Documentation Développeurs
Apple Computer France 1987

Document développeur numéro 26

Programming the ﬂf@

type d'upgrade de ce ducument : 3

1 Documentation de premiére catégorie inchangée

2 Documentation de deuxieme catégorie mise a jour

3 Documentation de deuxiéme catégorie inchangée

4 Mise a jour payante de la documentation de premiére categone
5 Mise a jour gratuite de la documentation de premiére catégorie
6 Nouveautés payantes non vitales

7 Nouveautés gratuites et vitales

Taille : 50 page(s) environ

Domaine : 816

VERSION :
DATE :1.08.85

o

Programming the 65816

@ 1985 J. Jatczynski Consulting e 1985 Apble Computer, Inc.

Yy

- -GOALS

® Provide enough information about the overall architecture, interrupts,
addressing modes, instruction set, and programming techniques to
enable you to write significant application and system programs in

65816 native mode assembly language.

® Provide the foundation for a future class on machine level details of the
Apple /7/-16. '

- & Stimulate discussion about "good” and “bad" programming techniques
" for the 65816. .

[t e
& 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

. OMISSIONS

The course does not cover any of the following:

® Emulation mode operation of the 65816 (it works like a 6502, and |
assume everyone already knows how to program a 6502).

® Apple //-16 machine details such as soft switches, memory layout,
control registers, etc. (these will be the subject of a followon course
to be given when details are 99 44/100% firmed up).

's Hands-on prbgramming (no time, not enough machines).

4 1985 James Jatczynski Consulting © 1985 Apple Computer, Inc.

8:30
Introduction, history, features

Basic architecture (registers/memory)
Operational modes

Interrupts

10:00 [
10:15 B

Addressing modes

12:00 =

“L.unch Break

1:30 f=

Instruction set
Timing

3.00 s
315 F=

Programming techniques
Unusual features/anomalies

S:00

4D 1985 James Jatczynski Consulting ® 198S Apple Computer, Inc.

3y

_ 65XXX FAMILY RELATIONSHIPS

- Characteristic 6302 65C02 65C802 | 65C816
Year available 1975 1983 1985 1985
Technology NMOS CMOS - CMOS CMOS
ALU width (bits) 8 8 16 16
Address bus width (bits) 16 16 16 24%
Data bus width (bits) 8 8 8 8
Maximum memory size (by) 64 K 64 K 64 K 16 M
Maximum stack size (by) 256 256 64 K 64 K
Number of defined opcodes 151 178 236 236
Number of addressing modes 13 13 24 24
Relocatable zero page? No No Yes Ye?
Software compatible w/ 65027 Yes Almost Yes Yes
Pin compatible w/ 65027 Yes Yes Yes No
Fast block move instructions? No No Yes Yes
* Note: Upper 8 bits of address bus are muitiplexed on data bus.

L

__» 198S James Jatczynski Consulting ® 198S Apple Computer, Inc.

™

_ 6502/65C02/65816 REGISTERS

6502/65C02 | 65816
7 0 i 15 87 0
: AorC
Accumulator A AHorB | AL or A

X Index Register X XH >|(XL
. Y
Y Index Register Y E YH | yL
: 23 16 J
~ JataBank Register . | DBR
) PRI SO AR S
Stack Pointer |01l S 00 en] sL
j . . AT D
Direct Register ;|00 DH | DL
15 8
PC i PC
Program Counter PCH | PCL PBR PCH | PCL
PBR=Program Bank Register
Status Register P P

4 198S James Jatczynski Consulting © 198S Apple Computer, Inc.

- 65816 MEMORY

(Not to scale)
64 Kby 64 Kby 64 Kby
$OOFFFF |::interrupti:] $OIFFFF $FFFFFF
[Veotors:
Stack grows from high J|:iiinifiin
eadresses toward low SH Uniform Uniform
addresses; may take up to |}:
; SEEEEEH SEES RAM or ROM RAM or ROM
) 64 Kby in Bank $00 1 Stack |
S Register <————h5:5' ’ * B
(Top of Steck) |
[]
Direct (Zero) Page and
Stack can reside only in
Bank $00
Note: one cycle penalty
when Direct Page is not
page aligned (i.e. DL=0)
D Register DirectPoge.
'(Base of Zero Page)
$000000 $010000 $FFO000
Bank $01 Bank $FF

Bank $00

—© 1985 Jsmes Jatczynski Consulting © 1985 Apple Computer, Inc.

N

. REGISTER DESCRIPTIONS

ACCUMULATOR-A

® Stores one operand and result of most arithmetic/logical operations

® 16 bits wide when e=0 and m=0
@ 8 bits wide whene=1 or whene=0 and m=1
® XBA (SWA) instruction eXchanges upper and lower halves of 16-bit

accumulator

INDEX REGISTERS-X, Y

® Generally provide index values for effective address calculatign
® Hold operands for a restricted set of arithmetic/logical operations

® |6 bits wide when e=0 and x=0
8 8 bits wide when e=1 or when e=0 and x=1

DATA BANK REGISTER-DBR

® Provides the upper 8 bits of effective address in addressing modes
that otherwise generate only the lower 16 bits—e.g. absolute

STACK POINTER-S

® Indicates the next available location on the stack
® Pushes decrease the value in S; pops increase it
@ Used in formulation of effective address for stack-relative addressing

modes | | |
® Used to store context for subroutine calls and interrupts

—© 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

Ty

. REGISTER EXPLANATIONS

DIRECT-D

e "Reloéates” direct page (zero page) anywhere in Bank $00
® Thus, affects all addressing modes containing "direct” references
® One cycle timing penalty on all direct references when direct page is

not aligned on a page boundary (i.e. DL0)

~?ROGRAM BANK REGISTER-PBR

® Normally serves as the upper 8 bits of the 24-bit address of the next

instruction
® Used in conjunction with the PC to provide a full 24-bit instrucfion

address \
® But, when the PC is incremented, there is no carry from the high bit of

the PC into the low bit of the PBR
® Also provides the high byte of the effective address for certain

addressing modes

- "ROGRAM COUNTER-PC

& Holds the low order 16 bits of the 24-bit address of the next

instruction
® Used in conjunction with the PBR to provide a full 24-bit instruction

address
@ Carry out of high bit is not propagated into the PBR

PROCESSOR STATUS-P

® Contains status flags and mode select bits

.9 1985 James Jatczynski Consulting ® 1985 Applé Computer, Inc.

