
AUTOMATIC LOMEM:
Line 5~

Attempting to enter LOMEM: within an Integer BASIC program will produce
a SYNTAX ERR; line 5~ allows you to accomplish the same task legally.
The desired LOMEM: address in this case is 3~72; just replace 3~72 (in
both places where it appears) with whatever LOMEM: your program
requires. This must be done before any variables or arrays are either
DIMentioned or assigned values, because the LOMEM: subroutine will clear
the variable table when it is run. The second and third statements in
the line will act as a CLR command when used alone.

Purpose: to set LOMEM: to a desired number from within a BASIC program.

To Use: Place at beginning of program and execute before initializing
any variables.

Affect: equivalent to typing LOMEM: in immediate mode. Resets bottom
of variable table and CLeaRs variable table.

CALLS: No other lines are referenced by this routine.

INTEGER BASIC CHR $ FUNCTION
LINES ll~, 12~

11~ CHS = CRR +128* (CRR<128)

12~ LCl= PEEK (224): LC2= PEEK (
225)-(LCl>243): POKE 79+LCl
256*(LC 2>127)+ (LC 2-2 55*(LC2>
127)) *256,CHS :CRR$="A" :RETURN

The author was able to make free use of quotation marks throughout The
Infinite Number of Monkeys program because of the inclusion of this
routine. It is also the alleged generator of monkeytalk.

This subroutine gives you the same ability in Integer BASIC that the
CRR$ function delivers in, for example, Applesoft BASIC.

In BASIC, the CRR$ function returns a character when .given its numerical
position in the list of ASCII characters. (The list may be found in the
Applesoft Reference manual.) Many characters cannot be generated on the
Apple II since its keyboard is upper-case only. Other characters, such
as CTRL-C, cannot be stored in a program since they have special
functions in the system. Yet these characters are often necessary when
controlling external devices, writing programs that write programs, and
in many other applications.

12

It is important that the second line of the routine be typed exactly
as shown, with the exception that the line number may be changed. If an
error is made, your program may be irreversibly altered. SAVE the
program before RUNning, so should an error be discovered upon RUNning,
you may reLOAD the program and correct the line. Once entered and
checked, the program is completely safe and has the advantage over other
Integer BASIC CRR$ schemes of being completely independent of the
variable table. If the line is used in a long program on an Apple with
more than 32K bytes of memory, there is a very remote possibility that
one could get a *** >32767 ERR. If this should happen, insert a REM
statement with about 8~ characters on a higher line number to force the
CRR$ function down in memory.

Theory of Operation: See Illegal Statement Writer

Purpose: to convert the ASCII code number placed in CRR into its
equivalent character in CRR$

Setup: no initializing is necessary

To Use:
Input--Is placed in CRR

GOSUB ll~

Output--Is found in CRR$

Variables Affected: CHS, LCl, LC2, CRR$

Calls: no other lines are referenced by this routine.

Example: contained on line 18~

MOVING BLOCKS OF MEMORY
LINES 33~,38~

You may move any block of memory to any other block by changing the
addresses listed on line 33~, or replacing the variable names with your
desired addresses. The author used these names to make the process as
clear as possible. (''DESTINACION'' is purposely mispelled:
"DESTINATION" contains the reserved word, "AT".) Be sure you do not
move a block of memory on top of your program.

13

Purpose: Move a block of memory to another position in memory.
Equivalent to Monitor move routine.

Setup: No initializing is necessary

To Use:
Input--None

GOSUB 33~

Output--None

Variables Affected: DESTINACION, SOURCESTART, SOURCEFINISH

Calls: No other lines are referenced by this routine.

PSEUDO TYPEWRITER
LINES 3~~, 69~

This is a very handy package that will take loosely entered PRINT
statements and "type" them out to the screen, breaking lines between
words, with options for typewriter-like sound and hesitation. With
minor modification, as described below, it can be used for higher speed
word-at-a-time output. The author developed it because he found he was
spending an inordinate amount of time carefully formatting PRINT
statements in his programs, only to find himself doing it allover every
time he changed one word. With this system, editing is quite
reasonable.

Theory of Operation

The programmer supplies the routine with a sentence or phrase contained
in S$. Starting at the head of the main loop (Line 6~~), the first word
is extracted from S$ and placed in W$. (Lines 61~, 63~). Line 65~ adds
the number of characters in the word to the current TAB position and, if
the word will not fit on the line, GOSUBs the scrolling routine. Lines
66~ and 67~ print out the letters in the word, one-by-one, adding sound
and delay if requested by main program.

DELeting line 66~ and replacing it with: "66~ POKE 5~, 63: PRINT WRD$;:
POKE 5~, 255" will print one whole word at a time. (Good programming
style dictates that the system should be left in the most normal
condition possible when a user aborts a program. By turning off white
text mode as soon as possible, the user is unlikely to be caught in
reverse-mode after typing a CTRL-G.

Note on Line 54~: when writing subroutine blocks that could be
initiallized more than once, use a flag that is turned on when your
variables are DIMensioned. This flag can then prevent their being DIMed
again. This will prevent any REDIM'ED ARRAY ERR messages.

14

Purpose: To print-out properly formatted text on a white background from
unformatted PRINT statements.

Setup: Initialize by a GOSUB 53~. This will DIM the variables and run a
short routine immitating paper being scrolled into a typewriter.

To Type Words:
Input--S$ should contain desired word(s), phrase,

or sentence
GOSUB 6~~

Output--all output is to screen

To Manually Scroll: (for paragraphing, etc.)
Input--none
GOSUB 57~

Output--all output is to screen

User Selectable Flags:
Set SOUND equal to 1 for typewriter sound
Set DELAY equal to a number between 11l (no delay)
and 5~ (long delay) for hesitation between
characters

Variables Affected: S$, SOUND, DELAY, K, S, SS, WRD$, TIME, CURRENTPOS,
SOURCESTART, SOURCEFINISH, DESTINACION

Calls: no routines outside Lines 3~~, 69~ are CALLed, but AUTO-LOMEM:
(line 5~) must be executed before any variables are initiallized
to allow use of Page 2. It is useful to retain Lines 155~

to 166~ to keep the directions. All other lines may be deleted
to isolate the package for use in your own programs.

Example: LIST and RUN Line 164~.

This package (with some of the REM statements stripped out) is very
small and extremely easy to use, with only one variable, two optional
flags, and three calls. It can save you hours of frustrating work; it
took the author less than 2~ minutes to enter the complete text for the
(pre-written) story of The Infinite Number of Monkeys. Subsequent
editing was done with a minimum of bother.

To edit any PRINT statements on the Apple in either Integer BASIC or
Applesoft BASIC, first type ESC @ (press and release the ESC key, then
type @) to clear the screen, then type POKE 33, 33 •

Now LIST the line(s) you wish to edit. This reduced text window will
eliminate the extra spaces in the listed lines and thus, the need for
typing ESC A's to skip over them. When you are through editing, type
TEXT to restore the normal text window.

