Universe Toolbox Update 2/2/89

Chapter 13
Menu Manager

Menu Item Stvles

The menu manager on system disk 4.0 and prior did not support Outline and shadow text stvles as the
manual implied. This new version of the menu manager now supports Outlined and Shadowed items.
With support of these new styles we have also added the special characters for menu definition:

(o] Make the text outlined,
S Make the text shadowed.

The outline and shadow style fields will also start working with the SetMItemStyle call. To seta style

of 2 menu item, you would pass a style word to the menu manager. A style word is defined by
QuickDraw as follows:

Bit0 Bold

Bitl Ialic

Bit2 Underline
Bit3 Outline

Bit4 Shadow

Scrolling Menus

If a menu does not fit on the screen it will scroll. When a menu scrolls, an indicator will appear at the
bottom of the menu, as shown in Figure 3. The indicator area itself doesn't highlight, but the menu
scrolls as the user drags over it. When the last item is shown, the indicator disappears.

2400 2400
4800 4800
9600 9600

~—x
Figure 3. Scrolling Menus: Indicator at Bottom

As soon as the menu starts scrolling, another indicator appears at the top of the menu to show that some
items are now hidden in that direction.

If the user drags back up to the top, the menu scrolls back down in the same manner.

The menu scrolls at two speeds depending on where the user drags in the indicator. If the user drags
anywhere within the first 5 pixels of the up/down indicators scrolling occurs at a slower rate and
dragging anywhere pass this point will allow faster scrolling.

Note: If you have menus in a window and that window is moveable, then dragging the window closer
to the bortom of the screen may cause some menus, the next time they are pulled down, to be
scrollable. If there are not at least 3 visible items in the menu then the menu will drop below the screen
since there must be enough room for at least an up and down arrow and one visible item.

Chapter 13: Menu Manager Page 13-1

Universe Toolbox Update 272789

Pop-up Menus .
The new menu manager now supports Pop-up Menus. These are menus that do not exist in the menu
bar, instead they can exist in a window. An example of a window with pop-ups is shown in figure 1.

Pop-up Tite Pop-up Box
AN ',

\ Modem setup... /

Baud rate:{ 300

Bits per character:| 7

Stop bits: 1

Parity:| Even

(_cancer)

Figure 1. Window With Pop-up Menus

Pop-up menus are used for setung values or choosing from lists of related items. The indication that _
there is a pop-up menu is a box with a one-pixel thick drop shadow. When the user clicks the mouse in
this box, the pop-up menu appears, with the current value highlighted under the pointer, as shown in
Figure 2. If the menu has a title, the title is highlighted while the menu is visible.

The pop-up menu acts like other menus: the user can move around in it and choose another item or can
move outside it to leave the current value active. If a pop-up menu reaches the top or bottom of the
screen (or window if you desire), it will scroll. When scrolling takes place depends on how cerain bits
are set when the pop-up is created. You can have the Pop-up contrained to the window that the pop-up
1s created in, in which case the pop-up will be scrollable if the menu tries to "pop" out of the window's
portRect. You can also have the pop-up appear in the menu manager's port in which case it is
contrained by the screen.

Chapter 13: Menu Manager Page 13-2

Universe Toolbox Update 2/2/89

[nverted Pop-up Item

Pop-up Tide

\ 1o

600 &V 600
1200 &H 1200
2400

4800

9600

Figure 2. Dragging Through a Pop-up Menu

Type 2 Pop-Ups

There are two types of pop-ups which can be created. Both types are similar in appearance until
scrolling has to occur. Figure 2 shows a normal pop-up. The idea behind a "Type2" pop-up is to
show as many items in the menu at once as possible. Figure 3 below shows how a pop-up would look
if the last item in the Baud Rate pop-up was selected and the pop-up was contrained to the window that
its created in. As you can see this limits the visibility of the remaining items in the menu and scrolling
is limited to only two items.

Baug rdate:

Bits per character:] 7

Stop bits:] 1

Parity:{ Even

G Coe)

Figure 3.

Chapter 13: Menu Manager | Page 13-3

Universe Toolbox Update 2/2/89

Figure 4 shows what a type 2 pop-up looks like if it were used in place of the normal pop-up in Figure ’
3. As you can see. by dragging the mouse over the up arrow indicator the user can eventually scroll all
the items in the menu to view. Type 2 pop-ups are very useful when the area that is used to create the
pop-up 1s very limited (i.e. when a pop-up needs to be contrained to the window its in).