P

R (STATUS AND CONTROL) REGISTER-6502/65C02 EMULATION MODE

(o)

I(_n<

[N

o

E

O

L Carry

=0 Carry did not occur

=] Carry occurred

Zero

=0 Result not zero

=] Result zero

IRQ Disable ‘
=0 |RQ enabled e
=1 |RQ disabled

Decimal Mode

=0 Binary Mode

- =1 Decimal Mode

Break

=0 |[nterrupt was not a Break
=1 Interrupt was a Break
Overflow

=0 Overflow did not occur

=1 Overflow occurred
Negative

=0 Result was not negative
=] Result was negative

TR

—© 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

o

- §P (ST ATUS AND CONTROL) REGISTER-65816 NATIVE MODE

NIY M| X | D1]2Z2]C

l— Carry

=0 Carry did not occur

=1 Carry occurred

Zero

=0 Result not zero

=] Result zero

IRQ Disable

=0 |RQ enabled .)
=1 |RQ disabled

Decimal Mode

=0 Binary Mode

=] Decimal Mode.

Index Register Select

=0 Index registers are 16 bits
=1 Index registers are 8 bits
Memory/Accumulator Select
; =0 Memory/Accumulator references
are 16 bits

=] Memory/Accumulator references
are 8 bits
Overflow

=0 Overflow did not occur
=] Overflow occurred
Negative Result

=0 Result was not negative
=1 Result was negative

D 1985 James Jatczynski Consulting © 1985 Apple Computer, Inc.

Pt X

7

- 65816 PROCESSOR MODES

- EMULATION MODE—(e=1)

8 Executes all 6502 instructions exactly like a 6502, including
cycle-by-cycle bus contents. FROM THE SOFTWARE STANDPOINT, IT IS

A 6502 (with some additional instructions).

® Executes all additional 65C02 instructions exactly like a 65C02,
including cycle-by-cycle bus contents.

‘. Executes new 65816 instructions, including new addressing modes and
24-bit addressing. However, many instructions don't make sense (e.g.

MYN, MYP).

NATIYE MODE AND YARIANTS—-(e=0)

® Implements the full 65816 architecture including 16 Mby address space
and full set of registers (A, X, Y, DBR, S, D, PBR, PC, P).

® "Full native mode"—(e=0, m=0, x=0): Accumulator, index registers, and
memory references are all 16 bits.

~ ® "Mixed native modes"~(e=0 but m=1 or x=1 or both): restricts
accumulator/memory and/or index register/memory references to

8 bits.

~1® 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

'EFFECT OF m AND z BIT CHANGES ON REGISTERS

® Switchmbit from 8 to 16 bits or from 16 to 8 bits:
No effect on AH (B) or AL (A)
In 8 bit mode, AH (B) is accessible via XBA

Even in 8 bit mode, instructions that transfer A register-e.g. TCS-always
move 16 bits

® Switch x bit from 16 to 8 bits
XH and YH set to zero—old contents lost
® Switch x bit from 8 to 16 bits . |

XH=00, XL unchanged, YH=00, YL unchanged

‘ /@ 1985 James Jatczynski Consulting ® 1985 Apple Compuier, Inc.

~ DANGER-PROCESSOR MODES

OBSERYATIONS

@ Some instructions perform exactly the same operafion no matter how the
e, m, and x control bits are set. For example, PEl always pushes two bytes
from zero page onto the stack.

® Some instructions operate sensibly only in native mode. For example,
MYN and MYP use the 16 bit A, X, and Y registers to specify operands, so
~ they don't work in other than full native mode.

@ Some instructions change their native mode operation depending on the
values of the m and/or x bits. For example, LDX # loads a 1-byte value if
x=1and a 2-byte value if x=0. LDA # loads a 1-byte value if m=1 and a
2-byte value if m=0. 3

» Some instructions that you would expect to be affected by the m and x
bit settings are not. For example, TCS and TSC always transfer 16 bits.

SUGGESTIONS

D Mixed native modes (m=1 or x=1 or both) may be dangerous to your
sanity and the sanity of those who call the procedures you write. Try to
use either emulation mode or full native mode. Try to restrict use of
m=1 or x=1 to short code sequences. Assume that m=0, x=0 are the
standard native mode settings, and always restore these values if you
change them.

® There are few reasons for setting m=1 and/or x=1 in native mode. Almost
any algorithm will be faster if it manipulates words rather than bytes.

9 19885 James Jstczynski Consulting ® 1985 Apple Computer, Inc.

P

 CLASSIFICATION OF INTERRUPTS

Software Interrupts—Instructions in the normal instruction stream
BRK-BReaK
COP-"COProcessor” interrupt

Hardware Interrupts—External signals
IRQ-Interrupt ReQuest
NMI-Non-Maskable Interrupt
ABORT-ABORT instruction such that it can be restarted
RESET—-RESET the processor into its initial state

ﬁ) 198S James Jatczynski Consulting ® 1985 Apple Computer, Inc.

Y

. INTERRUPT PROCESSING

: START
Native Mode (SIRT)

Emulation Mode

Push PBR
onto Stack| Both Modes
Push PCH
onto Stack
Push PCL
onto Stack
i
Push P Push P For BRK, P[4]=
anto Stack onto Stack| For IRQ, P{4]=C

Set d=0 | Binary mode
Set i=1 Disable IRQ

Read

) interrupt
| vector

VWV

Resume
execution
at $00vvvv

Timing:

Emulation mode: 7 cycles
Native mode: 8 cycles

Note: ABORT pushes address of
aborted instruction onto
stack rather than address
of next instruction.

