16

18
19
20
21
22
23
24
25
26
27
28

16
17
20

22
23
24

26
27
30
31
32
33
34

O 00U B LR O~ .

A e e

56
57
60
61
62
63

65
66
67
70
1A
72
73
14

30
3
32
33
34
35
36
37
38
39
3A
3B
3C

N RELCHJU IO VO Z

78
79
80
81

83
84
85
86
87
38
89
90
91
92

116
117
120
121
122
123
124
125
126
127
130
131
132
133
134

4E

50
51
32
53
54
55
56
57
58
59
S5A
5B

e NY XN E <~ g0 O

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

156
157
160
161
162
163

165
166
167
170
171
172
173
174

Cortland Workshop C Pocket Reference : . &6

gs 29 35 1D = 61 75 3D] 93 135 35D) 125 175 7D
s 30 36 1IE > 62 76 3E A 94 136 SE - 126 176 7E
ws 31 37 IF ? 63 77 3F - 95 137 SF del 127 177 F

Char Dec Oct Hex Char Dec Oct Hex Char Dec Oct Hex Char Dec Oct Hex

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14