15

LINES 7~~, 132~

PAGE LIST PROGRAM

Because The Infinite Number of Monkeys was written as a tutorial, the
author has included this listing routine to make the whole program as
easy as possible to study. Since it is written in BASIC, it is fairly
slow. But it does its job, and includes one extremely interesting line,
"LIST X, Y" (Line 1~3~ -- try typing it in yourself). This line, and a
one-line routine for entering such lines, will be discussed in detail in
Illegal Statement Writer, the last section of this discussion.

Theory of Operation

When the user types a list request, such as, "
carries out the following operations:

LIST 1~4~", the program

Two events took place. First, the computer simply did not accept your
input, giving clear indication that you did not enter it correctly.
Second, in a brief flash, it was announced, "ElITRA IGNORED". That was
the VAL (V) FUNCTION talking. When you input any number in this program,
you are entering it into a string. That string is then processed by the
VAL (V) FUNCTION and, if a valid number between -32767 and 32767 is
found, that number is returned in an integer variable for use by the
program. This gives the programmer complete control over what is coming
in; the user cannot, short of intentional sabotage, crash the program.
It is a simple routine to use and is easy installed within your program.
The "ElITRA IGNORED" message alerts users either that they have entered a
number larger than 32767 and the extra digits have been rejected, or
that they have entered non-numeric information following the number.
This feature may be eliminated from the function if not needed. In
fact, it is not needed in this program, but was included to allow you
the option within your own programs.

1) Line 78~. Leading spaces are removed, leaving, "LIST 1~4~".

2) Lines 82~, 83~. The first four characters are matched
against the command table. If a valid command is found, the
command is removed from the string, leaving, " 1~4~".

3) Next, the string is processed by the VAL (V) FUNCTION (see
below), which returns with the integer number 1~4~ contained
in V.

4) Finally, a loop X is started from 1~4~ to 32767 and the
lines are listed out. See the REM statements contained in
the LIST program for specifics.

Some of the newer programmers may feel the author went to a lot of
unnecessary work just so the user would have to type "LIST" instead of
simply entering the line number. More experienced programmers, of
course, have no doubt he went to a lot of unnecessary work. The
author's rather hastily constructed excuse for this was that he had
always wanted to parse somebody's syntax. He is being carefully
watched.

INTEGER BASIC VAL FUNCTION
Lines 14~~, 154~

One of the marks of a professional programming job is that the program
doesn't "blow-up" when the user makes a predictable error. For example,
when The Infinite Number of Monkeys is first RUN, it is not
inconceivable that a naive user could type "END" instead of "4". Of
course, the author has been very careful to explain what kind of input
the computer wishes, but it is still good programming practice to avoid
the avoidable. RUN The Infinite Number of Monkeys, and, at the menu,
type END instead of 4.

16

Still at the main menu, try entering" 3ABC DE". The VAL function
ignores the leading spaces, and evaluates the initial 3 as your
response. The extra is ignored and execution of the command to go to
the list routine takes place. You may now LIST the VAL (V) function, if
you wish, and see how it is constructed. Line 141~ will only DIM V$ if
it has not been previously DIMentioned, line 142~ will cause a return if
V$ is null (empty). Therefore, to initialize this routine the
programmer executes a "GOSUB 14~~". The next time a "GOSUB 14~~" is
ordered, the subroutine will expect V$ to contain the number to be
processed.

Purpose: This routine converts the string V$ into an integer value V

Setup: Initialize by a "GOSUB 14~~" before using V$

To Use:
Input--desired input is placed in V$

GOSUB 14~~

Output--integer output is found in V upon return

Variables Affected: V$, V, VV, VVV, MINUS FLAG

Calls: no other routines are referenced by the VAL(V) function

Example: LIST and RUN line 139~

The Infinite Number of Monkeys itself, from line 19~~ to line 28~~,

shall be left to the reader to explore. It is not particularly
distinguished -- it was not meant to be. It is a sea of unformatted
text and GOSUB statements. There are a fair number of delay loops that
the author used in timing, or punctuating, the animated text; there is
the section from line 238~ to 267(/J that contains the "monkey business".

17

"BEEP! *** SYNTAX ERR."

Line 1~2~ (Called by 1~15, acts upon 1~3~)

ILLEGAL STATEMENT WRITER

vlliy are we not permitted to find out what happens when line 5~ says, "5~

NEW" and we RUN 5\O? Why can't we DELete line 123 after it has already
been used? Why are we forbidden to LIST X?

Instructions For Use

First, type:

The only place this routine will not work properly is just above 32767;
if you have more than 32K of memory and encounter a *** >32767 ERR,
enter a REM statement with 1~\O spaces or so on a higher line number to
force the Illegal Statement Writer down in memory. The REM statement
may be removed after you are through POKEing your line.

When Integer BASIC encounters a statement such as PRINT X , it reads
it, parses (interprets) it, and goes off to execute it. When it
departs, it stores its current program position in memory locations 224
and 225. Upon completing execution of the statement, it reads these
locations to know where to resume. This subroutine PEEKs these
locations to pinpoint its own actual location in memory, and with that
information, is able to POKE your chosen command (CMD) into a position
(PaS) in the next line. LCI (locationl) is given the low byte of the
address of the colon which immediately follows it, as this is where the
program return pointer is when 224 is PEEKed. (For an explanation of
high and low bytes, see Instructions For Use below.) LC2 is likewise
given the high order byte of the address of its following colon. If LCI
was greater than 243, LC2 will have "clocked over" by the time the
pointer reaches it, and thus a 1 is subtracted if LCl>243. We are left
then with the actual location of the first colon stored in LCI and LC2.
82 bytes beyond this colon is the command LIST in line 1~3~. If we make
pas = 1 and POKE 81 + pas + <the location in memory> , <number of
desired token>, we can POKE any command token into whatever place we
want. (The balance of line 1~2~ that deals with adding and subtracting
255's and 256's turns any location numbers higher than 32767 into 2's
complement form so users with more than 32K can use the routine.)

With this handy little
want! (Of course, poor
as, "1\0\0 A$=27 /PR INT" , but

"BEEP! *** SYNTAX ERR."

1~2~ LCl= PEEK (224):LC2= PEEK(
225)-(LCl>243): POKE 81+POS+
LCI-256*(LC2>127)+(LC2-255*
(LC2>127))*256,CMD: RETURN

What we need is the Illegal Statement Writer.
I-line subroutine, you can write anything you
Apple may be a litte confused over such lines
you can write it.)

A great feature of Apple Integer BASIC is its entry-time syntax
checking. You need not wait until RUN-time to find out the depths of
your folly; Apple will beep it to the world just as soon as you press
the RETURN key. While this is a generally commendable feature, it
does inhibit exploration of some potentially interesting lines by
steadfastly refusing to accept what seem to be perfectly reasonable
commands. Surely, there should be some room for legitimate differences
of opinion, Apple!