D 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

™

p INTERRUPT VECTOR LOCATIONS

INTERRUPT YECTOR LOCATIONS

Location Interrupt

OOFFFE,F BRK and IRQ (emulation)
OOFFFC,D RESET (emulation and native)
OOFFFA,B NMI (emulation)
OOFFF8,9 ABORT (emulation)
OOFFF6,7 = :
OOFFF4,5 COP (emulation)
OOFFF2,3 -

OOFFFOQ,1 -

OOFFEE,F IRQ (native)

OOFFEC,D =

OOFFEA,B NMI (native)

OOFFE8,9 ABORT (native)
OOFFE6,7 BRK (native)

OOFFE4,5 COP (native)

D 198S James Jatczynski Consulting ® 198S Apple Computer, Inc.

Py

k)

/PRCI:ESSOR STATE AFTER RESET

If the "RES pin is held low for at least two clock cycles after VDD reaches operating
voltage, the processor performs an initialization sequence which sets the registers,

status bits, and control bits as follows:

. Initial
Register Value
'XH $00
YH $00
DB $00
D $0000
SH $01
PB $00
Control Initial Meaning
Bit Value '
e 1 Emulation mode
m 1 Always true for e=1
b, x 1 Break command
d o) Binary mode
i I IRQ disabled

‘The remaining registers, status, and control bits are undefined on reset.

«@ 1985 James Jatczynski Consulting ® 198S Apple Computer, Inc.

'INTRAFAMILY COMPATIBILITY ISSUES

Issue

63802/63816

65C02

6302

Status and control
bits in P register

n, v, z flags valid
in decimal mode

n, v, z flags valid
in decimal mode

n, v, z flags invalid
in decimal mode

O->d on reset or

O->d on reset or

reset: dundefined

interrupt interrupt interrupt: d unchg.

Read/Modify/Write

3,X N0 page Cross | 7 cycles 6 cycles 7 cycles

Wwrite last 2 cycles last cycle last two cycles

Memory Lock last 3 cycles [rmw] last 2 cycles [mw] | not available
Jump indirect

Cycles S cycles 6 cycles S cycles

Operand=XXFF Correct Correct Invalid page cross

Branch or index

Read last program

Read last program

Read Invalid J

across page bound | pyte byte address
Execution time for| 4 cycles (e=1) 4 cycles 4 cycles

such a branch 3 cycles (e=0)

Decimal mode ADC | No added cycles Add 1 cycle No added cycles

and SBC

Unused opcodes

Only one, WDM,
is a no-op

All are no-ops

Undefined—some
hang processor:

_/© 1985 James Jatczynski Consulting © 1985 Apple Compu'ter, Inc.

~ ""\\

- ADDRESSING MODE DESCRIPTION

[1] IMMEDIATE-#

opcode

data

opcode

datal

datah

e=1 or e=0 and m/x=1

e=0 and m/x=0

The 8-bit or 16-bit operand is taken from the instruction.

Examples:

LDA *3E1
LDX *$FFFE

& 1985 Jsmes Jatczynski Consulting

® 1985 Apple Computer, Inc.

. ADDRESSING MODE DESCRIPTION

[2] ABSOLUTE-a

Instruction

opcode addrl addrh

Operand Address (data reference)

(DBR) addrh addrl

Operand Address (JMP or JSR)

(PBR) addrh addrl

Examples:
~ LDA LOCA

LDA ILOCB
JMP |DEST

_® 1985 James Jatczynski Consulting © 1985 Apple Computer, Inc.

- ADDRESSING MODE DESCRIPTION

[3] ABSOLUTE LONG-al

Instruction

dpcode

addrl

addrh

baddr

Operand Address

baddr

addrh

addrl

Examples:

AND LOC
AND >LOC

\ﬁ 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

P

o EADDRFSSING MODE DESCRIPTION

[4] DIRECT-d
Instruction
opcode offset
Operand Address
|
D REGISTER
|
+ offset
= 00 eaddrh eaddr!
77777 Examples:
EORLOC
EOR <LOC

= j@) 1985 James Jatczynski Consulting © 198S Apple Computer, Inc.

P\

ADDRESSING MODE DESCRIPTION

[S] ACCUMULATOR-A

instruction

opcode

The operand is the accumulator.

Examples:
ASL A
INC A
[6] IMPLIED-i
Instruction
opcode

The operand is implied by the instruction.

Examples:

DEY
INX

SEC
TAY

~© 1985 James Jatczynsk i Consulting ® 1 985 Apple Computer, Inc.

Va "'”\

ADDRESSING MODE DESCRIPTION

[7] DIRECT INDIRECT INDEXED-(d),y

Instruction

opcode offset

Operand Address

T
D ,REGII STER
+ offset
|
= 00 DIRECT ADDRESS
|
5 I
then: (DBR) (DIRECT ADDRESS)
I

[
+(24)] Y INDEX 'REGISTER

= eaddrb eaddrh eaddrl

Examples:

LDA (LOC),Y
LDA (<LOC),Y

~7® 1985 James Jatczynski Consulting © 198S Apple Computer, Inc.

Pl

h)

 ADDRESSING MODE DESCRIPTION

[8] DIRECT INDIRECT LONG INDEXED-[d],y

Instruction

opcode offset

Operand Address

[
D REGll STER

+ offset

|
= 00 DIRECT ADDRESS
|

l T
) then: (DIRECT ADDRESS)
o | |

{
+(24)] Y INDEX lREGIS”I’ER

= eaddrb eaddrh eaddrl

Examples:

LDA [LOCLY
LDA [<LOC]Y

& 1985 Jsmes Jatczynski Consulting © 1985 Apple Computer, Inc.

L

™

- ”ADDRESSING MODE DESCRIPTION

[9] DIRECT INDEXED INDIRECT-(d,x)

Instruction

opcode offset

Operand Address

|
D REGII STER |
+ offset

]

+ X REGISTER
]
) T

= 00 ADDRESS

- . l
[

then: (DBR) (ADDFI?(ESS)‘

Examples:

LDA (LOC,X)
LDA (<LOC,X)

-4® 1985 James Jatczynski Consulting @ 1985 Apple Computer, Inc.