When a pop-up needs to be made scrollable, for all the menu items that are not visible, "white space” is
created for those items to scroll into. In Figure 4. all the items above 9600 are not visible due to the top
boundary contraint. The amount of "white space” created is equal to the number of items that are not
visible, or until the bottom boundary contraint is met. This allows the user to see as many items in the
menu as possible at one time.within the boundary limitations, without having to select anything.

See PopUpMenuSelect or the Control Manager section on Pop-Up controls on how to create each type
of pop-up.

l

a A

9600

Figure 4.

Pop-up menus will support most of the fearures and calls that are currenty available with standard
menus.

* An Apple logo may appear on the right side of the item to show that the item may be invoked
from the keyboard followed by a captial letter. If the user presses this key while holding down
the Apple key, the menu item is invoked just as if it had been chosen from the menu.

Note: If a pop-up has the same keyboard equivalent as a regular menu item the pop-up will
never receive the keystroke because the regular menu will have handled it first.

* An item can be dimmed to indicate that it is disabled and can't be chosen.

* A mark or icon may appear to the left side of an item to denote the status of an item (i.c. if an

item is selected then a check mark may appear next to it) or it may be used to indicate what type
of item it may be (i.c. if you had a list of subdirectories, a disk icon may represent the root and
a folder icon may represent a subdirectory).

* Each item’s text may have its own style.

» If there are more items than can be shown at once inside a menu then the user can
scroll the menu. For more details see section on Scrolling Menus.

How To Use Pop-ups

Applications can use pop-up menus two ways.
Chapter 13: Menu Manager Page 13-4

Universe Toolbox Update 2/2/89

1. The easiest way is to use NewControl2 to create the pop-up. By making the pop-up a control an
application need not worry about drawing the pop-up'’s box or title, updating of the pop-up after a new
selection has been made and can also take advantage of letting TrackControl track the pop-up and also
handling command key equivalents if there are any. There are also several bits which can be set to alter
the appearance of the pop-up (i.e. don't have title highlight, no title at all, left justify title, etc..,). Refer
to the Control Manager ERS on how to create a PopUpControl Template to be used as input to
NewControl2.

=. The second way to use pop-ups provides a little more flexibility but requires a little more work (This
is the way pop-ups are implemented on‘the Macintosh) The application is responsible for drawing the
pop-up box, pop-up title, highlighting of the tite, recognizing a mouse-down event in the pop-up box
or title, and for changing the entry in the pop-up box after an item has been chosen from the pop-up
menu. Similarly, the application is responsible for highlighting the title if the pop-up menu has
Command-key equivalents. Once a mouse-down event has been detected in the pop-up box and/or title
PopUpMenuSelect is called to bring up the menu and track the mouse. The item ID of the menu item
selected is returned. If no item was selected zero is returned. If a menu item was selected then the next
time PopUpMenuSelect is called this new selection must be used as input into the call to reflect the
latest selecton.

Menu Manager Routines for Pop-ups

Each of the following routines operate on the current menu bar. If you are using NewControl2 to create
the pop-up vou must first set the current menu to the pop-up (i.e. call SetMenuBar using the control
handle to the pop-up as input), before you can use any of these calls. If you are using
PopUpMenuSelect you must get the handle to the menu you would normally pass to
PopUpMenuSelect. insert this menu into the current menu bar calling InsertMenu, make the menu
manager call you want, and then remove the menu from the current menu bar by calling DeleteMenu.

List of menu manager calls that should support pop-ups as well:

CalcMenuSize : Sets menu dimensions, either manually or automatcally. Call this if vou've just
added or deleted an item from the menu so that the menu will be resized
correctly.

InsertMItem Adds a specified item to the pop-up menu and increments the NumOfltem field

in the menu record.

DeleteMItem Removes a specified item from the pop-up menu and decrements the
NumOfltem field in the menu record. If the item that is being deleted happens to
be the currently selected item then the item that shows up in the pop-up rect gets
cleared(unless the FDontDrawResult bit is set, in which case no item is shown
anyways). The next time the pop-up menu gets selected the first item in the pop-
up is the one that lies directly under the pop-up rect, although nothing is selected
at this point, i.. the cdValue field in the pop-up's control record is zero.

CountMItems : Returns the number of items, including any dividing lines, in a specified pop-
up.

SetMlitem : Replaces the name for a particular pop-up menu item.