The Illegal Statement Writer was created to allow BASIC programmers to
POKE normally rejected commands, characters, and numbers into their
programs. Apple is quite capable of LISTing from a variable to a
variable ("1~3~ LIST X, Y") if one can just get the line into memory.
Apple is perfectly happy with line numbers higher than 32767 if one can
just get them entered. (Most of you will have seen line 65535 as the
last line of many programs.) One can even poke quotation marks (ASCII
162) inside a quote! This subroutine gives everyone the power that has
been reserved for the machine-language jockeys until now.

DEL \0, 1~14

DEL W31, 32767

This will leave just three lines. The first line, 1\015, controls the
subroutine, telling it what to POKE where. The second line is the
POKEr, the third, the POKEe.

* * * NOTE * * *
Line 1~2~ is to be retained, unmodified, in each example below.

Theory of Operation Retype line 1~3\O to read:

The following paragraph is a highly technical explanation of how the
subroutine works and need not be understood or even read to make full
and complete use of the subroutine. The analysis is presented for
advanced programmers who may find the previously undocumented pointers
identified herein useful in designing new subroutines in this family.
The author has written 5 different types of routines, including the CHR$
function in this program, all based on being able to pinpoint the actual
memory location of a BASIC program line during RUN-time. It is his
belief that there are many more to be discovered.

1~3~ PRINT X, Y

Then, RUN. It should read, 1\03\0 LIST X,Y again. Apple Integer BASIC
and Applesoft are partially compiled languages. When you type a command
such as GOTO into a program, Apple substitutes the four characters
G-Q-T-Q with a "token" (a number between ~ and 127 which represents a
command). In the case of GOTO, this token is the number 95. When you
LIST the program and Apple encounters a 95 it looks up this token in a
table, finds out it means GOTO, and then prints it out that way. This
compilation makes your program smaller and faster.

18 19

Tokens The following are numeric variable logical operators

The following are numeric operators

Integer BASIC Token Table

DEL 1~15 and enter the following:

Then RUN. You have just LISTed the complete token table. Most tokens
can be used legally in differed mode (written into a program); below is
the table of Integer BASIC tokens. (The HEX numbers are for the benefit
of the aforementioned machine-language jockeys and are to be ignored by
those of us of a more civilized ilk.)

"
"
"

If

"
"

Unused

"
Comma used with scrn: PRINT SCRN(X, Y)
Used with 114 after PEEK, SGN, ABS, and PDL 64 $4(D

Unused
Used in variable DIMS: DIM A(I(D)
Unary signum: A = +5
Unary signum: B = -5
Numeric
Used with 114 in logic statements and numeric

oper a tions :
IF C AND (A = 14 OR B = 12) THEN X = (27 + 3)/ 13
String logical operator: IF A$ = "CAT" THEN•••
String logical operator
Uses 114 as right parenthesis

" If

Example: IF X = 13 THEN END

Unused
Used in string DIMs: DIM A$(n)

Followed by a line number: IF X = 3 THEN 1(D
Followed by a statement: IF X = 3 THEN A$ = "CAT"
Used with string inputs: INPUT "WHO", W$
Used with numeric inputs: INPUT "QUANTITY", Q
Beginning quote
Ending quote
Substring left parenthesis: PRINT A$(12,14

used with 114 as right parenthesis
(see also 66)

Unused
Unused
Variable array left parenthesis: X(12)

used with 114 as right parenthesis
Uses 65 and 114 for parentheses

n It

NOT
(

,
"

+
(

"

PEEK
RND
SGN
ABS
PDL
RNDX
(

+

(
String

$

II
LEN(
ASC(
SCRN(

II
>=
>
<=
<>
<
AND
OR
MOD

THEN
THEN

57 $39
58 $3A
59 $3B
6~ $3C
61 $3D
62 $3E
63 $3F

$
65 $41

46 $2E
47 $2F
48 $3(D
49 $31
5~ $32
51 $33
52 $34
53 $35
54 $36
55 $37
56 $38

43 $2B
44 $2C
45 $2D

22 $16
23 $17
24 $18
25 $19
26 $IA
27 $IB
28 $IC
29 $lD
3(D $IE
31 $IF
32 $2~

33 $21
34 $22
35 $23
36 $24
37 $25
38 $26
39 $27
4(D $28
41 $29
42 $2A

Comma used with AUTO (AUTO 1~,2(D)

The real thing

COMMENTS

The associated parentheses are 56 and 114
Example: A = 14 * (27 + 15)

Comma used with DEL (DEL (D,I(D)

Token irrelevent - used internally as
begin-of-line.

End-of-line token - each line ends with a 1
Used internally in delete line processing
Colon for statement separation

RUN n, where n is a line number
RUN from first line of program

(D TO 127: GOSUB 1(D2(D: PRINT CMD,: LIST I~W :NEXT

NEW
CLR
AUTO

Hll1EM:

MAN
Hll1EM:
LOMEM:

LOAD
SAVE
CON
RUN
RUN
DEL

18 $12 +
19 $13
2(D $14 *
21 $15 /

1 $1
2 $2
3 $3
4 $4
5 $5
6 $6
7 $7
8 $8
9 $9

1(D $A
11 $B
12 $C
13 $D
14 $E
15 $F
16 $1(D
17 $11

NUMBER TOKEN
DEC HEX

I(DW PRINT
1(D POS=I: FOR CMD
CMD:END

?n 21

String with no prompt: INPUT A$
String or numeric with prompt:
INPUT "WHO", A$ uses comma 38
INPUT "NUMBER", A uses comma 39
Numeric with no prompt: INPUT A

Special case string array right parenthesis. used
when string array is the destination
of the data. in the example, A$Cl) - B$(I) ,
the A$ left parenthesis will be 66 and B$'s
will be 42. used with 114 as right
parenthesis

DIM <varname>, <string varname>
DIM <varname>, <numeric varname>
String PRINTs: PRINT <varname>;

<string varname>; "X"
Numeric PRINTS: PRINT <varname>;

<numeric varname>; 7
End of PRINT statement: PRINT A;
String PRINTS: PRINT <varname>,

<string varname>, "X"
Numeric PRINTS: PRINT <varname>,

<numeric varname>, 7
End of PRINT statement: PRINT A$,

66 $42

67 $43
68 $44
69 $45

7f! $46

71 $47
72 $48

73 $49

74 $4A
75 $4B TEJIT
76 $4C GR
77 $4D CALL
78 $4E DIM
79 $4F DIM
8f! $5f! TAB
81 $51 END
82 $52 INPUT
83 $53 INPUT

84 $54 INPUT

String var.
Numeric var.