P

A

ADDRESSING MODE DESCRIPTION

[10] DIRECT INDEXED WITH X-d,x
[11] DIRECT INDEXED WITH Y-d,y

]

Examples:

LDA LOC,X
LDA <LOC,X
LDA LOC,Y
LDA <LOC,Y

Instruction

opcode offset

Operand Address

r
D REGISTER
|

+ offset

|
X REGISTER
|

00

|
ADD?ESS

Note:
Mode 10 uses X REGISTER
Mode 11 uses Y REGISTER

© 1985 James Jatczynski Consulting © 1985 Apple Computer, Inc.

Py

\
 ADDRESSING MODE DESCRIPTION

[12] ABSOLUTE INDEXED WITH X-a,x
[14] ABSOLUTE INDEXED WITH Y-a,y

instruction -
opcode addrl addrh
Operand Address
addrh addrl
|
+ X REGISTER
|
= (DBR) eaddrh eaddrl

Examples:

LDA LOC,X
LDA |LOC,X
LDA LOC,Y
LDA ILOC,Y

Note:
Mode 12 uses X REGISTER
Mode 14 uses Y REGISTER

_/®© 1985 James Jatczynski Consulting © 1985 Apple Computer, Inc.

S

- iﬁ.DDRESSING MODE DESCRIPTION

[13] ABSOLUTE LONG INDEXED WITH X-al,x

Instruction

opcode

addrl

addrh

baddr

Examples:

LDA LOC,X
LDA >LOC,X

Operand Address

baddr addrh ~addrl
|
+(24) X REGISTER
|
baddr eaddrh eaddrli

| _» 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

,.M\\%

7

ADDRESSING MODE DESCRIPTION

[15] PROGRAM COUNTER RELATIYE-r

Instruction

opcode offset

Operand Address

i y

+ offset

(PBR) eaddrh eaddrl

~ Dffset is a two's complement number which is added to the contents of the PC, which
“have been updated to point to the opcode of the next instruction.

Examples:

BCC BLAH
BRA START

...... 9 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

P

N

ADDRFSSING MODE DESCRIPTION

[16] PROGRAM COUNTER RELATIYE LONG-r1

Instruction

opcode offsetl offseth

Operand Address

|
PC !

] =

+ offseth offsetl

(PBR) eaddrh eaddri

; "jrset Is a two's complement number which is added to the contents of the PC, which
‘have been updated to point to the opcode of the next instruction.

Examples:

BRL DEST
PER ENTRY

.~ 198S James Jatczynski Consulting ® 1985 Apple Computer, Inc.

. ~VYADDRESSING MODE DESCRIPTION

[17] ABSOLUTE INDIRECT~(a)

Instruction
opcode addri addrh
Indirect Address = 00 addrh addrl

Then:

for JMP (3): (PBR)

i
(Indirect Address)

| |
for JML (2): (Indirect Address)

~» Mode 17 really constitutes two addressing modes, one used only by the instruction
JMP (a) and one used only by the instruction JML (2). In the former case, the contents
of the indirectly addressed location contain two bytes, and the PBR value remains
unchanged. In the latter case, the indirectly addressed location contains all three

bytes of the destination address.

Examples:

JMP (LOC)
JML (ILOC)

J@ 198S James Jatczynski Consulting ® 1985 Apple Computer, Inc.

Y

kY

sADDRESSING MODE DESCRIPTION

[18] DIRECT INDIRECT—(d)

Instruction

opcode offset

Operand Address

l
DIRECT FTEGI STER

+ offset
|
= 00 direct address
|
|
Then: (DBR) (direct address)
|

Examples:

LDA (LOC)
LDA (<LOC)

~© 1985 James Jatczynski Consulting © 198S Apple Computer, Inc.

PN

/ADDRESSING MODE DESCRIPTION

{19] DIRECT INDIRECT LONG-[d]

Instruction

opcode offset

Operand Address

l
DIRECT REGISTER
|

+ offset

|
= 00 direct address
]

| |
Then: (direct address)
[|

Examples:

LDA [LOC]
LDA [<LOC]

D 1985 James Jatczynski Consulting © 198S Apple Computer, Inc.

'

| ADDRESSING MODE DESCRIPTION

[20] ABSOLUTE INDEXED INDIRECT—(a,x)

" Instruction

opcode addri addrh

Effective Address

addrh addri

l
+ X INDEX REGISTER
]

I
Indirect address = (PBR) address
|
|
Then: (PBR) (Indirect address)
|
Examples:

JMP (DEST,X)
JSR (IDEST,X)

s 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

£ m“é

ADDRESSING MODE DESCRIPTION

[21] STACK-s

Stack addressing actually refers to a number of distinct addressing modes, each of
which uses the stack somehow.

Instruction(s) | Operation

Hardware Interrupts push PBR, PCH, PCL, and P onto the stack
interrupts IRQ,

NMI, ABORT,

RES

Software These interrupts push PBR, PCH, PCL, and P onto the stacr
interrupts : it
BRK, COP <

RTI Pulls P, PCL, PCH, and PBR from the stack

RTS Pulls PCL and PCH from the stack

RTL Pulls PCL, PCH, and PBR from the stack

Register push Push register contents onto the stack or pull top of stack
and pull element(s) into register

instructions | :

PEI Push a word of direct (zero) page onto the stack

PEA Push third and second bytes of instruction onto the stack.

This is really a "push immediate" instruction.

| PER Push onto the stack the value obtained by adding the PC to
the contents of bytes 3 and 2 of the instruction

9 1985 James Jatczynski Consulting ®© 1985 Apple Computer, Inc.

" N

}ADDRESSING MODE DESCRIPTION

[22] STACK RELATIYE-d,s

Instruction

opcode offset

Operand Address

|
S REGISTER
|
+ offset
= 00 eaddrh eaddrl

Examples:

EOR $10,S
LDA <LOC,S

S 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

- - ADDRESSING MODE DESCRIPTION

[23] STACK RELATIYE INDIRECT INDEXED—-(d,s),y

Instruction

opcode offset

Operand Address

|

S REGISTER
|

+ offset
[
= 00 S+offset

|
. |

Then: (DBR) (S+offset)
|

I
+ Y INDEX REGISTER
' L

eaddrb eaddrh eaddrl

Examples:

ORA (LOC,3S),Y
ORA (<LOC,S),Y

“© 1985 James Jatczynski Consulting ®© 1985 Apple Computer, Inc.