GetMItem : Returns a pointer, handle, or resource ID to the name of an item.

EnableMltem : Sets a specified pop-up menu item to display normally and allows it to be
selected.

Chapter 13: Menu Manager Page 13-5

Universe Toolbox Update 2/2/89

DisableMItem : Sets a specified pop-up menu item to display in dimmed characters and does not
allow it to be selected.

CheckMItem Sets a specified pop-up menu item to display or to not display a check mark to
the left of the item.

SetMItemMark : Sets a specified pop-up menu item to display or to not display a specified
character to the left of an item.

GetMItemMark : Returns the currént character that is displayed to the left of a specified pop-up
menu item.

SetMItemStyle : Sets the text style for a specified pop-up menu item.

GetMItemStyle: Returns the text style for a specified pop-up menu item.

SetMItemFlag : Sets a specified item number to be underlined or not underlined and sets the
highlighting style.

GetMItemFlag : Returns the values for a specified item, such as whether it is disabled,
underlined, or highlighted.

SetMItemBlink : Determines how many times all pop-up menu items should blink when selected.

SetMenuBar Sets the current menu bar. The control handle to the pop-up is used as input :
this call.

GetMHandle : Returns a handle to the pop-ups menu record.

SetMTideWidth : Sets the width of the pop-up's title.

GetMTideWidth : Gets the width of the pop-up's title.

SetMenuFlag Sets the pop-up's menu flag to a specified state. The menuFlag is now a word
value. See the expanded description of menuFlag below.

GetMenuFlag : Retumns the pop-up’s menu flag. The menuFlag is now a word value. See the
expanded description of menuFlag below.

SetMenuTide : Sets the pop-up's title to a new name. Input is a pointer to a pascal type string.

GetMenuTide : Retums either a pointer, handle or resource ID to the pop-up’s title.

SetMenulD Specifies a new menu number.

Chapter 13: Menu Manager Page 13-6

Universe Toolbox Update 2/2/89

New Data Structures and Resource Support

In order to support resources better. we add a number of new Menu and Menu item definition calls that
allow the programmer to specifv different kinds of input (pointers, handles and resource IDs). The
data structures that support these calls are described below. Use the following data structures for any of
the new menu manager calls described below.

Note: Any reference to strings are Pascal type strings.

Note: None of the bits for any of the flags described below have been redefined (so everyvthing is
backward compatible). Only those bits that were previously undefined were used for relaying additional
information. Also the menuFlag is now a word value instead of a byte value. Previously, in the menu
record the byte following the menuFlag was the menuRes flag which was never defined, it is now pan
of the menuFlag.

MenultemTemplate
Version WORD Must be zero
IremID WORD ID of menu item
ItemChar BYTE primary shortcut character
ItemAItChar BYTE secondary shortcut character
ItemCheck WORD Character to use for checking
ItemFlag WORD menu item flags defined below
ItemTideRef LONG Pointer, handle or resource ID of title strin g

Note: If ItemTitleRef is a pointer then it must point to a PASCAL type string.

ItemFlag
Bit 0 Bold 1 = bold, O = not bold
Bit 1 Italic 1 = italic, O = not italic
Bit2 UnderLine 1 = underline, 0 = not underline
Bit 3-4 Reserved must be zero
Bit5 XOR 1 = use XOR to highlight selection, 0 = don't use XOR
Bit6 Divider 1 = Draw Divider bar, 0 = No devider bar

Bit 7 Disabled 1 = disabled, O = enabled
Bit 8 Reserved must be 0
Bit9 Reserved must be 0
Bit 10 Reserved must be O

Bit 11l Qutline 1 = outline, 0 = not outline

Bit 12 Shadow 1 = shadow, 0 = not shadow

Bit 13 Reserved must be zero

Bit 14-15" TideRefType O for Pointer, 1 for handle, 2 for resource ID
MenuTemplate

Version WORD Must be zero

MenulD WORD IDofmenu

MenuFlag WORD menu flags defined below

MenuTideRef LONG Pointer, handle or resource ID of title string

Item1Ref LONG Pointer, handle or resource ID of menu item 1

Item2Ref LONG foritem 2

ItemNRef LONG foritem N

Terminator LONG Must be zero

Note: If MenuTitleRef is a pointer, then the pointer must point to a PASCAL type string.