Parentheses 34 and 114, comma 67
Parentheses 52 and 114, comma 68

1~~ $64
1~1 $65
1~2 $66
1~3 $67
1~4 $68
1~5 $69
1~6 $6A
1~7 $6B
1~8 $6C
1~9 $6D
11f! $6E
111 $6F
112 $7~

113 $71
114 $72

115 $73
116 $74

117 $75
118 $76
119 $77
12\1 $78
212 $79
122 $7A
123 $7B
124 $7C
125 $7D
126 $7E
127 $7F

POKE

COLOR=
PLOT

HLIN

AT
VLIN

AT
VIAB

)
LIST

LIST
POP
NODSP
NODSP
NOTRACE
DSP
DSP
TRACE
PR!I
IN!I

Comma used with POKE

Comma used with PLOT

Comma used with HLIN
AT used with HLIN

Comma used with VLIN
AT used with VLIN

String -- non-conditional: A$ = "HELLO"
Numeric -- non-conditional: A 14
The only right parenthesis token -- won

most-popular-token award in Atlantic City
Unused
LIST a range of numbers or specific number:

LIST 1~ : LIST 12\1, 32767
Comma used with LIST
LIST entire program

String variable
Numeric variable

String variable
Numeric variable

The following are for FOR/NEJIT loops

85 $55 FOR
86 $56
87 $57 TO
88 $58 STEP
89 $59 NEJIT
9\1 $5A

91 $5B RETURN
92 $5C GOSUB
93 $5D REM
94 $5E LET
95 $5F GOTO
96 $6\1 IF
97 $61 PRINT String variable or literal: PRINT A$

PRINT "HELLO"
98 $62 PRINT Numeric variable: PRINT A
99 $63 PRINT Dummy PRINT: PRINT : PRINT

22

To use an illegal token inside a program, there must first be a legal
line in which to POKE the new token. Because we could not enter, "LIST
X, Y", we entered "PRINT X, Y" and then changed the two tokens. If you
wish to have, "1~3\1 DEL 1\1", then first enter "1\13\1 PRINT W" or "1\13\1
INPUT W". Then POKE in the new token.

Variable Names and Spaces

Variable names are made up of an alpha character which may be followed
by a series of alpha or numeric characters. Anything other than
alphanumeric characters appearing outside of quotes and REM statements
are tokens.

Spaces between tokens, numbers, and variable names are deleted upon
entry and re-supplied during LISTing. In counting the number of bytes
in a line, all spaces outside of quotes and REM statements should be
overlooked. When a REM is LISTed, one space is inserted after the word
REM; ~herefore, the statement which lists as REM APPLE uses 6 bytes of
memory, not 7.

23

Characters

The numbers from 128 to 256 are ASCII characters in Integer BASIC. A
chart of these characters can be found in many computer manuals,
including the Applesoft Reference manual. If your chart lists
characters with numbers from !il to 127, just add 128 to compute their
"negative-ASCII" counterparts. (You might find it useful to write the
higher numbers into your Applesoft Reference manual.) Enter the
following lines:

l!il3(J PRINT "A"
l!il POS =3: FOR CMD=128 TO 255: GOSUB l!il2(J: PRINT CMD,: LIST 1(J3(J: NEXT
CMD: END

Then RUN it. To POKE the ASCII numbers between the quotation marks, it
was first necessary to set POS. As PRINT is a command word, and
therefore a single token, or byte, and its position is I, then the space
between the quotes is 3. By counting out from the beginning of the
line, you may POKE your command, character, or number anywhere within
the line.

Numbers

Numbers, like tokens, are converted upon entry. Unlike tokens,
converted numbers always occupy 3 bytes. (The numbers we are
considering are not numeric characters that make up part of a variable
name, such as ALPHA3, but rather integers, as in X = 32 or ALPHA (3).)

Then RUN it. You'll note, we've a quote within a quote. Your job is to
put a quote at the end of the line, where the second @ is located. (The
@ has been used arbitrarily; it could be any character.) Keep in mind
that position 1 is where X is, that the reserved word (command) PRINT
and the reserved word : (statement separator) are each one byte, and
that the number 14 is three bytes. Any spaces outside of the quotes do
not count. The only thing you must change is POS, the ASCII for a
quotation mark, 162 stays the same. After you have both quotes RUN
l!il3(1. '

Finally, let's change line 1(J3(J to 65535. The low and high bytes of
65535 are both 255. The line number bytes are the two immediately
preceeding POSition 1 in our line, thus they are -1 (the low-order) and
o (the high-order). To change our line, type this new line 1(J:

l!il POS=-I: CMD=255: GOSUB l!il2(J: POS=(J:GOSUB 1(J2(J:LIST:END

Changing the line back to l!il3(J will be left to you; the information on
computing the byte values may be found in the second paragraph of this
section on numbers. Just do exactly what the computer normally does.

Self-Writing Programs

It is possible to write a program which can write itself, using this
line, by dropping HIMEM: down, POKING in syntactically correct lines off
the top end of the program, and POKING a new HIMEM: into place when done
using the following line:

HIMEM: is always 1 past the end of the program; thus we add 82, not 81.
The above line assumes that you will not write above 32767 in memory; be
sure to bring HIMEM: sufficiently below this figure before beginning.
One use of this method would be to write a program that would convert
machine language into POKE statements inside your BASIC program; another
would be a DATA program that would write: <linenumber> <your input
data> : RETURN. (This one would undoubtably lead to another round of
HANGMAN games.) Your imagination can supply you with many other uses.

The first byte of a line number contains the number of bytes in the
line; the first byte of a number within a line contains as a flag the
ASCII value of the first digit in the number. This tells the language
that the following two bytes are a number. (The flag can be the ASCII
value of any digit -- 176 does nicely -- it is being used as a flag,
not a value.) The actual number itself is made up of two bytes, the
first being the low-order byte, the second, the high-order byte. When
you enter a line number such as l!il3(J into Apple, the language first
computes l!il3!il MOD 256 and puts that number in the first byte and then
computes l!il3!il / 256 and puts that number in the second byte. With two
bytes, each capable of storing numbers from !il to 255, the square of 256,
or 65536 numbers may be expressed. (This 65K range is from -32767 to
+32767, or from 0 to 65535 depending on its interpretation.)

Therefore, whenever you wish to POKE a number into a position past
integers in the line, POS must be increased by exactly 3 for each
integer to be leap-frogged, be that integer 0 or 32767. Try the
following new lines, retaining line l!il2!il:

l!il3(J X=14: PRINT "SAY @APPLE@" :END
l!il POS = 13:CMD = 162:GOSUB l!il2(J:LIST l!il3!il:END

<linenumber> HMM= 82 + POS + LC 1 + LC 2*256
77, HMM / 256

POKE 76, HMM MOD 256: POKE

24 25

Try this simple sample primitive program, after setting HIMEM: to
(arbitrarily, but safely) 8192 and DELeting all but line Ig2g. (You
need not enter the REM statements.)