,”“‘ﬂ‘

~ ADDRESSING MODE DESCRIPTION

[24] BLOCK MOYE-xyc

Instruction

opcode dstbnk srcbnk

dstbnk -> DBR

[

Source: srcbnk X INDEX REGISTER
1
|

Destination: DBR Y INDEX REGISTER
l
{

Count: Accumulator

|

——

—® 1 98S James Jatczynski Consulting ® 1985 Apple Computer, Inc.

'

- SUMMARY OF TIME AND STORAGE FOR EACH ADDRESSING MODE

Time (cycles)

Program Memory (by)

Address Mode . '
' 6502 65C816 6502 65C816
1. Immediate 2 2(3) 2 2(3)
2. Absolute 4(5) 4(3,9) 3 3
3. Absolute Long - S (3 - 4
4. Direct 3(9) 3(3,4,9) 2 2
S. Accumulator 2 2 1 I
6. Implied 2 2] |
7. Direct indirect Indexed S(1) 5(1,3,9 2 2
8. Direct Indirect Indexed Long - 6 (3,4) - 2
9. Direct Indexed Indirect 6 6 (3,4) 2 2
10. Direct Indexed with X 4(5) 4(3,4,5) 2 2;
11. Direct Indexed withY 4 4(3,9) 2 Z
12. Absolute Indexed with X 4(1,5) | 4(1,3,5) 3 3
13. Absolute Long Indexed X - S(3) - 4
14. Absolute Indexed with'Y 4(1) 4(1,3) 3 3
1S. Relative 2(1,2) 2(2) 2 2
16. Relative Long - 3(2) - 3
17. Absolute Indirect S S 3 3
18. Direct Indirect - S (3,9) - 2
19. Direct Indirect Long - 6 (3,4) - 2
20. Absolute Indexed Indirect - 6 - 3
21. Stack 3-7 3-8 1-3 1-4
22. Stack Relative - 4(3) - 2
23. Stack Rel Indirect Indexed - 7 (3) - 2
24. Block Move - 7 - 3

1. Page boundary: add 1 cycle if page boundary is crossed when forming address

2. Branch taken: add 1 cycle if branch is taken

3. m=0 or x=0, 16-bit operation: add 1 cycle, add 1 byte for immediate
4.DL=0: add 1 cycle '
S. Read-Modity-Write: add 2 cycles for m=1 and 3 cycles for m=0

9 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

M

- -~ RECOMMENDED 65816 ASSEMBLY LANGUAGE STANDARDS

e Refer to Western Design Center Data Sheet, pp. 17-18

e Byte selection of one or two bytes in immediate operands:

*$01020304

*¢$01020304

*>$01020304
*°$01020304

04 (one byte) | 0304 (two bytes)

04 0304
03 0203
02 0102

® Forcing a specific address mode in an ambiguous situation:

< expression
| expression
> expression

forces direct (1 byte) addressing
forces absolute (2 byte) addressing
forces long absolute (3 byte) addressing

® When the mode is not forced and the context is ambiguous, the assembler will assume
absolute (2 byte) addressing

® Long indirect addresses are indicated by square brackets—e.g. [d],y

e For MVN and MVP, the first operand is the source bank, and the second operand is the

destination bank (contrary to the order of the object code bytes)
® There is a list of acceptable addressv mode formats on WDC p. 18

e There are several recommended mnemonic aliases. In each case, the

leftmost mnemonic is considered standard:

BCC=BLT
BCS = BGE
CMP = CMA
DEC A =DEA
INC A = INA
JSL= JSR
JML = UMP

TCD = TAD
TCS =TAS
TDC = TDA
TSC = TSA
XBA = SWA

~® 1985 James Jatczynski Consulting © 198S Apple Computer, Inc.

~ BIG EIGHT DATA MANIPULATION INSTRUCTIONS

INSTRUCTION

MNEM- .
CLASS ONIC FUNCTION FUNCTION
DATA LDA W =>A LoaD Accumulator
MOVEMENT STA A-=>W STore Accumulator
ARITHMETIC ADC A+W+C => A ADd with Carry
SBC A-W-"Cc => A SuBtract with Carry
ARITHMETIC CMP A - W (set CCs)| CoMPare
COMPARISON
LOGICAL AND A&W => A Logical AND
EOR AXORW-=>A Exclusive OR
ORA AlW-=>A Logical OR (accumulator)

i

Each of these instructions has the following 15 address modes, except STA
which omits the immediate mode (*). This yields 119 distinct opcodes.

t 3

a
al
d
(d),y
(dly
(d,x)
d,x
a,X
al,x
a,y
(d)
[d]
d,s
(d,s),y

Immediate
Absolute
Absolute Long
Direct

Direct Indirect Indexed
Direct Indirect Indexed Long
Direct Indexed Indirect
Direct Indexed with X

Absolute Indexed with X
Absolute Long Indexed with X
Absolute Indexed withY

Direct Indirect

Direct Indirect Long

Stack Relative

Stack Relative Indirect Indexed

?

D 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

e,

~SHIFTS AND ROTATES

ROL | —{Je—

c 15 0
ASL [J— 0 Arithmetic Shift Left
C
LSR o—»] | Logical Shift Right
c

ROtate Left

ROR l—-ﬁ

ROtate Right B

Each of these instructions has the following S address modes, yielding 20

distinct opcodes.

d,x

a,Xx

Accumulator

Direct

Direct Indexed with X
Absolute

Absolute Indexed with X

~® 1985 James Jatczynski Consulting ©® 1985 Apple Computer, Inc.

.

,’\\‘

INCREMENT AND DECREMENT ACCUMULATOR

INC INCrement accumulator
DEC DECrement accumulator

Each of these instructions has the following S addressing modes, yielding 10
distinct opcodes.

a Absolute

d Direct

A Accumulator
d,x Direct Indexed with X
a,X Absolute Indexed with X ‘

‘é 198S James Jatczynski Consulting ®© 198S Apple Computer, Inc.