Chapter 13: Menu Manager Page 13-7

Universe Toolbox Update

MenuFlag
Bit0-2 Reserved

Bit3 AllowCache

Bit4 Custom
BitS XOR

Bit 6 Reserved
Bit 7 Disabled
Bit 8-11 Reserved

Bit 12-13 ItemRefType
Bit 14-15 TideRefType

Note: All the ItemRefs for a

handle or resource ID.

MenuBarTemplate
Version
MenuBarFlag
MenulRef
Menu2Ref

i\:fcnu.'iRcf
Terminator

MenuBarFlag
Bit0-13 Reserved

2/2/89

must be zero

1 = Cache Menu, 0 = Don't cache menu

I = Menu is custom, 0 = menu is standard.

1 = use XOR 10 highlight selection, 0 = don't use XOR
must be 0

1 = disabled, 0 = enabled

must be 0

0 for Pointer, 1 for handle, 2 for resource ID
0 for Pointer, 1 for handle, 2 for resource ID

particular menu must be of the same ref type, all must be a pointer,

WORD Must be zero.
WORD menu bar flag defined below
LONG Pointer, handle or resource ID of Menu 1
LONG for Menu 2
LONG for Menu 3
LONG Must be zero
must be zero

Bit 14-15 MenuRefT ype O for Pointer, 1 for handle, 2 for resource ID

The new calls that provide support for these data types take an additional input that describes what the
reference is. The three possible values are:

RefIsPointer =0
RefIsHandle =1
RefIsResource =2

Chapter 13: Menu Manager

Page 13-8

Universe Toolbox Update 2/2/89

New Talls

PopUpMenuSelect Call $3COF

Input
ItemIDSpace :WORD Space for id of selected item.
Selecuon :WORD Item ID of current selection
Currentleft :WORD Left side of popped-up menu
CurrentTop :WORD Top of current selection in popped-up menu
Flag :WORD Currently only bit 6 of flag is defined.
MenuHandle :LONG Handle to a Menu

Output
ItemID :WORD id of item selected

Works the same as MenuSelect except that it tracks a pop-up menu instead. MenuHandle is the handle
returned from NewMenu or NewMenu2. ItemID equals zero if no item in the pop-up is selected. If bit
6 of the flag is set then popupmenuselect will draw the pop-up with white space, i.e. if there is not
enough room in the grafport to draw the entire pop-up then white space will be added until the entire
pop-up fits or until we overstep the portrect’s boundaries. See Figure 5.

Note: The coordinates CurrentLeft and CurrentTop must be in global coordinates. The programmer
must also be aware that the pop-up menu is drawn in whatever port is set to at the time
PopUpMenuSelect is called. For example if the programmer wants the POp-up menu to appear
anywhere on the screen (i.e. the menu can "pop” out of a window) then the port should be set to the
menu manager's port before calling PopUpMenuSelect. The pop-up menu is contrained by the
intersection between the pont rectangle, the visible region and the clip region. By altering these values
you can alter how the pop-up should be contrained.

Current Selecton

(CurrentLeft,CurrentTop) l
N 110 ¢
600 &v|
1200 ®H
2400
4800
9600
Figure 5.
GetPopUpDefProc Call $3BOF
Input
Space : LONG
Output
DefProcPu :LONG Pointer to defProc handle

Chapter 13: Menu Manager Page 13-9

Universe Toolbox Update 2/2/89
Returns a pointer to the control defProc that implements pop-up menus. This call is intended primarily
for the use of the control manager.

DrawPopUp Call $3DOF
Input
Selection :WORD ; item number to be selected
Flag :WORD ; '
Right :WORD ; right edge of pop up rect
Bottom :WORD ; bottom of pop up rect
Left :WORD ; left of pop up rect
Top :WORD ; 1op of pop up rect
MenuHandle :WORD ; handle to menu being drawn
Output
none

This is an internal MenuManager routine used to draw a pop up menu. It would not normally be called
by an application.

NewMenuBar2 Call $430F
Input
Space . :LONG space for resulting handle
RefDescriptor :WORD describes what next parameter is
MenuBarTemplateRef : LONG pointer, handle or resource id of
MenuBarTemplate.
theWindowPrur :LONG Pointer to window's port or NIL for system menu
bar.
Output
ResultHandle :LONG Menu Bar Handle

This call creates an entire menu bar at once using a menu bar template as input. The RefDescriptor tells
the call how the temple is referenced.