Ig DIM Y(13):REM OUR LINE WILL BE 13 BYTES LONG
20 Y(I)=g:Y(2)=8g:Y(3)=97:Y(4)=4g:Y(S)=193:Y(6)=2g8:Y(7)=208:

Y(8)=2g4:REM TOKEN AND ASCII CODE FOR EACH BYTE IN LINE
30 Y(9)=197:Y(lg)=41:Y(II)=3:Y(12)=81:Y(13)=I:y(g)=14:REM THE

FIRST BYTE IN THE LINE MUST ALWAYS CONTAIN THE LENGTH OF
THE LINE

4g FOR POS = -2 TO 11: REM FIRST BYTE IN LINE IS AT POS IT ION -2
sg CMD = Y(POS +2):REM TO READ Y FR0l1 0 TO 13, WE MUST ADD 2

TO POS
6g GOSUB Ig2g:REM POKE THE BYTE IN PLACE
7g NE2IT POS: POS = POS-l :REM LOOP UNTIL DONE
8g REM WHEN EXITING THE LOOP, POS WILL HAVE BEEN INCREMENTED

TO 12, ONE GREATER THAN END-{)F-LINE, SO SUBTRACT 1 TO MAKE
IT ACCURATE

9g HMM=82 + POS + LCI + LC2*256 : POKE 76,HMM MOD 256:
POKE 77, HMM/256

10g LIST :GOTO 2g48g

Summary

It is hoped that the Illegal Statement Writer and the above discourse
will lead you to a fuller understanding of Integer BASIC and computer
language processes in general. While many illegal statements are fun to
play with, "tricky" programming, such as having lines DELete themselves
during run-time should be avoided in serious programming whertever
possible. There are also many tasks that can be accomplished without
using the command word itself (See AUTO-LOMEM:), allowing editing after
entry. But when you need the Writer for something special, it'll be
there, and you'll never have to take *** SYNTAX ERR as the final word
again. (BEEP!)

26

SPACEWAR
Submitted by: D. Redington
Program Language: Integer BASIC

The dreaded Space War has begun. Our space fleet needs your strength
and skill to defeat the Imperial Forces. If you choose to join us in
our fight to preserve the freedom of space, you will be given a fighter
ship. Your mission will be to destroy any enemy fighter ships that come
in your range.

To play Space War, first LOAD the tape marked SPACE WAR. Then type
RUN. The program will ask for your name and then assign your rank.
When you begin the game, your starting rank will be Space Pilot Trainee.
A target screen appears on your screen when the battle begins. You must
maneuver your ship with the game controls until the enemy is in your
sights. The buttons on the two game controls operate your weapons. One
game control fires lasers and the other fires torpedos. The torpedo
uses two units of energy per shot. The laser uses only one unit of
energy per shot, but requires a more exact aim. The enemy fighters are
clever, and it may be difficult to destroy them, but don't be
discouraged. You will be amply rewarded for fighting well. If your
performance in battle warrants it, your rank will be increased. With
some practice, you may even make General.

When you have finished playing, type CALL -34g if you wish to look at
other programs. The Space War program, like the Color Sketch program,
stores information in areas of the Apple's memory where the Apple
doesn't expect them. CALL -34g restores memory to the configuration the
Apple expects.

Have a good game, and good luck!

27

Submitted By: Wendell Sander
Program Language: Integer BASIC

APPLE TREK

Stardate 3424.0
The Free Galactic Federation has been invaded by battle cruisers of the
Klarnon Empire. Several Federation star-systems are under attack. As
an experienced officer, you have just been given command of the starship
Endeavor. Your three-year mission, should you choose to accept it, is
to search the Galaxy and destroy all Klarnon battle cruisers. If you
succeed, the federation will survive. If not, •••••••

Your Apple II computer serves as a command console.
operating conditions, movements and actions of enemy
carries out your orders.

IT informins you of
vessels, and

1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8

2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8

3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8

4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8

5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8

6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8

7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8

8-1 8-2 8-3 8-4 8-5 8-6 8-7 8-8

Figure 1
Chart of Quadrants in the Galaxy or Sectors in a Quadrant

The Endeavor is a complex vessel. You should take a few practice runs
to learn how to operate it before you actually embark on your mission.
Remember, the fate of the galaxy is in your hands.

LOAD the tape labeled APPLE-TREK in the usual manner, and then type
RUN. The program will announce itself and the game setup will be
revealed to you. Before making any decisions concerning the game setup,
you should read further.

The Galaxy

The Galaxy in which the action takes place is subdivided into 64
quadrants of space, each of which contains 64 sectors. One sector
is the smallest measured unit of space and may be occupied by any of the
following: a star, a Klarnon, a starbase, or the Endeavor. Each
quadrant is charted as an 8 by 8 array of sectors. Each sector within
the quadrant is identified by coordinates as shown in Figure 1.
Similarly, the Galaxy is charted as an 8 by 8 array of quadrants. Each
quadrant within the galaxy is identified by coordinates as shown in
Figure 1. The first coordinate of each pair gives the location along
the Galactic North-South axis; the second, along the Galactic East-West
axis.

28

As discovered by the twenty-fourth century cosmologist Liebowitz, the
Galaxy is a closed space, which is represented by the chart of
quadrants. The Galaxy has no bounds: each edge of the chart is
physically adjacent to the opposite edge of the chart so that. quadrant
7-1 is bounded on one side by quadrant 7-2 and on the other s1de by
quadrant 7-8. Likewise, quadrant 1-1 is bounded by quadrant 2-1 and
8-1. This concept is illustrated in Figure 2 below. In the
"Four-Corners" region of the Galaxy, both axes "wrap around" at one
point. (Mathematicians may find it helpful to model the Galaxy as a
torus.)

7-7 7-8 7-1 7-2

8-7 8-8 8-1 8-2

1-7 1-8 1-1 1-2

2-7 2-8 2-1 2-2

Figure 2
Map of "Four-Corners" Region of the Galaxy,

Showing Adj acent Quadrants

29

The Starship Endeavor

The Endeavor is a powerful craft with somewhat more firepower and energy
capacity than the Battle Cruisers of the Klarnon Fleet. However, the
Endeavor is usually heavily outnumbered and is easily destroyed unless
good maneuvering and firing strategies are employed.

Energy

At the beginning of your mission, the Endeavor will be stocked with
10,0~~ units of energy. Of these 1~,0~~ units, 25~~ units will be
allocated to available energy stores, 25~~ units to shield energy, and
50~~ units to photon torpedoes (1~ torpedoes of 5~~ units each). 1~,0~~

units is the ship's maximum energy capacity.

Each of the three forms of energy the Endeavor uses has a specific
application. The available energy is used for phasers, for propulsion,
and for the ship's subsystems, one of which is the indispensible Apple
81 computer. The shield energy works to absorb enemy phaser and photon
torpedo attacks. Without it the ship would be lost. The photon
torpedoes, of course, are used to attack the enemy.

Each type of energy is adapted only to certain applications, but,

fortunately energy of one form can be converted to energy of another.
The shield energy is depleted with each enemy attack that scores a
"hit." If the shield energy is allowed to get too low, the Endeavor may
sustain damage to its subsystems.

Fortunately you, as captain, can transfere energy between the available
energy stores and the shield energy. However such transfers take time
and must be planned with caution.

Similarly photon torpedoes can be LOADed (formed from available energy)
or UNLOADed (converted to available energy) depending on your energy
needs. Both these transformations consume energy, however.