A \’i

, \:INDEX REGISTER MANIPULATION

INSTRUCTION MNEM- ‘
CLASS ONIC FUNCTION FUNCTION ADDRESS MODES
DATA LDX W => X LoaD X * a d dy ay
MOVEMENT LDY W=>Y LoaD Y * a d dx ax
STX X => W STore X a d dy
STY Y -> W STore Y a d d4dx
ARITHMETIC CPX X - W (set CC) | ComPare X * a d
COMPARISON CPY Y - W(set CC) | ComPare Y * a3 d
INCREMENT/ DEX X=-1=>X DEcrement X i
DECREMENT DEY Y-1=>Y DEcrement Y i
INX X+1-=>X INcrement X 1
INY Y+ 1 =Y INcrement Y i

e

These instructions, in combination with their addressing modes, yleld 26 distinct

opcodes.

__D 1985 James Jatczynski Consulting © 1985 Apple Computer, Inc.

N

H

- BIT TEST INSTRUCT ION AND STORE ZERO INSTRUCTION

BIT TEST-BIT
Function: 1) A& W
2) Wbit 15S->n
3) Whbit 14— v
4) z set according to result of A & W

Note: When immediate address mode is used, n and v are not set as
shown above.

Address modes: * a d d,x a,x

STORE ZERO-STZ
Function: Store zero at the addressed location.

Addressmodes: a d d,x a,x

“® 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

iQEGIS'TER PUSHES /PULLS AND REGISTER-REGISTER TRANSFERS

REGISTER PUSHES AND PULLS

Register| , Push Pull

(cycles) | (cycles)
A PHA(4) | PLA(S)
X PHX (4) PLX (5)
Y PHY (4) PLY (3)
DB PHB (3) PLB (4)

S - -
D PHD (4) PLD ()

PB PHK (3) -

PC - -
P PHP (3) PLP (4)

REGISTER-REGISTER TRANSFERS

Source Destination Register
Regist
egister . y y S 5
A XBA* TAX TAY TCS (TAS) | TCD (TAD)
X TXA - TXY TXS =
Y TYA TYX - - -
S TSC (TSA) TSX - - -
D TDC (TDA) - - - -
All register-register transfers take 2 cycles, except XBA, which
takes 3 cycles..

* Swaps the upper and lower bytes of the accumulator

! 98S James Jatczynski Consulting @© 1985 Apple Computer, Inc.

,/"""N\,;

, ;;‘SPECIAL PUSH INSTRUCTIONS: PEA, PEI, PER

PEA-Push Effective Absolute Address onto Stack
(Should be called "Push Immediate Data onto Stack”)

opcode datal datah

1) Push third byte of instruction (datah) onto stack
2) Push second byte of instruction (datal) onto stack

Time: S cycles

PEI-Push Effective Indirect Address onto Stack
(Should be called "Push Zero Page Word onto Stack”)

opcode offset

1) eaddr = (D Register) + offset
2) push contents of location eaddr+1 onto stack
3) push contents of location eaddr onto stack

Time: 6 cycles (DL=0)
7 cycles (DL=0)

PER-Push Effective Program Counter Relative Address onto Stack
opcode offsetl offseth

1) Let offset = offseth concatenated with offset]
2) value = (Program Counter) + offset

3) push high order byte of value onto stack

4) push low order byte of value onto stack

Time: 6 cycles

5 1985 James Jatczynski Consulting ®© 198S Apple Computer, Inc.

e

- .TRB, TSB

Mnemonic Function Function

TRB Test and Reset Bit | “A&W —> W; set z on result of A&W

TSB Test and Set Bit AlW => W; set z on result of A&W

Note: the Memory Lock (ML) signal is active during the entire read-
modify-write phase of these instructions.

Addressing modes: d a

Example:

TRB LOC
TSB <LOC

45 1985 James Jatezynski Consulting ® 1985 Apple Computer, Inc.

PN

ST ATUS REGISTER MANIPULATION INSTRUCTIONS

INDIVIDUAL BIT SETS AND CLEARS

Carry Decimal Di*l.-‘g?)l e Overflow
Set SEC SED SEI -
Clear CLC CLD CLI CLV
All of these instructions take 2 cycles.

SET AND RESET STATUS BITS INSTRUCTIONS |
Mnemonic Function | Function

REP Reset processor status bits P&-B->P

SEP Set processor status bits PvB->P
These Instructions take 3 cycles.

/
/

XCE-EXCHANGE CARRY AND STATUS BITS

This instruction is used to switch the processor between native mode and emulation
mode. To switch into native mode, set ¢ to O and execute XCE. To switch to
emulation mode, set c to 1 and execute XCE. Whenever e is set to 1, certain register:
and status bits are set to the indicated states:

XH=0 YH=0 SH=1 m=1 x=1

@ 1985 James Jatczynski Consulting @© 198S Apple Computer, Inc.

)
. BLOCK MOVES: MVN AND MVP

MVN MVP
High High <_Dest1nat10n
F Source Addr‘eSS
Source
&1 |IDestination RS RERE S Address
«— Source .1l Destination
Address
Destination ¥__||Source
Low Address Low

Arrows indicate order in which bytes are copied

, destination source
Instruction format opcode bank bank

Instruction setup

X Register—Low order 16 bits of source address
Y Register—Low order 16 bits of destination address
C Register—Number of bytes to move less 1

Restrictions

Neither source nor destination block may straddie bank boundary
Maximum block size: 65,536 bytes

Side effects

Previous contents of DBR are replaced by destination bank number
Timing: 7 cycles per byte

Approximate time to move 64Kby in //-16: 164 ms

5 1985 James Jatczynski Consulting @© 1985 Apple Computer, Inc.