Chapter 13: Menu Manager » Page 13-10

Universe Toolbox Update 2/2/89

NewMenu?2 Call S3E0F
Input
Space :LONG space for resulting handle
RefDescriptor :WORD describes what next parameter is
MenuTemplateRef :LONG pointer, handle or resource id of MenuTemplate.
Output
ResultHandle :LONG Menu Handle

Works the same as NewMenu except that RefDescriptor and MenuTemplateRef are passed instead of
pointer to Menu definition data.

InsertMItem2 Call $3F0F

Input
RefDescriptor :WORD describes what next parameter is
MenultemTemplateRef : LONG pointer, handle, or resource ID of

MenultemTemplate.
InsertAfter :WORD “ID of itern after which this is to be inserted. 0 to
. : add to front, SFFFF at end.

MenuNum ’ : WORD ID of menu that this will be in.

Output
none

Works the same as InsentMItem except that RefDescriptor and MenultemTemplateRef are passed
instead of pointer to menu item definition data.

SetMenuTitle2 Gall $400F
Input
RefDescriptor :WORD describes what next parameter is
TitleRef :LONG pointer handle or resource ID of title string.
MenuNum :WORD ID of menu that gets new title.
Output
none

Works the same as SetMenuTitle except that RefDescriptor and TitleRef are passed instead of pointer to
menu title.

SetMItem2 Call $410F

Input
RefDescriptor :WORD describes what next parameter is
MenultemTemplateRef :LONG pointer, handle or resource ID of menu item

template

Menuliem :WORD ID of item that will be changed.

Output
none

Works the same as SetMItemn except that RefDescriptor and MenultemTemplateRef are passed instead
of pointer to menu item definition data.

Chapter 13: Menu Manager , Page 13-11

Universe Toolbox Update =/2/89

SetMItemName2 Call $420F
Input
RefDescriptor :WORD describes what next parameter is
TideRef :LONG pointer, handle or resource ID of dtle sting
Menultem :WORD ID of item that will get new title
Output
none

Works the same as SetMItemName except that RefDescriptor and TideRef are passed instead of pointer
1o menu item string,

HideMenuBar Call $450F

Input
none

Ourtput
none

HideMenuBar takes the system menu bar, if there is one and hides it. It hides it by taking the menu
bar's rectangle and adding it back to the desktop region. It sets the menu bar's invisible bit, resets the 2
thru 9 scan lines which were changed so that the apple logo's colors would appear correctly and then
refreshes the desktop. Note: all subsequent calls to _DrawMenuBar or _FlashMenuBar are ignored
since the menu is considered invisible, and cannot be made visible until ShowMenuBar is called.

ShowMenuBar Call $460F

Input
none

Output
none

ShowMenuBar takes the system menu bar, if there is one and makes it visible. The system menu bar is
made visible by subtracting the menu bar's rect from the desktop region. The invisible bit in the menu
bar record is cleared, the SCBs in the menu bar are reinitialized for the apple logo, the desktop is)
refreshed and finally the menu bar is redrawn. '

Chapter 13: Menu Manager Page 13-12

Universe Toolbox Update 2/2/89

Menu Manager Updates for the ToolBox Reference Manual.

Correcton: SetBarColors does not work as antcipated if there is more than one menu bar being used.
When a menu bar is created, it is created using a default color table. SetBarColors changes the entries in
this default color table not the actual pointer to the table itself. Therefore any menu bars that have
already been created, or will be created will now use these new colors set by SetBarColors. If vou are
using more than one menu bar and you want to change the default color table then the only way todo °
this without affecting any other menu bars is to actually construct the new color table vourself and then
to replace the pointer in the menu bar record's ctlColor field with the pointer to the desired color table.

Correction: SetSysBar does not make the system bar the current menu bar.

You can now have empty menus.
Creating an empty menu:
dc.b 'S$ Empty Menu \N1,800 ; menu's tide and ID
de.b SO0 ; first character in first item line is either a null or return
; byte, this signifies the end of the menu definition.

Chapter 13: Menu Manager Page 13-13

Universe Toolbox Update 2/2/89

Change History

31 Jan 89 Harry Yee
Added secuon “"Menu Manager Updates for the ToolBox Reference Manual”. Added additional info on calls
SetBarColors and SetSysBar into this section.
Added information about Type2 Pop-ups. Added more info. on PopUpMenuSelect. Added description of new

calls HideMenuBar and ShowMenuBar. Added info. in DeleteMItem when deleting the current selection. The
template section now states that any strings that are pointers are pointers to PASCAL type strings.

Chapter 13: Menu Manager Page 13-14