Energy Sources

When the Endeavor's energy level gets low, you will wish to restock.
The ship's energy is restocked in two different ways.

One way is through the store of on-board dilithium crystals which
generate energy continuosly at a rate of 5~ units per 0.1 stardate. The
energy limit of 1~,0~~ units cannot be exceeded, however, and any excess
will dissipate before it can be used.

The other way to restock the Endeavor's energy is to stop at a
restocking base. These bases are located at various points in the
galaxy. A rendezvous with a restocking base brings the Endeavor back to
maximum energy and repairs any subsystems that may be damaged, but also
depletes all the base's energy. Each restocking base can be used only
once.

30

Firepower

The Endeavor has two main forms of weaponry: photon torpedoes and
phasers. Both these weapons are very powerful and each of them has a
different application.

The Endeavor usually carries 1~ photon torpedoes of 5~~ energy units
each. Photon torpedoes can be used to attack any point within a
quadrant and can be fired in a straight line at any angle. If the
photon torpedo hits a Klarnon ship or a star before reaching the edge of
the quadrant, it will inflict 5~~ energy units of damage. This will
reduce the energy of a Klarnon by 5~~ units or destroy a star.

Phasers are a focused energy weapon and are not blocked by stars or
Klarnons. The phaser energy fired is divided equally among the targets
selected and is reduced by the distance of the target. Phaser energy is
drawn from the Endeavor's available energy supply. The number of phaser
energy units fired is chosen by you. A phaser striking a Klarnon ship
reduces the Klarnon energy supply by the amount of energy that hits the
ship.

There is one form of weaponry that should only be used as a last resort.

At the beginning of your mission, you will be asked for a SELF-DESTRUCT
password. If you give the SELF-DESTRUCT command in conjunction with the
SELF-DESTRUCT password the Endeavor will be destroyed with all hands
lost. If sufficient energy is available, all enemy vessels in the
quadrant will also be destroyed. This command has dire consequences,
but it may be necessary in order to save the Federation.

Propulsion

The Endeavor has two forms of propulsion available: Warp Drive and
Ion Drive. Warp Drive is used exclusively for movement from quadrant
to quadrant. Ion drive is for short distance moves and can be used
either for movement within one quadrant or for movement from one
quadrant into an adjacent quadrant.

Under Ion Drive, the Endeavor moves 1 sector unit of distance per 0.1
stardate. The direction of movement is determined by the COURSE, from 0
to 359 degrees. The distance is determined by the DURATION, from 1 to 9
sector units. The captain can set a course that will take the ship
across the boundary of a quadrant and into the next one: energy and
time will be consumed at the same rate as if all motion were in one
quadrant. For this reason, it is usually quicker to move to an adjacent
quadrant by ion drive, especially if the ship is near the boundary. The
energy consumed by an ion drive move is 2~ units plus 2~ units per
sector unit moved. The time consumed is 0.01 stardates per sector unit.

31

When using Warp Drive, the direction of motion is determined by the
COURSE, from 1 to 359 degrees. The distance is determined by the WARP
FACTOR, from 1 to 6 quadrant units. For the shortest possible move
between two adjacent quadrants, moving along an axis at a COURSE of 0,
9~, 18~, or 27~, the WARP FACTOR is 1. For a longer move along an axis,
the WARP FACTOR is the number of quadrants moved. Angular moves require
larger WARP FACTORS, as the Endeavor is moving along both axes at once:
A diagonal move, on a course of 45, 135, 225, or 315, requires a WARP
FACTOR of 1.4 times the number of quadrants moved, rounded to the
nearest unit. The maximum value for the WARP FACTOR is 6, which moves
the Endeavor 4 units north-south and 4 units east-west. An object
within 3 sector units of the Endeavor in the direction of warp drive
movement will block the movement. The energy required for a warp drive
movement is 12 times the cube of the WARP FACTOR and is much larger for
a large WARP FACTOR than a small WARP FACTOR. The time consumed by a
warp move of any distance is 0.1 stardate.

The Apple 81 Computer

The Endeavor is equipped with an Apple 81 computer which is at your
disposal. The computer gives the Endeavor a major advantage over its
Klarnon opponents. It is virtually impossible to defeat a squadron of
Klarnons without the help of the computer.

The computer permits the Endeavor to lock photon torpedoes or phasers on
selected Klarnon targets, to move while firing, and to compute angles
for movement and for manual photon torpedo fire.

Klarnon Battle Cruisers

The Klarnon Battle Cruisers are less powerful and less sophisticated
t~an the Endeavor, but usually appear in squadrons of several ships at a
tlme. Therefore the overall Klarnon firepower in a battle will usually
exceed the firepower of the Endeavor. The captain of the Endeavor must
use skill and cunning to overcome the Klarnons' advantage.

At the beginning of battle each Klarnon ship is equiped with 8~~ units
of energy and 3 photon torpedoes. The Klarnon energy may be used for
phaser fire, for movement, or for absorbing fire from the Endeavor.
When a Klarnon ship's energy is reduced to zero, it has been destroyed.

Control Console Display

At this point you should return your attention to your Apple. If this
is your first mission, accept the setup conditions given, by typing N
for NO. ,?hen asked, type the Self-Destruct Password you choose and then
press RETURN. In a few seconds the Endeavor's Control Console display
will appear on the screen. When the display is complete, the Apple will
signal you with a beep.

Through the Endeavor's Control Console you can communicate with your
entire ship and obtain information on the condition of both your ship
and the galaxy. The following photograph is an example of a
typical Console display at the beginning of a mission.

Galactic Record

Status Display

Quadrant Display

At the beginning of the game, the top portion of the screen is occupied
by the Galactic Record. The Galactic Record is an 8 x 8 array
representing the 64 quadrants that make up the Galaxy. This record
provides readings that tell you the number of Klarnon ships, Federation
bases, and stars that occupy each quadrant that has been observed by the
Endeavor so far. Observed quadrants include all quadrants the Endeavor
has occupied and, if the long range sensor sub-system is operational,
all 8 quadrants adjacent to these. The quadrant you are currently
occupying is shown in inverse mode (black print on a white background).

The 3 possible readings are shown in the following manner:

Because Klarnon ships never enter a quadrant that is occupied by a
Federation base, at most 2 digits will be given for each quadrant.
blank space is equivalent to a reading of 0 For example, there
no Federation bases in the quadrant shown in the example above.

The Klarnons have both phasers and photon torpedoes. These weapons work
much like those of the Endeavor, but Klarnons have the disadvantage of
not being able to LOCK, LOAD, or UNLOAD photon torpedoes.

Klarnon ships can move one sector unit of distance at a time during
battle. If the Endeavor retreats from a quadrant before all Klarnons in
it are destroyed, the Klarnons will probably be fully restored if and
when the Endeavor returns. Klarnons will never enter a quadrant that is
occupied by a starbase, however. The base could easily thwart a Klarnon
attack.