A

_ BRANCH INSTRUCTIONS

. : Condition
Mnemonic Function Code
BCC Branch Carry Clear c=0
BCS Branch Carry Set c=1
BEQ Branch EQual (zero) z=1
BMI Branch Minus n=1
BNE Branch Not Equal (zero) z=0
BPL Branch PLus n=0
BVvC Branch oVerflow Clear v=0
BVS Branch oVerflow Set v=1
BRA BRanch Always (unconditional)
BRL BRanch (always) Long |(unconditional) ’
Timing:
2 cycles—-branch not taken
3 cycles-branch taken (most cases)
4 cycles—~in emulation mode (e=1), branch taken
across page boundary

All Instructions except BRL consist of an opcode followed by a one-byte
offset that represents a two's complement number in the range -128...127.
If the branch is taken, this value is added to the Program Counter, which
by this time, points to the opcode of the next sequential instruction.

BRL consists of the opcode followed by a two-byte offset that represents
a two's complement number in the range -32,768..32767. As for the other
Instructions, this value is added to the Program Counter.

~® 1985 James Jatczynski Consulting © 1985 Apple Computer, Inc.

o "“\J

JUMP, SUBROUTINE]UMP AND RETURN INSTRUCTIONS

. . Time Size
Mnemonic Function (cycles) (bytes)
“JMPa | JuMP 3 3
JMP al JuMP 4 4
JMP (a) JUMP S 3
JML (a) | JuMp Long 6 3
JMP (a,x) | JuMP 6 3
JSR a Jump to SubRoutine 6 3
JSL al Jump to SubRoutine Long 8 4
JSR (a,x) | Jump to SubRoutine & 3
RTS ReTurn from Subroutine 6 1
RTL ReTurn from subroutine Long 6 !
Note:

JSR a2 and JSR (3,x) push PC onto the stack.

RTS should be used to return from JSR a and JSR (a,x).
JSL al pushes PB and PC onto the stack.

RTL should be used to return from JSL al.

w’© 198S James Jatczynski Consulting ® 1985 Apple Computer, Inc.

Bank $00 PB ——— PC—m——

Figure 1. Effective Address Formation for JML (a)

AH AL JML
Another Bank
AH AL oF

PB
unchanged v
Bank $00 PB ——— PC———

Figure 2. Effective Address Formation for JMP a and JSR a

Another Bank

PB
unchanged v

Bank $00 PB ——— PC———

Figure 3. Effective Address Formation for JMP (a)

X Index Register

AH

AL

JMP

Another Bank

AH AL oF
D
H L
PB |
unchanged
Bank $00 PB ——— PC——— Another Bank

Figure 4. Effective Address Formation for JMP (a,x) and JSR (a,x)

oP

Bank $00 PB ——— PC———

Figure S. Effective Address Formation for JMP al and JSL al

Another Bank

~

BREAK AND COPROCESSOR INTERRUPTS

BRK and COP are software interrupts. The instruction format for both is:

opcode | signature

Each instruction initiates a standard interrupt sequence with the value of the
signature byte placed on the data bus during cycle 2. Each software interrupt
instruction has its own interrupt vector at the top of bank $00.

The state information saved on the stack, in the order that bytes are pushed,
consists of PBR, PCH, PCL, and P.

The P register is modified so that d=0 and i=1.

Time: 8 cycles it

D 1985 James Jatczynsk i Consulting | © 1985 Apple Computer, Inc.

~
RETURN FROM INTERRUPT

/
RTI-RETURN FROM INTERRUPT

1) Pull P from stack

2) Pull PCL from stack

3) Pull PCH from stack

4) Pull PBR from stack (only in native mode)

Time: 7 cycles

4D 1985 James Jatczynski Consulting @ 1985 Apple Computer, Inc.

. SPECIAL AND WEIRD INSTRUCTIONS

STP-STOP THE PROCESSOR

Stop the processor clock to reduce power consumption.
Requires a RESET interrupt to continue execution.

WAI-WAIT FOR INTERRPUT

wait for interrupt in a state that reduces power consumption and minimizes
interrupt latency.
' RDY line held low until interrupt occurs.

NOP-NO OPERATION

Don't do anything, but take 1 byte and 2 cycles not to do it. -

WDM-WILLIAM D. MENSCH RESERYED OPCODE

RESERVED FOR FUTURE EXPANSION OF OPCODE SET.

_® 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

A

jBASIC INSTRUCTION TIMING

[1] Instruction execution times are expressed in machine cycles.

[2] The duration of a cycle depends on several factors:
® System clock speed (e.g. IMHz vs high speed)
® Operations that cause cycle stretching (e.q. references to $CXXX space’

[3] Phoenix Apple // simulation mode:
8 ~ lus/cycle
® ~ | MHz cycle rate

[4] Phoenix high speed mode:
® ~ 385 ns/cycle

® ~ 26 MHz cycle rate
}

- [S1 QUICK AND DIRTY ESTIMATION OF INSTRUCTION EXECUTION TIME

~ ® Count 1 cycle for each byte in the instruction
~® Count 1 cycle for each byte of data fetched from memory

® Count 1 cycle for each byte of data written to memory

® For any addressing mode involving the direct register, count 1 cycle
if DL+0

® For most stack operations, add a cycle (used to adjust value of stack
pointer)

® NOTE THE MINIMUM EXECUTION TIME OF 2 CYCLES

® For exact timing, use the charts in the GTE and WDC data sheets

_® 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

N

TIMING WALKTHROUGH

CYCLE-BY-CYCLE TIMING—(d),y

Cycle VDA | VPA Ad;::SS DBautSa Comment
1 1 1 PBR,PC opcode | Fetch opcode
2 0] PBR,PC+1 DO Fetch direct offset (DO)
2a[2] 0 0 PBR,PC+1 10 Computer D+DO
3 1 o) 0,0+D0 AAL Get LSB of indirect addr.
. 4 1 0] 0,D+D0O+1 AAH Get MSB of indirect addr.
4a [4] 0 0 0,0+D0+1 10 Add index to indirect addr.
S 1 0] DBR,AA+Y |Data Low | Fetch LSB of data
Sa(1] 1 0 |DBR,AA+Y+1|Data High | Fetch MSB of data
[1] Cycle executed only for 16-bit operand fetch. |
[2] Cycle executed only for DL=0. =
[4] Cycle executed for indexing across page boundary or x=0.