32

Number of
Number of bases

KlarnOn\ I'fiber

:3 5:

of stars

A
are

33

Here are some more examples of quadrant readings: Status Display

: 3 5:

13:

3 Klarnons, no bases, 5 stars

1 base, 3 stars

The current status of the Endeavor is shown in the lower right portion
of the screen. The Status Display on your screen probably looks
something like the one in Figure 5 below.

The first line of the display gives the coordinates for the SECTOR
occupied by the Endeavor. The second line indicates the YEARS remaining
in the Endeavor's mission, and the third line indicates the current
STARDATE.

4: 4 stars

The Galactic Record will also be displayed whenever the NAVIGATION
command is issued. As long as it is not destroyed in combat, the
Galactic Record will be maintained.

Quadrant Display

The white square in the lower left corner of the screen is the Quadrant
Display. This display is a blowup of the white square in the Galactic
Record. It shows the locations of all spacecraft and other objects in
the quadrant the Endeavor is currently occupying. Figure 4 below is an
example of a typical Quadrant Display. North-South coordinates are on
the right border and East-West coordinates are on the lower border.
(Any time you are asked to input coordinates, remember that the first
digit becomes the North-South coordinate and the second becomes the
East-West coordinate.) The galactic coordinates of the quadrant are
given at the top of the Quadrant Display.

SECTOR
YEARS
STARDATE
CONDITION
SHIELDS
SHIELD ENERGY
AVAIL ENERGY
PH TORPS
KLARNONS

BASES
COURSE NOT SET.

Figure 5
Status Display

5-6
3.0
3424.0
GREEN
50%
2500
2500
10
31

4

In order to use the Quadrant Display, you must know the code for reading
it. The code is very simple. The Endeavor is represented by E, a
Klarnon ship by K, a star by *, and a base by B. During battle, a
photon torpedo is represented by # and a Klarnon ship firing phasers
is represented by K in normal video mode (white print on a black
background).

QUADRANT 5-1
1
2

* E 3

* 4
K 5

* * 6
7

* 8
1 2 3 4 5 6 7 8

Figure 4
Quadrant Display

34

The Endeavor's CONDITION is GREEN if it has enough energy to ensure
safety and if there are no Klarnons in the current quadrant. If energy
is dangerously low, CONDITION YELLOW will flash, and if there are
Klarnons in the quadrant (which is the same as saying that the Endeavor
is under attack) CONDITION RED will flash. Despite appearances,
CONDITION YELLOW can be more threatening than CONDITION RED.

SHIELDS indicates the percentage of the Endeavor's total energy
(excluding photon torpedoes) allocated to its shields. SHIELD ENERGY
indicates the energy the Endeavor can safely absorb from Klarnon
attacks. If SHIELD ENERGY falls below 100 units, the Endeavor may be
damaged. If it falls below zero, the Endeavor will definitely suffer
damage. AVAIL ENERGY shows the energy the Endeavor can use for phaser
fire, propulsion, and operation of the ship's subsystems.

PH TORPS shows the number of unused photon torpedoes. At the beginning
of your mission, the Endeavor will have 10. KLARNONS shows the number
of Klarnons still to be destroyed in this mission, and BASES shows the
number of unused replenishment bases. Each base can be used only once
during each mission.

The last line reads COURSE NOT SET. When you are firing under the
control of the Endeavor's Apple 81 coaputer, you can set a strategic
destination to move toward as you are firing. COURSE will then show the
coordinates of the sector the Endeavor will move toward while firing.

35

After the WARP or DURATION has been given then the question
COURSE (~-359)?

will appear. The direction chart is given below:

If you type I in response to
WARP OR ION DRIVE (W OR I)?
the question
DURATION (1-9)?
will appear. Type a number from 1 to 7 to choose the DURATION.

If the WARP DRIVE is damaged, the question
WARP OR ION (W OR I)?
will be replaced by the message
ION DRIVE ONLY DURATION (1-9)?
If any letter key is typed, the NAVIGATION function is aborted and
COMMAND? appears above the Quadrant Display again.

East

135

45

18~

South

North
~
I

225

315

West 27~------7>1:;;'----- 9~

1 NAVIGATION
2 SHIELD ENERGY
3 DAMAGE RPT
4 PHASERS
5 PH TORPS
6 LOAD PH TORPS
7 COMPUTER
8 PROBE
9 SELF-DESTRUCT

To see the Command Display, wait for the COMMAND? prompt and then
press any letter key on the Apple keyboard. The list of available
commands will be displayed in the lower right of the screen in place of
the Status Display. The display appears as follows:

Command Display

Conversational Display

Your commands and their consequences are indicated directly above the
Quadrant Display in the section of the screen set aside for the
Conversational Display. Immediately above the Quadrant Display you
should see COMMAND? This means that the Endeavor is ready for your
command. During battle and in some other instances, the Conversational
Display gets too large for the space allotted for it. When this happens
the Conversational Display will use the space now occupied by the
Galactic Record.

Figure 6
Command Display

Figure 7
Direction Chart

To select one of the 9 commands, enter the number to the left of the
command. Your Apple will ask you for any additional information
required to execute the command.

To choose a course, type any number between 0 and 359, followed by a
RETURN. If you type a letter key, the NAVIGATION command will be
aborted and COMMAND? will reappear

Following is a discussion of the commands available.

1 NAVIGATION
The NAVIGATION command is used to move the Endeavor to a different
sector within a quadrant or to a different quadrant in the Galaxy.
After pressing 1 in response to COMMAND?, the Galactic Record will
be displayed in the upper po~tion of the screen.

2 SHIELD ENERGY
The SHIELDS parameter allocates the desired percentage of total energy
to the shields, and the remainder to the Endeavor system functions.
This value is set at 5~% at the beginning of your mission and may be
changed with this command. Transfering energy takes time, however, so
you have to plan ahead before you use the SHIELD ENERGY command.

If the warp drive is not damaged, the question
WARP OR ION DRIVE (W OR I)?
will appear. If you type W, then the question
WARP (1-7)?
will appear. Type a number from 1 to 7 to choose the WARP FACTOR.

36 37

(One year is the same as one stardate.)

Figure 8
Damage Report

3 DAMAGE REPORT
A display indicating the current status of all the Endeavor's systems is
displayed at the top of the screen in place of the Galactic Record
whenever the DAMAGE REPORT command is executed. If the subsystem is
operational then the display will indicate OK. If the subsystem is
damaged the display will indicate the estimated time to repair that
unit. If dilithium crystals are destroyed, the display will indicate
that too. A typical damage report is illustrated below.

WARP DRIVE
SR SENSORS
LR SENSORS
PHASERS
PH TORPS
COMPUTER
PROBE

OK
OK
OK
OK

DAMAGED 0.24 YEARS TO REPAIR
OK
OK

If photon torpedoes are LOCKed, you have the option of automatic fire.
The display will look like

PH TORPS LOCKED ON
1-6 2-7 3-4 4-6 6-6
AUTO OR MANUAL (A OR M)?