NOTE DETAILED TIMING SPECIFICTIONS:

- ® WDC Data Sheet, pages 13, 15-16, 19, especially footnotes, page 16
® GTE Data Sheet, pages 13-16, expecially footnotes, page 13

NOTE WELL:

® ALL OF THE TIMING SPECIFICATIONS IN THE DATA SHEETS ARE
INCOMPLETE OR INCORRECT IN SOME WAY. THE MOST CORRECT

SPECIFICATION SEEMS TO BE THAT ON PAGES 15-16 IN THE WDC
DATA SHEET.

w@ 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

)

POSITION INDEPENDENT JUMPS

Unconditional Jumps

The absolute jump (UMP a) is obsolete because there is a long relative branch
(BRL r1) that can be used to pass control unconditionally to any location in the
current program bank.

The advantage of using BRL is that it is "position independent,” that is, it still
works properly even if the program is moved. '

BRL occupies 3 bytes and takes 3 cycles, just like JMP a.

Conditional Jumps

Short conditional jumps simply use the conditional branch instructioris, e.g.

BEQ BLAH

For more distant targets, reverse the branch condition and follow the reversed
branch with a BRL to the destination. To get the same effect as above with a
distant branch target, use:

BNE AROUND
BRL BLAH
AROUND

__J® 1985 James Jatczynski Consulting © 1985 Apple Computer, Inc.

P

o iDUSITION INDEPENDENT SUBROUTINE CALL

We can synthesize a position independent subroutine call to any location in the
current program bank. Consider the call-return sequence:

JSR SUBR
RETURN '

SUBR RTS

The position independent version is as follows:
PER RETURN-1-* .push return address-1
PER SUBR-1-%* ;push address of subroutine-1
RTS ;jump to the subroutine }
RETURN

SUBR RTS

PERFORMANCE COMPARISON

) Size Time
Version (bytes) | (cycles)
Standard 4 12 .
" | Position Independent 8 24

»@ 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

'”"‘%

- "POSITION INDEPENDENT™ DATA REFERENCES

8 Unnecessary to change code when data area is moved from one memory

location to another.

® Only a pointer to the base of the data area needs to be updated.

® Technique used in machine code produced by most high level languages.

DATAPTR DS 4 ~;pointer (on zero page) to data area
XOFFSET EQU O ;offset of X in data area

YOFFSET EQU 2 ;offset of Y in data area

ZOFFSET EQU 4 ;offset of Z in data area

;5et up data area pointer in BATAAREA J

;typically done by the code that handles a procedure call

LDA #PTRLOW
STA DATAPTR
LDA #PTRHIGH
STA DATAPTR+2

;add X to Y and put result in Z (16-bit integer addition)
;use direct indirect indexed long addressing

LDY #XOFFSET

LDA [DATAPTRLY :get X
CLC

LDY #YOFFSET

ADC [DATAPTR]Y :addY
LDY #Z0FFSET

STA [DATAPTR],Z ;storeinZ

J@ 198S James Jatczynski Consulting ® 1985 Apple Computer, Inc.

N

STACK OVERFLOW /UNDERFLOW DETECTION

® Stack overflow/underflow detection must be done by software since there

are no hardware facilities to detect these conditions.

® Checking on every stack operation is too expensive.

® Therefore, periodically check the value of S and integrity of stack end

markers.

Marker Words

Memory

BOTLIMIT : I

PATTERN EQU

INITIALIZE LDA
STA
STA
LDX
TXS
A J P
CHECK LDA
CMP
BNE
CMP
BNE
TSC
CMP
BCS
CMP
BCC

$ACAC

*PATTERN
TOPLIMIT
BOTLIMIT
TOPLIMIT-1

°
*PATTERN
TOPLIMIT

;initialize pattern in marker words

;initialize stack pointer

@
;check top and bottom marker words
;for integrity

STACKUNDERFLOW

BOTLIMIT

STACKOVERFLOW

*TOPLIMIT

;check stack pointer between TOPLIMIT-1
;and BOTLIMIT+2 inclusive

STACKUNDERFLOW

*BOTLIMIT+2

STACKOVERFLOW

;high probability that stack is OK if we get to this point

® 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

Yy

'PUSH AND PULL THREE-BYTE POINTERS

PUSH A THREE-BYTE POINTER FROM ZERO PAGE ONTO THE STACK

LoC DS 3 ;assume a zero page location
PEI LOC+1 ;push two high order bytes
PHB ;dummy push of DBR to decrement S by 1
LDA LOC ;get two low order bytes
STA 1,S ;store two low order bytes on stack

Note: Weird as it may be, the middle byte of LOC is saved twice.

Time: 18 cycles (19 cycles if DL=0)
Space: 7 bytes

PULL A THREE-BYTE POINTER FROM THE STACK INTO A ZERO PAGE LOCATION

LOC DS 3 ,assume a zero page location
PHB ;bush DBR in order to add 1 more byte to stack
PLA ;pull dummy byte and low order byte
XBA ;put low order byte in low order side of A
. STA LOC ;Jow order byte now in right place
J PLA ;get two high order bytes
STA LOC+1 ,store at two high order bytes of LOC

Time: 24 cycles (26 cycles if DL=0)
Space: 8 bytes

2 1985 James Jatczynski Consulting ® 1985 Apple Computer, Inc.

)

PUSH AND PULL FOUR-BYTE POINTERS

PUSH A FOUR-BYTE POINTER FROM ZERO PAGE ONTO THE STACK

LOC DS 4 ;assume a zero page location

PEI LOC+2 ;push two high order bytes
PEI LOC ;push two low order bytes

Time: 12 cycles (14 cycles if DL=0)
Space: 4bytes

,\\

' OULL A FOUR-BYTE POINTER FROM THE STACK INTO A ZERO PAGE LOCATION

LOC DS 4 ,assume a zero page]OC&HOR
PLA ;pull two low order bytes
STA LOC ;Store them
PLA ;pull two high order bytes
STA LOC+2 ;store them, too

Time: 18 cycles (20 cycles if DL=0)
Space: 6 bytes

_/® 1985 James Jatczynski Consulting @® | 985 Apple Computer, Inc.