If you reply M, you must fire manually by giving the desired
trajectory when asked. If you reply A, all preset torpedoes will be
fired at their targets (unless there are more targets present than
photon torpedoes, in which case the computer will complain). If a
course has been set, the Endeavor will move while firing.

6 LOAD PH TORPS
This command causes available energy to be transformed into photon
torpedoes, or vice versa. This conversion uses 100 energy units for
each photon torpedo loaded or unloaded. It is possible by blow up the
Endeavor by trying to LOAD more photon torpedoes than you have energy
for, so use caution when using this command. To LOAD, type +1 (to
LOAD 1 torpedo) to +6 (to LOAD 6 torpedoes). To UNLOAD, type -1 to
-6. To abort the command, type 0·

8 PROBE
The PROBE command sends a probe out into the quadrant currently occupied
by the Endeavor. This probe reports the status of all Klarnon ships in
the quadrant: energy levels, photon torpedoes left, and whether
targeted by the Endeavor's automatic weapon systems. The probe's
information is displayed at the top of the screen where the Galactic
Record was when you began. A typical probe display is illustrated
below.

4 PHASERS
The PHASERS command will initiate the phaser firing sequence. If
phasers are not LOCKed on a target,
PHASERS READY: ENERGY TO FIRE?
will appear on the screen. Type the number of energy units you wish to
fire and press RETURN. The phaser fire will be divided evenly between
all Klarnon ships in the quadrant unless the number given is larger than
the amount of energy the Endeavor has available. In that case the
computer will politely decline to fire, as the Endeavor would be blown
up in the process.. (If the computer is damaged ••••) When you type a
valid number, the phasers will fire.

If phasers are LOCKed onto a target or targets, you will be asked
AUTO OR MANUAL (A OR M)?
Type A or M, and
PHASERS READY: ENERGY TO FIRE?
will appear on the screen. The LOCKed phasers will fire only at those
targets that have been LOCKed into. Answer with the amount of energy
you wish to expend, and the battle will commence.

If no Klarnons are in the quadrant, the phasers will not-fire.

7 COMPUTER
Command 7 sets the Apple 81 on-board computer in operation.
section on Apple 81 computer instructions for details.

COORD ENERGY PH TORPS LOCK

3-1 540 2 PHASERS
6-3 210 3
8-5 620 2 PH TORPS

Figure 9
Probe Display

See the

If a course has been set and you choose AUTOmatic fire, the Endeavor
will move while firing. This feature is handy for avoiding enemy photon
torpedoes. The Klarnons have no such automatic fire.

5 PH TORPS
The PH TORPS command will initiate the photon torpedo firing sequence.
If the photon torpedoes are not LOCKed, you will see
PH TORPS NOT LOCKED

TRAJECTORY?
After you reply, with a number from 0 to 359, one photon torpedo will be
fired in that direction.

38

9 SELF-DESTRUCT
Command 9 starts the self-destruct sequence: if it is followed by the
correct password, the Endeavor will be destroyed with all hands lost.
If sufficient energy is available, all enemy vessels in the quadrant
will also be destroyed.

39

Apple 81 On-Board Computer Instructions

The Apple 81 computer enables the Endeavor to make navigational
calculations, and controls the ship's weapon systems for maximum
effectiveness in combat. It enables the ship to take evasive action
while firing, thus making it a match for a squadron of Klarnon vessels.
When the computer has been invoked by typing 7 in response to
COMMAND?, you will see
APPLE-81 HERE
WHAT IS YOUR INSTRUCTION?

1. NAVIGATION

COMMAND SUMMARY

Moves starship with warp or ion drive
Warp (W) drive moves 1-6 quadrants

WARP FACTOR?- (1-6 quadrants)
COURSE?- (1-359 degrees)

Ion (I) drive moves 1-9 sectors
COURSE?- (1-359 degrees)
DURATION?- (1-9 sectors)

To execute one of the computer instructions, type a number from 1 to 6.
Typing a letter key will display the list of instructions. The computer
instructions are described below.

1 *COMPUTE QUADRANT
This instruction plots the shortest path to any desired quadrant. When
you see COORDINATE?-, type the coordinates of the destination, and
the COURSE and WARP needed to reach that location will be displayed.

2 *LOCK PHASERS
This instruction LOCKS the phasers onto the Klarnons you choose to
attack. The Klarnon ships will be tracked by the phasers if the enemy
takes evasive action. You will be asked for the # OF TARGETS, and then
for the COORDINATEs of each target. Incorrect data will give you a
<DATA ERROR> message. The phasers will be locked onto all targets
whose coordinates are entered. If no valid coordinates are entered, the
instruction will be aborted.

3 *LOCK PH TORPS
This instruction causes the photon torpedoes to LOCK onto the Klarnons
you have chosen. These ships will be tracked if they take evasive

action. This instruction works just like the *LOCK PHASERS instruction.

4 *LOCK COURSE
Instruction number 4 LOCKs the COURSE that will be followed during
automatic fire in combat. You will be asked to enter each COORDINATE of
the chosen destination. The COURSE will be displayed at the bottom of
the status display. During each round of combat, the Endeavor will move
one sector unit toward the destination.

5 *COMPUTE TRAJECTORY
When you give this instruction, the Apple 81 will ask you for the
COORDINATEs for a particular target and then give you its TRAJECTORY and
RANGE. If you type the COORDINATEs of a destination, the TRAJECTORY and
P~NGE displayed will be the COURSE and DURATION for Ion Drive motion.

6 *RETURN
This instruction puts you back in the command module.

40

2. SET SHIELD ENERGY

3. DAMAGE REPORT

4. PHASERS

5. PHOTON TORPEDOS

6. LOAD PHOTON
TORPEDOS

7. COMPUTER

8. PROBE

9. SELF-DESTRUCT

Sets percentage (~-1~~) of energy
allocated to deflector shields

Displays status of subsystems

Starts phaser firing sequence
AUTOMATIC OR MANUAL?- (A or M)
ENERGY TO FIRE?- (~-Avail energy)

Starts photon torpedo firing sequence
AUTOMATIC OR MANUAL?- (A or M)
TRAJECTORY?- (~-359, manual only)

Loads or unloads photon torpedoes
Load: (+1 to +6)
Unload: (-1 to -6)

Turns on Apple 81 computer

Sends out probe of current sector

Starts self-destruct sequence
ENTER SELF-DESTRUCT PASSWORD-

41

APPLE 81 ON-BOARD COMPUTER SUMMARY

1. COMPUTE QUADRANT

2. LOCK PHASERS

3. LOCK PHOTON
TORPEDOS

4. LOCK COURSE

5. COMPUTE TRAJECTORY

6. RETURN

42

Calculates course and warp factor to
desired quadrant

Set phasers to track targets
OF TARGETS?- (I-Klarnons)
COORDINATE ?- 1-1 to 8-8

Set photon torpedoes to track targets
OF TARGETS?- (I-Klarnons)
COORDINATE ?-

Set evasion course for automatic fire

Calculates trajectory and range
(course and duration) to desired
sector

Return to command module

r

